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Tableaux combinatorics for two-species
PASEP probabilities

Olya Mandelshtam![

Y Department of Mathematics, University of California, Berkeley, USA

Abstract. The goal of this paper is to provide a combinatorial expression for the steady state probabilities of the two-
species PASEP. In this model, there are two species of particles, one “heavy” and one “light”, on a one-dimensional
finite lattice with open boundaries. Both particles can hop into adjacent holes to the right and left at rates 1 and
q. Moreover, when the heavy and light particles are adjacent to each other, they can switch places as if the light
particle were a hole. Additionally, the heavy particle can hop in and out at the boundary of the lattice. Our first result
is a combinatorial interpretation for the stationary distribution at ¢ = 0 in terms of certain multi-Catalan tableaux.
We provide an explicit determinantal formula for the steady state probabilities, as well as some general enumerative
results for this case. We also describe a Markov process on these tableaux that projects to the two-species PASEP, and
hence directly explains the connection between the two. Finally, we extend our formula for the stationary distribution
to the ¢ = 1 case, using certain two-species alternative tableaux.

Résumé. Le but de ce document est de fournir une expression combinatoire décrivant les probabilités de 1’état
d’équilibre de PASEP a deux especes. Dans ce modele, il existe deux especes de particules, une “lourde” et une
“légere”, disposées sur un réseau fini unidimensionnel. Les deux particules peuvent sauter dans les trous adjacents a
droite et a gauche, avec des probabilités proportionnelles a 1 et g. Par ailleurs, lorsque les particules lourdes et 1égeres
sont a coté 1'une de 1’autre, elles peuvent changer de place, comme si la particule légére était un trou. En outre,
la particule lourde peut sauter dans et hors de la frontiere du réseau. Notre premier résultat est une interprétation
combinatoire de la distribution stationnaire dans le cas ¢ = 0, en termes de certains tableaux “multi-Catalan”.
Nous proposons une formule explicite déterminantale pour les probabilités stationnaires, ainsi que plusieurs résultats
énumératifs généraux pour ce cas. Nous décrivons aussi un processus de Markov sur ces tableaux, qui se projette sur
le PASEP a deux especes, et qui fournit donc directement une connexion entre les deux. Enfin, nous exprimons notre
formule pour la distribution stationnaire dans le cas ¢ = 1, en utilisant certains tableaux alternatifs de deux especes.

Keywords: PASEP, multispecies, tableaux

1 Introduction

The Partially Asymmetric Simple Exclusion Process (PASEP) is a well-studied model that describes the
dynamics of particles hopping on a finite one-dimensional lattice on n sites with open boundaries, with
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the rule that at most one particle hops at a time. Figure[I]shows the parameters of this process, with the
Greek letters denoting the rates of the hopping particles. Processes of this flavor have been studied in
many contexts, in particular for their connections to some very nice combinatorics. For instance, see [2]]
and the references therein.

In this work we consider the two-species PASEP with “heavy” and

“light” particles, which we call types 2 and 1 respectively. Both a q 1 Jéj
types of particles can hop to the right or left into an adjacent hole \\ N /A /
with rates 1 and ¢q. Furthermore, heavy particles can enter from the e oo o

left and exit on the right of the lattice, and they can treat the light
particles as holes and swap places with them also at rates 1 and
q. Since the light particles cannot enter or exit, their number stays
fixed. In particular, when we fix the number of type 1 particles to be zero, we recover the original PASEP.
The two-species process was studied by Uchiyama in [4]], and a Matrix Ansatz solution and corresponding
matrices gave exact expressions for the steady state distribution of the system.

Fig. 1: The parameters of the PASEP.

More formally, the two-species PASEP is a Markov chain, whose states are words of length n in the letters
{D, E, A}, where D and A represent the particles of types 2 and 1, and E represents a hole. We also use the
following notation for a state: locations are labeled 1 through n, and 7; € {0,1} and o; € {0, 1} are the
particle indicators for particles 2 and 1 respectively, with the pair (7, o) representing a state. For example,
the state AEDDA is represented by (7,0) = ((0,0,1,1,0),(1,0,0,0,1)). We write Prob((r,c)) or
equivalently Prob(X) for X a word in {D, E, A}* to describe the steady state probability of state X .

Figure [2] shows the parameters of the two-species process. More precisely, the transitions in the Markov
chain are the following, with X and Y arbitrary words in {D, E, A}*.

XAEY = XEAY  XDEY — XEDY  XDAY — XADY
q q q

EX % DX xp 2 xE
where by X % Y we mean that the transition from X to Y has probability 41> 1 being the length of X
(and also Y).
o 1 g q 1 7 1 B
N Y Y e Ya al
® @6 O o L @ o

Fig. 2: The parameters of the two-species PASEP. The black particles are of type 2, and the grey ones are of type 1.

Due to (2.9) of [4]], the following Matrix Ansatz solution holds for the two-species PASEP:
Theorem 1.1 (Uchiyama, 2008) Ler (7, 0) represent a state of the two-species PASEP of length n with

r particles of type 1. Suppose there are matrices D,E, and A and vectors (w| and |v) which satisfy the
following conditions

1
DE = D+E+qED, DA = A+¢AD, AE = A+qFEA, (w|E = a<w|, D) = =|v)

1
B
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then

Prob((t,0)) = Zl (w] HTiD +0A+(1—7)1—0;)E|v)

n,r i=1
where Z,, , is the coefficient of y" in (w|(D + yA + E)™|v).
This result generalizes a previous Matrix Ansatz solution for the regular PASEP of Derrida et. al. in [1]].

In his paper, Uchiyama provides matrices that satisfy the conditions of Theorem These matrices
contain terms that are neither positive or rational, but the matrix product yields steady state probabilities
in the form of polynomials in o, 3, and ¢ with positive integer coefficients. Therefore we would hope for
a combinatorial interpretation of these probabilities, with results akin to those of Corteel and Williams [3]]
for the original PASEP. Such results could yield explicit general formulas for both the desired probabilities
and the partition function. A combinatorial solution to the two-species problem could furthermore lead to
a solution for a more general process, which would also be a stronger result than the one of [4].

The goal of this paper is to provide some combinatorial solutions to this two-species problem for some
special cases. In Section[2]of this paper, we describe certain tableaux which we call multi-Catalan tableaux
that give an interpretation for the steady state distributions of the two-species PASEP at ¢ = 0. In Section
[B]we provide some enumerative results for the multi-Catalan tableaux. In Sectiond] we describe a Markov
process on the multi-Catalan tableaux that projects to the two-species PASEP at ¢ = 0, and which gives
another proof of our main result in Section 2] Finally, in Section [5] we define some more general multi-
Catalan tableaux that give an interpretation for the steady state distributions of the two-species PASEP at
q=1.

Acknowledgement. 1 would like to thank Sylvie Corteel and Lauren Williams for suggesting this problem
to me, and for their invaluable advice and support. The hospitality of LIAFA where this research was
done, and the Chateaubriand Fellowship awarded by the Embassy of France in the United States that
supported this stay in Paris are also gratefully acknowledged.

2 Multi-Catalan tableaux
The Multi-Catalan tableaux are inspired by the well-known “alternative tableaux” whose weight-generating
functions provide the steady state probabilities for the states of the regular PASEP.

Definition 2.1 A multi-Catalan tableau of size n is a filling of a Young diagram of shape {n,n—1,...,1}
with the symbols «, 3, and x as follows:

1. Every box on the diagonal must contain an «, 3, or .

2. A box that sees an « to its right and a 3 below must contain an o or 3.
3. A box that sees an « to its right and an x below must contain a (3.

4. A box that sees an x to its right and a 8 below must contain an a.

5. Every other box must be empty.
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In the definition above, when we refer to the symbol that a box “sees” to its right or below, we mean the
first symbol encountered in the same row or column, respectively. For example, in the first tableau of
Figure[3]  is the first symbol that the /3 in the top row sees below it. Finally, note that Rule 5 implies that
all boxes in the same row and left of a 8 must be empty, and also that all boxes in the same column and
above an o must be empty.

Definition 2.2 The weight wt(T) of a multi-Catalan tableau T the product of the o’s and (3’s it contains.

Definition 2.3 The type of the tableau T is the word in {D, E, A}* that is read off from the diagonal from
top to bottom, by assigning a D to o, an E to 3, and an A to x.

Theorem 2.1 Consider the two-species PASEP on a lattice of n sites. Let X be a state described by a
word in {D, E, A}". Then the steady state probability of state X is

1
nr

where the sum is over all multi-Catalan tableaux T such that type(T') = X, and where Z, . = > wt(T)
for T ranging over multi-Catalan tableaux of size n whose type has exactly r A’s.

Blalala ‘ Blala ‘ Bl a
gl P gl P gl P
3 E 3 E 3 E

E E E

Fig. 3: These are all possible multi-Catalan tableaux of type DEEAE. Their weights are 3%, a4, and o?8*
respectively.

We show as an example all valid tableaux and their weights for the word DEEAE in Figure 3] Theorem
[2.1)implies that

1

Prob(DEAEE) = o~ (B + B + a?8Y).

5,1
Definition 2.4 A D-row is a row whose right-most box contains an o, and an A-row is one whose right-
most box contains an x. An E-column is a column whose bottom-most box contains a 3, and an A-column
is one whose bottom-most box contains an x. Then a DE box is one that lies in a D row and an E column,
(and correspondingly for DA, AE, and AA boxes).

Note that we can ignore the rows with right-most box containing a 8 or columns with bottom-most box
containing an « because they are automatically required to be empty according to Definition[2.1]

To connect back to the two-species TASEP, let a state of the TASEP be described by a word X in {D, E,
A}™. Then we fill a Young diagram of shape {n,n — 1, ..., 1} as follows: from top to bottom, we fill the
diagonal with symbols «, 3, and x by reading the word X from left to right, and placing an « for a D, a
B for an E, and an « for an A. Then any valid filling of the rest of the shape will result in a multi-Catalan
tableau of type X.
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2.1 Condensed multi-Catalan tableaux

We provide a condensed version of the characterization of the multi-Catalan tableaux, which offers a more
natural proof of our results.

In Figure 4] we demonstrate by example the conversion from a staircase multi-Catalan tableau to a con-
densed multi-Catalan tableau. Specifically, we begin by drawing a lattice path with steps south and west
by reading the diagonal of the staircase tableau from top to bottom. For an o, we draw a step south and
label it with a D, for a § we draw a step west and label it with an E, and for an = we draw a pair of
steps west and south and label them both with an A. The shape obtained will be the same as if we were
to remove the diagonal from the staircase, and then collapse all the DE, DA, AE, and AA boxes. In the
resulting tableau, a D-row now ends with an edge that has the label D, an A-row ends with an edge with
the label A, and the E- and A-columns are analogous.

In general, to obtain a partition from a word X in {D, E, A}*, we apply the definition below.

Definition 2.5 The partition A\(X) associated to a word X is obtained by reading X from left to right,
and drawing a step south for D, a step west for E, and a pair of steps west then south for A. This path with
south and west steps is declared to be the southeast border of a Young diagram of shape \(X).

Remark 2.1 The type of the condensed version of the multi-Catalan tableau T is the word in {D, E, A}*
that is read from the labels on the boundary from top to bottom, but with A counted only once for each
pair of west and south A edges.

The weight of the condensed tableau is the weight of the symbols inside it times the weight of the boundary,
which is obtained by giving each D boundary edge weight o and each E boundary edge weight 3.

1 B a a‘

2 B a D Ié)
D

o @ R
=]

Fig. 4: The staircase multi-Catalan tableau on the left and its corresponding condensed multi-Catalan tableau on the
right have type DDDEADEA and weight a°4°. The condensed tableau is precisely the collapsing together of the
white boxes from the staircase tableau.

Since the staircase version of the multi-Catalan tableaux is in simple bijection with the condensed version,
we will call them both multi-Catalan tableaux, and refer to them interchangeably.

We now give a proof of Theorem [2.1]

Proof (Theorem2.1): The Matrix Ansatz of Theorem([I.T]implies that the steady state probabilities for the
two-species PASEP satisfy certain recurrences (that in turn determine all probabilities). The strategy of
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— L
or
‘ ‘ B ip * a |p
E E = E
XDEY XEY XDEY XDY

Fig. 5: The chosen corner is a DE box.

our proof is to show that the weight generating function for multi-Catalan tableaux of fixed type satisfies
the same recurrences.

We define a corner of the tableau to be a box that is both the right-most box of some row and the bottom-
most box of some column. We also define weight for a word X in {D, E, A}* by

weight(X) =Y " wt(T)
T

where the sum is over all multi-Catalan tableaux T such that type(T) = X.

For a tableau of size n, we will choose any corner and remove either the row or column at that corner to
reduce to a tableau of size n — 1. Depending on whether the corner is of type DE, DA, or AE, we have
one of the following three cases.

The chosen corner is a DE box. In this case, that box must contain either an « or a 3, so we can
decompose the tableau into two cases as in Figure[5] If that box contains an «, then all the boxes above it
are empty, and so its entire column has no effect on the rest of the tableau. Thus any filling of this tableau
can be obtained from a filling of a tableau with that column removed. Similarly, if that box contains a
B, then the boxes to its left must be empty, and so its entire row has no effect on the rest of the tableau.
Hence any filling of this tableau can be obtained from filling a tableau with that row removed. Let us
represent the state of our tableau with the word X DEY’, with X and Y arbitrary words in {D, E, A}*.
Consequently, we have the sum of the weights of the fillings:

o™ B weight(X DEY) = o™ 8" tweight(X DY) (aB) + ™' 8" tweight( X EY ) (a3)
which matches the first Matrix Ansatz hypothesis. Here the factors of o™ 3™ come from the coefficient
that appears in the normalizing factor of a PASEP of size n.

The chosen corner is a DA box. In this case, that box necessarily contains a (3, so the boxes to its left
are empty and the entire row has no effect on the rest of the tableau. Thus we can describe this tableau in
terms of a filling of the smaller tableau with that row removed. Let us represent the state of our tableau
with the word X DAY, with X and Y arbitrary words in {D, E, A}*. Thus we obtain the sum of the
weights of the fillings:

a"B"weight( X DAY) = o " weight( X AY) (a3),

which matches the second Matrix Ansatz hypothesis.
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Fig. 6: (a) The chosen corner is a DA box or (b) the chosen corner is an AE box.

The chosen corner is a AE box. This case is similar to the one above, except that there is necessarily an
« in the corner box, which allows the entire column to be removed.

Similar arguments check the transitions at the boundary.

3 Enumeration of multi-Catalan tableaux

Some enumerative results on regular Catalan tableaux were given in the author’s work on the regular
PASEP [5] that can be extended to the multi-Catalan tableaux. Building on these results, we can deduce
the following.

Theorem 3.1 The number of multi-Catalan tableaux corresponding to a two-species PASEP at ¢ = 0 of
size n and with r particles of type 1 is

2(r+1) (2n+1
Z° (a=8=1)=—~——"2L )
nrle=58=1) n+7’+2<n_7”>

Theorem 3.2 The number of two-species multi-Catalan tableaux corresponding to a two-species PASEP
at ¢ = 0 of size n and with r particles of type 1 and k particles of type 2 is

r+1/n+1\/n+1

n+1\ k ¢ )

Note that the expression in Theorem [3.1]is the convolution of Catalan numbers, and the expression in
Theorem is the convolution of Narayana numbers.

We define size(T) to be the semiperimeter of the tableau T'. Let G 4,5)(2) = > ZS1Z€(D) ¢ (T') be the
weight generating function for multi-Catalan tableaux 7" whose type has zero A’s.

G = ! :
(o) (2) = (1 — - m)> 1— 55(1 = VT —14zap)

_ 20262(1 — 2) + (aB — a — B)(1 + V1 — 4zap)
2(0? —a+2) (8% = B +2)

Note that G (1 1y(2) = HZT v1=4% which is the generating function for the Catalan numbers, enumerates

the unweighted multi-Catalan tableaux of type with zero A’s.
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Theorem 3.3 Let MCT, 5y(2,y) = > r wt(T)ZSiZe(T)y#A,S in type(T) \phere T ranges over multi-
Catalan tableaux. Then
Gla,p)(2)

]\46”11(04’5)(2:7 y) = m

It is easy to see that Theorem [3.1]follows from the above for o« = 5 = 1.

For the next theorem, we make some more precise definitions to describe the structure of the multi-Catalan
tableaux.

Definition 3.1 We represent a word X in {D, E, A}"™ with exactly r A’s by a list of r + 1 words in {D,E}*,
where each word of the list is the longest possible continuous sub-word of X that does not contain an
A. We call this list of D-E sub-words (X1, ..., X,1). We then represent that list by a list of partitions
A= (A1,...,Ary1), where the partition A; = \(X;) is the shape obtained from applying Definition
to the ith D-E word.

As an example for the above, the tableau in Figure i has type DDDEADEA, which can be rewritten as a
list of three D-E words (DDDE, DE, (}). Then the list of partitions is A = ((1, 1, 1), (1), (@)).

For our final result in this section, we define the matrix Ai”g = (Aij)1<i,j<k, Where X is some partition
(M,-.., k), and

Ay = g () + (M) ) + BTN e T el () + ().

From [3], weight(X) = det Aig() for X a word in {D, E}* corresponding to state of the two-species
PASEP with zero type 1 particles.

Theorem 3.4 Consider the two-species PASEP of size n at ¢ = 0, and a state X with exactly r type 1
particles. Let A = (Aq, ..., A1) be the list of partitions that corresponds to X according to Definition
Let \; have k; rows and m; columns. Then:

1

= %a"*m@"*km det A, (o, 1) det Ay, (1, 8) [ [ det Aa, (1,1)

=2

Prob(X)

where Z)) . = [z"y" |MCT (4 p)(2,y) ofTheorem

4 A Markov chain on the multi-Catalan tableaux that projects to
the two-species PASEP at ¢ = 0

In this section we construct a Markov chain on the multi-Catalan tableaux that provides a second proof
of Theorem and generalizes the construction of Corteel and Williams from [[6]. We start by defining
projection for Markov chains, from [6, Definition 3.20].

Definition 4.1 Let M and N be Markov chains on finite sets X and Y, and let F' be a surjective map
from X to'Y. We say that M projects to N if the following properties hold:
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o [fxy,xo € X with Proby(x1 — z2) > 0, then Proby(z1 — x2) = Proby (F(z1) — F(z2)).

e Ify; andys areinY and Proby (y1 — y2) > 0, then for each x1 € X such that F(x1) = y1, there
is a unique x5 € X such that F(x3) = yo and Proby;(x1 — x2) > 0; moreover, Probys(x1 —
x9) = Proby(y1 — y2).

This means that: if M projects to IV via the map F’, then the steady state probability that N is in state y is
equal to the sum of the steady state probabilities over all the states « € {z € X|F(z) = y}. In our case,
N is the two-species PASEP at ¢ = 0, and M is the Markov chain on the multi-Catalan tableaux which
we describe below. Corteel and Williams defined a Markov chain on permutation tableaux (in bijection
with alternative tableaux) that projects to the PASEP. In the two-species PASEP at ¢ = 0, we have an
analogous result using similar transitions.

We describe the process by considering the cases of the pos-

sible transitions out of some multi-Catalan tableau T" which 51alb
corresponds to the two-species PASEP state X for which A
. . .. . o0 OO0 0O e B p
type(T) = X. We begin with the transitions that don’t in- 3 —
. ) o . D D E A E A Blal
volve particles entering or exiting at the boundary. A transi- oS \
tion on state X at location ¢ corresponds to a transition at the A

corner box in 7T that has its east edge precisely the ith edge
of the southeast border (from top to bottom). Figure[7]shows Fig. 7: The tableau corner involved in the tran-
a transition location in a two-species PASEP word X along sition DDEAEA — DEDAEA.

with the corresponding corner of some multi-Catalan tableau of type X.

Now, to obtain a transition at the desired corner, we first strip off the labels on the boundary, then perform
certain column or row removal and re-insertion, and finally reapply new labels. We describe the col-
umn/row procedure below for the two possible cases for the Greek symbol that corner box could contain.

] JJ
/’;» ) — -
HRNNE :

i g

a

() (@)

Fig. 8: An example of the row removal and re-insertion procedure for the two possible cases in the transition corner.

The corner contains a 3. Remove the row containing the corner (which necessarily is a horizontal stack
of empty boxes with a 3 on the right), cut off one of the empty boxes, and insert the row (with the 3 still
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at the right of it) in the bottom-most location possible so that the resulting shape is still a Young shape.
Figure[§](a) shows an example. If the row originally had a single box, cutting off a box means it becomes
an empty row, and so it should be placed at the south end of the shape with the rest of the empty rows.

The corner contains an . Remove the column containing the corner (which necessarily is a stack of
empty boxes above an «), cut off one of the empty boxes, and insert the column (with the « still at the
bottom of it) in the right-most location possible so that the resulting shape is still a Young shape. Figure
(b) shows an example. If the column originally had a single box, cutting off a box means it becomes an
empty column, and so it should be placed at the east end of the shape with the rest of the empty columns.

Now we put the labels back on the edges of the boundary after exchanging the relevant two letters in the
labelling word. For example, if the original state was DEA, and a type 2 particle hopped to get the state
EDA, then the labels on the boundary change from DEA to EDA.

Transitions at the boundary. For an arbitrary PASEP word X in {D, A, E}*, we describe the transition
that corresponds to the PASEP transition EX — DX on a tableau T of type EX. T must necessarily
have at least one empty column on its right, so after stripping off the labels of the tableau, we remove
the right-most empty column and instead insert a row with a /3 in its right-most box, of maximal possible
length such that the semi-perimeter stays fixed, but at the lowest position possible for that length. Finally,
we apply the labeling word DX to the boundary edges. The transition XD — XE is similar.

001 010 100 102

[T P ool as
L] Lot =

120
021 012 212 —

210
5 T (5] mE b
201 AN b AN a ]\t E
. v
D ol
3 221 122

\.\

Fig. 9: The state diagram of a two-species PASEP at ¢ = 0 of size 3 and with one particle of type 1. Here the words
in {0,1,2}3 represent the states, with O representing a hole, 1 representing particle 1, and 2 representing particle 2.

Figure [ shows an example of the transitions on all the states of size 3 with one particle of type 1.

Theorem 4.1 The Markov chain on multi-Catalan tableaux projects to the two-species PASEP at q = (.

5 Two-species tableaux for ¢ = 1

The goal of this section is to give a combinatorial formula for the two-species PASEP for ¢ = 1. To this
end, we define two-species alternative tableaux.
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Fig. 10: An illustration of the rules in Definition[5.1] for the filling of a two-species alternative tableau.

Definition 5.1 A two-species alternative tableau of size n is a filling of a Young diagram of shape
{n, ..., 1} with the symbols o, &, 3, 5, q, 4, u, @ according to the rules below, which are shown in Figure
[0

e every box on the diagonal must contain an «, 3, or x.

® a box that sees an « to its right and a 3 below must contain an «, 3, or q.
e a box that sees an « to its right and a 3 below must contain an & or q.

e a box that sees an « to its right and a 3 below must contain a /3’ orq.

e cvery box in the same column and above an o must contain a u, and every box in the same row and
left of a B must contain a u.

e for every pair of &’s and B’s (& left of B) such that the number of A-rows and A-columns between
them is not equal, put a u at the intersection of the & column and the (3 row.

e for every pair &’s and B s (& left of B ) such that the number of A-rows and A-columns between them
is equal, we must put either a § or a U at the intersection of the & column and the (3 row.

Q)

e the placement of the § and U above must satisfy that there is no instance of Z Z or Z

e cvery other box must contain a u.

In these fillings, the w’s are simply place-holders for the empty boxes, and the @’s are place-holders that
enforce valid placement of the §’s. An easy way to construct these fillings is to place the Greek symbols
and ¢’s starting from the boxes closest to the diagonal and moving inwards. Once these symbols are placed
everywhere possible, we define an &-column to be the boxes directly above an &, and a B-row to be the
boxes directly to the left of a /3. We then identify the boxes that lie at the intersections of the &-columns
and the B—rows, and fill them appropriately with ¢’s, @’s, or u’s. The rest of the tableau is automatically
filled with u’s.

Definition 5.2 The type of the two-species alternative tableau is read off of the diagonal from top to
bottom, by reading an o as D, a 3 as E, and an x as A. The weight of the tableau is the product of the
symbols in the filling in the form of a monomial in « and 3, where we setu =1 =1, & = o, f = f3, and
g=q=1
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Fig. 11: A two-species alternative tableau of type DDDEADEA and weight a®3°. The shaded boxes are ones that
are automatically empty due to the labels on the diagonal.

The following theorem is analogous to the main result of Section 2] Theorem 2.1}

Theorem 5.1 Consider the two-species PASEP at ¢ = 1, and let X be a state represented by a word in
{D, E, A}" with precisely r A’s. Then the steady state probability of X is

1
Prob(X) = —i— > wt(T),
n,r

where the sum is over all two-species alternative tableaux T such that type(T) = X, and where Zvlm“ =
> pwt(T), for T ranging over all two-species alternative tableaux of size n whose type has exactly r A’s.
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