On the stability and the uniform propagation of chaos of Extended Ensemble Kalman-Bucy filters
Pierre Del Moral, Aline Kurtzmann, Julian Tugaut

To cite this version:

HAL Id: hal-01337716
https://hal.archives-ouvertes.fr/hal-01337716
Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the stability and the uniform propagation of chaos of Extended Ensemble Kalman-Bucy filters

P. Del Moral, A. Kurtzmann, J. Tugaut

June 27, 2016

Abstract

This article is concerned with the exponential stability and the uniform propagation of chaos properties of a class of Extended Ensemble Kalman-Bucy filters with respect to the time horizon. This class of nonlinear filters can be interpreted as the conditional expectations of nonlinear McKean Vlasov type diffusions with respect to the observation process. In contrast with more conventional Langevin nonlinear drift type processes, the mean field interaction is encapsulated in the covariance matrix of the diffusion. The main results discussed in the article are quantitative estimates of the exponential stability properties of these nonlinear diffusions. These stability properties are used to derive uniform and non asymptotic estimates of the propagation of chaos properties of Extended Ensemble Kalman filters, including exponential concentration inequalities. To our knowledge these results seem to be the first results of this type for this class of nonlinear ensemble type Kalman-Bucy filters.

Keywords: Extended Kalman-Bucy filter, Ensemble Kalman filters, Monte Carlo methods, mean field particle systems, stochastic Riccati matrix equation, propagation of chaos properties, uniform estimates.

Mathematics Subject Classification: 60J60, 60J22, 35Q84, 93E11, 60M20, 60G25.

1 Introduction

From the probabilistic viewpoint, the Ensemble Kalman filter (abbreviated EnKF) proposed by G. Evensen in the beginning of the 1990s [8] is a mean field particle interpretation of extended Kalman type filters. More precisely, Kalman type filters (including the conventional Kalman filter and extended Kalman filters) can be interpreted as the conditional expectations of a McKean-Vlasov type nonlinear diffusion. The key idea is to approximate the Riccati equation by a sequence of sample covariance matrices associated with a series of interacting Kalman type filters.

In the linear Gaussian case these particle type filters converge to the optimal Kalman filter as the number of samples (a.k.a. particles) tends to \(\infty \). Little is known for nonlinear and/or non Gaussian filtering problems, apart that they don’t converge to the desired optimal filter. This important problem is rather well known in signal processing community. For instance, we refer the reader to [13, 15] for a more detailed discussion on these questions in discrete time settings. In this connection, we mention that these ensemble Kalman type filters differ from interacting jump type particle filters and related sequential Monte
Carlo methodologies. These mean field particle methods are designed to approximate the conditional distributions of the signal given the observations. It is clearly not the scope of this article to give a comparison between these two different particle methods. For a more thorough discussion we refer the reader to the book [5] and the references therein. We also mention that the EnKF models discussed in this article slightly differ from more conventional EnKF used to approximate nonlinear filtering problems. To be more precise we design a new class of EnKF that converge to the celebrated extended Kalman filter as the number of particles goes to ∞.

These powerful Monte Carlo methodologies are used with success in a variety of scientific disciplines, and more particularly in data assimilation method for filtering high dimensional problems arising in fluid mechanics and geophysical sciences [16, 17, 18, 20, 21, 22, 23, 24, 26]. A more thorough discussion on the origins and the application domains of EnKF is provided in the series of articles [4, 6, 9, 11] and in the seminal research monograph by G. Evensen [10].

The mathematical foundations and the convergence of the EnKF has started in 2011 with the independent pioneering works of F. Le Gland, V. Monbet and V.D. Tran [13], and the one by J. Mandel, L. Cobb, J. D. Beezley [20]. These articles provide L_2-mean error estimates for discrete time EnKF and show that they converge towards the Kalman filter as the number of samples tends to infinity. We also quote the recent article by D.T. B. Kelly, K.J. Law, A. M. Stuart [13] showing the consistency of Ensemble Kalman filters in continuous and discrete time settings. In the latter the authors show that the Ensemble Kalman filter is well posed and the mean error variance doesn’t blow up faster than exponentially. The authors also apply a judicious variance inflation technique to strengthen the contraction properties of the Ensemble Kalman filter. We refer to the pioneering article by J.L. Anderson [1, 2, 3] on adaptive covariance inflation techniques, and to the discussion given in the end of section 1.2 in the present article.

In a more recent study by X. T. Tong, A. J. Majda and D. Kelly [25] the authors analyze the long-time behaviour and the ergodicity of discrete generation EnKF using Foster-Lyapunov techniques ensuring that the filter is asymptotically stable w.r.t. any erroneous initial condition. These important properties ensure that the EnKF has a single invariant measure and initialization errors of the EnKF will not dissipate w.r.t. the time parameter. Beside the importance of these properties, the only ergodicity of the particle process does not give any information on the convergence and the accuracy of the particle filters towards the optimal filter nor towards any type of extended Kalman filter, as the number of samples tends to infinity.

Besides these recent theoretical advances, the rigorous mathematical analysis of long time behavior of these particle methods is still at its infancy. As underlined by the authors in [13], many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The divergence of ensemble Kalman filters has been observed numerically in some situations [12, 13, 19], even for stable signals. This critical phenomenon, often referred as the catastrophic filter divergence in data assimilation literature, is poorly understood from the mathematical perspective. Our objective is to better understand the long time behavior of ensemble Kalman type filters from a mathematical perspective. Our stochastic methodology combines spectral analysis of random matrices with recent developments in concentration inequalities, coupling theory and contraction inequalities w.r.t. Wasserstein metrics.

These developments have been started in two recent articles [6, 7]. The first one pro-
provides uniform propagation of chaos properties of ensemble Kalman filters in the context of linear-Gaussian filtering problems. The second article is only concerned with extended Kalman-Bucy filters. It discusses the stability properties of these filters in terms of exponential concentration inequalities. These concentration inequalities allow to design confidence intervals around the true signal and extended Kalman-Bucy filters.

The first contribution of the article is to extend these results as the level of the McKean-Vlasov type nonlinear diffusion associated with the ensemble Kalman-Bucy filter. Under some natural regularity conditions we show that these nonlinear diffusions are exponentially stable, in the sense that they forget exponentially fast any erroneous initial condition. These stability properties are analyzed using coupling techniques and expressed in terms of δ-Wasserstein metrics.

The main objective of the article is to analyze the long time behavior of the mean field particle interpretation of these nonlinear diffusions. We present new uniform estimates w.r.t. the time horizon for the bias and the propagation of chaos properties of the mean field systems. We also quantify the fluctuations of the sample mean and covariance particle approximations.

The rest of the article is organized as follows:

Section 1.1 presents the nonlinear filtering problem discussed in the article, the Extended Kalman-Bucy filter, the associated nonlinear McKean Vlasov diffusion and its mean field particle interpretation. The two main theorems of the article are described in section 1.2. In a preliminary short section, section 2, we show that the conditional expectations and the conditional covariance matrices of the nonlinear McKean Vlasov diffusion coincide with the EKF. We also provide a pivotal fluctuation theorem on the time evolution of these conditional statistics. Section 3 is mainly concerned with the stability properties of the nonlinear diffusion associated with the EKF. Section 4 is dedicated to the propagation of chaos properties of the extended ensemble Kalman-Bucy filter.

1.1 Description of the models

Consider a time homogeneous nonlinear filtering problem of the following form

\[
\begin{align*}
\frac{dX_t}{dt} &= A(X_t) \frac{dX_t}{dt} + R^{-1/2}_1 \frac{dW_t}{t} \\
\frac{dY_t}{dt} &= BX_t \frac{dX_t}{dt} + R^{-1/2}_2 \frac{dV_t}{t}
\end{align*}
\]

and we set $G_t = \sigma(Y_s, s \leq t)$.

In the above display, (W_t, V_t) is an $(r_1 + r_2)$-dimensional Brownian motion, X_0 is a r_1-valued random vector with mean and covariance matrix $(\mathbb{E}(X_0), P_0)$ (independent of (W_t, V_t)), the symmetric matrices $R^{-1/2}_1$ and $R^{-1/2}_2$ are invertible, B is an $(r_2 \times r_1)$-matrix, and $Y_0 = 0$. The drift of the signal is differentiable vector valued function $A : x \in \mathbb{R}^{r_1} \rightarrow A(x) \in \mathbb{R}^{r_1}$ with a Jacobian denoted by $\partial A : x \in \mathbb{R}^{r_1} \rightarrow A(x) \in \mathbb{R}^{(r_1 \times r_1)}$.

The Extended Kalman-Bucy filter (abbreviated EKF) and the associated stochastic Riccati equation are defined by the evolution equations

\[
\begin{align*}
\frac{d\hat{X}_t}{dt} &= A(\hat{X}_t) \frac{d\hat{X}_t}{dt} \frac{dY_t}{t} - B\hat{X}_t \frac{d\hat{X}_t}{dt} \\
\partial \frac{dP_t}{dt} &= \partial A(\hat{X}_t)P_t + P_t \partial A(\hat{X}_t)' + R - P_tSP_t \\
&\quad \text{with} \quad \hat{X}_0 = \mathbb{E}(X_0) \quad \text{and} \quad (R, S) := (R_1, B'R_2^{-1}B)
\end{align*}
\]

In the above display, B' stands for the transpose of the matrix B.

We associate with these filtering models the conditional nonlinear McKean-Vlasov type diffusion process
\[dX_t = \mathcal{A}(X_t, \mathbb{E}[X_t \mid \mathcal{G}_t]) \, dt + R_1^{1/2} \, dW_t + \mathcal{P}_{\eta_t} B' R_2^{-1} \left[dY_t - \left(B X_t \, dt + R_2^{1/2} \, dV_t \right) \right] \]
with the nonlinear drift function
\[\mathcal{A}(x, m) := A[m] + \partial A[m] (x - m) \]
In the above display \((W_t, V_t, X_0)\) stands for independent copies of \((W_t, V_t, X_0)\) (thus independent of the signal and the observation path), and \(\mathcal{P}_{\eta_t}\) stands for the covariance matrix
\[\mathcal{P}_{\eta_t} = \eta_t \left[(e - \eta_t(e))(e - \eta_t(e))' \right] \quad \text{with} \quad \eta_t := \text{Law}(X_t \mid \mathcal{G}_t) \quad \text{and} \quad e(x) := x. \]
We call the stochastic process defined in (1) the Extended Kalman-Bucy diffusion or simply the EKF-diffusion.

In section 2 (see proposition 2.1) we will see that the \(\mathcal{G}_t\)-conditional expectation of the states \(X_t\) and their \(\mathcal{G}_t\)-conditional covariance matrices coincide with the EKF filter and the Riccati equation presented in (1).

The Extended Kalman-Bucy filter (abbreviated En-EKF) coincides with the mean field particle interpretation of the nonlinear diffusion process (1).

To be more precise, let \((W^i_t, V^i_t, X^i_0)_{1 \leq i \leq N}\) be \(N\) independent copies of \((W_t, V_t, X_0)\). In this notation, the En-EKF is given by the Mekean-Vlasov type interacting diffusion process
\[d\xi^i_t = \mathcal{A}(\xi^i_t, m_t) \, dt + R_1^{1/2} \, dW^i_t + p_t B' R_2^{-1} \left[dY_t - \left(B \xi^i_t \, dt + R_2^{1/2} \, dV^i_t \right) \right] \]
for any \(1 \leq i \leq N\), with the sample mean and the rescaled particle covariance matrices defined by
\[m_t := \frac{1}{N} \sum_{1 \leq i \leq N} \xi^i_t \quad \text{and} \quad p_t := \left(1 - \frac{1}{N} \right) \mathcal{P}_{\eta^N_t} = \frac{1}{N - 1} \sum_{1 \leq i \leq N} (\xi^i_t - m_t) (\xi^i_t - m_t)' \]
with the empirical measures \(\eta^N_t := \frac{1}{N} \sum_{1 \leq i \leq N} \delta_{\xi^i_t}\). We also consider the \(N\)-particle model \(\mathcal{G}_t = (\xi^i_t)_{1 \leq i \leq N}\) defined as \(\xi_t = (\xi^i_t)_{1 \leq i \leq N}\) by replacing the sample variance \(p_t\) by the true variance \(p_t\) (in particular we have \(\xi_0 = (\xi^i_0)\)).

As mentioned in the introduction the En-EKF (2) differs from the more conventional one defined as above by replacing \(\mathcal{A}(\xi^i_t, m_t)\) by the signal drift \(A(\xi^i_t)\). In this context the resulting sample mean will not converge to the EKF but to the filter defined as in (1) by replacing \(A(\bar{X}_t)\) by the conditional expectations \(\mathbb{E}(A(X_t) \mid \mathcal{G}_t)\). The convergence analysis of this particle model is much more involved than the one discussed in this article. The main difficulty comes from the dependency on the whole conditional distribution of the signal given the observations. We plan to analyze this class of particle filters in a future study.

1.2 Statement of the main results

To describe with some precision our results we need to introduce some terminology. We denote by \(\lambda_{\text{min}}(S)\) and \(\lambda_{\text{max}}(S)\) the minimal and the maximal eigenvalue of a given symmetric matrix \(S\). We let \(\rho(P) = \lambda_{\text{max}}((P + P')/2)\) the logarithmic norm of a given square matrix \(P\). Given \((r_1 \times r_2)\) matrices \(P, Q\) we define the Frobenius inner product
\[\langle P, Q \rangle = \text{tr}(P'Q) \quad \text{and the associated norm} \quad \|P\|_F^2 = \text{tr}(P'P) \]
where \(\text{tr}(C) \) stands for the trace of a given matrix. We also equip the product space \(\mathbb{R}^{r_1} \times \mathbb{R}^{r_1} \) with the inner product
\[
\langle (x_1, P_1), (x_2, P_2) \rangle := \langle x_1, x_2 \rangle + \langle P_1, P_2 \rangle \quad \text{and the norm} \quad \| (x, P) \|^2 := \langle (x, P), (x, P) \rangle
\]
In the further development of the article we assume that the Jacobian matrix \(\partial A \) of the signal drift function \(A \) satisfies the following regularity conditions:
\[
\begin{align*}
\lambda_{\partial A} &:= -2 \inf_{x \in \mathbb{R}^{r_1}} \rho(\partial A(x)) > 0 \\
\| \partial A(x) - \partial A(y) \| &\leq \kappa_{\partial A} \| x - y \| \quad \text{for some} \quad \kappa_{\partial A} < \infty.
\end{align*}
\]
where \(\rho(P) := \lambda_{\text{max}}(P) \) stands for the logarithmic norm of a symmetric matrix \(P \). In the above display \(\| \partial A(x) - \partial A(y) \| \) stands for the \(L_2 \)-norm of the matrix operator \((\partial A(x) - \partial A(y)) \), and \(\| x - y \| \) the Euclidian distance between \(x \) and \(y \). A first order Taylor expansion shows that
\[
(4) \implies \langle x - y, A(x) - A(y) \rangle \leq -\lambda_A \| x - y \|^2 \quad \text{with} \quad \lambda_A \geq \lambda_{\partial A}/2 > 0.
\]
Given some \(\delta \geq 1 \), the \(\delta \)-Wasserstein distance \(\mathbb{W}_\delta \) between two probability measures \(\nu_1 \) and \(\nu_2 \) on some normed space \((E, \| \cdot \|) \) is defined by
\[
\mathbb{W}_\delta^\delta(\nu_1, \nu_2) = \inf \mathbb{E} \left(\| Z_1 - Z_2 \|^\delta \right).
\]
The infimum in the above displayed formula is taken of all pair of random variable \((Z_1, Z_2) \) such that \(\text{Law}(Z_i) = \nu_i \), with \(i = 1, 2 \).

In the further development of the article, to avoid unnecessary repetitions we also use the letter "\(c \)" to denote some finite constant whose values may vary from line to line, but they don’t depend on the time parameter.

Our first main result concerns the stability properties of the EKF-diffusion \([1]\). It is no surprise that these properties strongly depend on logarithmic norm of the drift function \(A \) as well as on the size of covariance matrices of the signal-observation diffusion. For instance, we have the uniform moment estimates
\[
\lambda_{\partial A} > 0 \Rightarrow \forall \delta \geq 1 \quad \sup_{t \geq 0} \left\{ \mathbb{E}[\| X_t \|^\delta] \lor \text{tr}(P_t) \lor \mathbb{E}[\| X_t - \hat{X}_t \|^\delta] \right\} \leq c \tag{6}
\]
A detailed proof of these stochastic stability properties including exponential concentration inequalities can be found in \([7]\). Observe that \(\text{tr}(P_t) \) is random so that the above inequality provides an almost sure estimate. To be more precise we use \([1]\) to check that
\[
\partial \text{tr}(P_t) \leq -\lambda_{\partial A} \text{tr}(P_t) + \text{tr}(R) \implies \text{tr}(P_t) \leq e^{-\lambda_{\partial A} t} \text{tr}(P_0) + \text{tr}(R)/\lambda_{\partial A} \tag{7}
\]
To get one step further in our discussion, we consider the following ratio
\[
\lambda_S := \frac{\lambda_{\partial A}}{\rho(S)} \quad \lambda_R := \frac{\lambda_{\partial A}}{\text{tr}(R)} \quad \text{and} \quad \lambda_K := \frac{\lambda_{\partial A}}{\kappa_{\partial A}}
\]
The quantity \(\rho(S) \) is connected to the sensor matrix \(B \) and to the inverse of the covariance matrix of the observation perturbations. We also have the rather crude estimate
\[
\rho(S) \leq \text{tr}(S) = \| R_2^{-1/2} B \|_F^2 \leq \text{tr}(R_2^{-1}) \| B \|_F^2.
\]
Roughly speaking, these three quantities presented above measure the relative stability index of the signal drift with respect to the perturbation degree of the sensor, the one of the signal, and the modulus of continuity of the Jacobian entering into the Riccati equation. For instance, λ_S is high for sensors with large perturbations, inversely λ_R is large for signals with small perturbations.

Most of our analysis relies on the behavior of the following quantities:

$$\lambda_{R,S} := (8e)^{-1} \lambda_R \sqrt{\lambda_S} \left[1 + \frac{2}{\lambda_R \lambda_S} \right]^{-1}$$

$$\hat{\lambda}_{\delta A}/\lambda_{\delta A} := \left(\frac{1}{2} - \frac{2}{\lambda_k \lambda_R} \right) + \left(\frac{1}{2} - \frac{1}{\sqrt{\lambda_S}} \right) \left[1 - \frac{3}{4} \frac{1}{\lambda_S} \right]$$

To better connect these quantities with the stochastic stability of the EKF diffusion we discuss some exponential concentration inequalities that can be easily derived from our analysis. These concentration inequalities are of course more accurate than any type of mean square error estimate. Let $\hat{X}_t(m,p)$ be the solution of the EKF equation starting at $(\hat{X}_0, P_0) = (m, p)$, and let $X_t(x)$ be the state of the signal starting at $X_0(x) = x$. Let $\varpi(\delta)$ be the function

$$\delta \in [0, \infty[, \varpi(\delta) := \frac{e^2}{\sqrt{2}} \left[\frac{1}{2} + \left(\delta + \sqrt{\delta} \right) \right]$$

For any time horizon $t \in [0, \infty[$, and any $\delta \geq 0$ the probabilities of the following events

$$\| X_t(x) - \hat{X}_t(m,p) \|^2 \leq \frac{1}{2e} \varpi(\delta) \sqrt{\lambda_S/\lambda_{R,S}}$$

$$+ 2 e^{-\lambda_{\delta A}t} \| x - m \|^2 + 8 \varpi(\delta) \frac{|e^{-\lambda_A t} - e^{-\lambda_{\delta A} t}|}{|\lambda_A/\lambda_{\delta A} - 1|} \text{tr}(p)^2/\lambda_S$$

and

$$\| X_t(m,p) - \hat{X}_t(m,p) \|^2 \leq \frac{1}{2e} \varpi(\delta) \sqrt{\lambda_S/\lambda_{R,S}} + 8 \varpi(\delta) e^{-\lambda_{\delta A} t} \text{tr}(p)^2/\lambda_S$$

are greater than $1 - e^{-\delta}$. The proof of the first assertion is a consequence of theorem 1.1 in [7], the proof of the second one is a consequence of the \mathbb{L}_δ-mean error estimates [19]. These concentration inequalities show that the quantity

$$\sqrt{\lambda_S/\lambda_{R,S}} = 8e \lambda_S \frac{1}{\lambda_R \lambda_S} \left[1 + \frac{2}{\lambda_R \lambda_S} \right]$$

can be interpreted as the size of a confidence interval around the values of the true signal, as soon as the time horizon is large. It is also notable that the same quantity controls the fluctuations of the EKF diffusion around the values of the EKF. These confidence intervals are small for stable signals with small perturbations. The product term

$$\frac{1}{\lambda_R \lambda_S} = \lambda_{\delta A}^{-2} \text{tr}(R_1) \text{tr}(BR_2^{-1}B')$$

can be thought as a signal to noise ratio. Given a fixed signal to noise ratio, the confidence intervals are small for high informative sensors with small perturbations.
We further assume that
\[(\lambda_K \lambda_R/4) \wedge \lambda_R, S \wedge (\lambda_S/4) > 1\] \hspace{1cm} (8)
This condition ensures that \(0 < \tilde{\lambda} \leq \lambda\). Condition (8) is clearly met as soon as \(\lambda_R\) and \(\lambda_S\) are sufficiently large. As we shall see the quantity \(\lambda\) represents the Lyapunov stability exponent of the EKF. This exponent is decomposed into two parts. The first one represents the relative contribution of the signal perturbations, the second one is related to the sensor perturbations.

In contrast with the linear-Gaussian case discussed in [6], the stochastic Riccati equation (1) depends on the states of the EKF. As shown in [7] the stability of the EKF rely on a stochastic Lyapunov exponent that depends on the random trajectories of the filter as well as on the signal-observation processes. The technical condition (8) allows to control uniformly the fluctuations of these stochastic exponents with respect to the time horizon. A more detailed discussion on the regularity condition (8), including a series of sufficient conditions are provided in the appendix, section 5.1.

Let \(\eta_t, \tilde{\eta}_t\) be a couple of EKF Diffusions (1) starting from two random states with mean \((\bar{X}_0, \bar{X}_0)\) and covariances matrices \((P_0, \tilde{P}_0)\). One key feature of these nonlinear diffusions is that the \(\mathcal{G}_t\)-conditional expectations \(\mathbb{E}(\hat{X}_t, P_t)\) and the \(\mathcal{G}_t\)-conditional covariance matrices \((P_t, \tilde{P}_t)\) satisfy the EKF and the stochastic Riccati equations discussed in (1).

Whenever condition (8) is satisfied we recall from [7] that for any \(\epsilon \in [0, 1]\) there exists some time horizon \(s\) such that for any \(t \geq s\) we have the almost sure contraction estimate
\[
\mathbb{E}\left(\|\hat{X}_t, P_t - (\hat{X}_t, \tilde{P}_t)\|^{\delta_S} \mid \mathcal{G}_s\right)^{2/\delta_S} \leq Z_s \exp\left[-(1 - \epsilon) \tilde{\lambda}\lambda(t - s)\right] \|\hat{X}_s, P_s - (\hat{X}_s, \tilde{P}_s)\|^2
\]
with \(\delta_S := 2^{-1} \sqrt{\lambda_S}\), and some random process \(Z_t\) satisfying the uniform moment condition
\[
\sup_{t \geq 0} \mathbb{E}(Z_t^\alpha) < \infty \quad \text{with} \quad \alpha = 2\lambda_{R,S} \delta_S.
\] \hspace{1cm} (9)
These conditional contraction estimates can be used to quantify the stability properties of the EKF. More precisely, if we set
\[
P_t = \text{Law}(\hat{X}_t, P_t) \quad \text{and} \quad \tilde{P}_t = \text{Law}(\hat{X}_t, \tilde{P}_t)
\]
then the above contraction inequality combined with the uniform estimates (6) readily implies that
\[
\forall t \geq t_0 \quad \mathbb{W}_2^2(P_t, \tilde{P}_t) \leq c \exp\left[-t(1 - \epsilon) \tilde{\lambda}\lambda\right]
\]
for any \(\epsilon \in [0, 1]\), with some time horizon \(t_0\). This stability property ensures that the EKF forgets exponentially fast any erroneous initial condition. Of course these forgetting properties of the EKF don’t give any information at the level of the process. One of the main objective of the article is to complement these conditional expectation stability properties at the level of the Mc-Kean Vlasov type nonlinear EKF-diffusion (1).

Our first main result can basically be stated as follows.

Theorem 1.1. Let \((\tilde{\eta}_t, \tilde{\eta}_t)\) be the probability distributions of a couple \((\tilde{X}_t, \tilde{X}_t)\) of EKF Diffusions (1) starting from two possibly different random states. Assume condition (8) is
met with $\delta' := \delta S/4 \geq 2$. In this situation, for any $\epsilon \in [0,1]$ there exists some time horizon t_0 such that for any $t \geq t_0$ we have

$$W^2_{\delta S}(\tilde{\eta}_t, \tilde{\eta}_t) \leq c \exp\left[-t \left(1 - \epsilon \right) \lambda\right] \quad \text{with} \quad \lambda \geq \lambda_{\delta A} \wedge (\lambda_{\epsilon A}/4) \quad (10)$$

Our next objective is to analyze the long time behavior of the mean field type En-EKF model discussed in (2). From the practical estimation point of view, only the sample mean and the sample covariance matrices (3) are of interest since these quantities converge to the EKF and the Riccati equations, as N tends to ∞. Another important problem is to quantify the bias of the mean field particle approximation scheme. These properties are related to the propagation of chaos properties of the mean field particle model. They are expressed in terms of the collection of probability distributions

$$P_t = \text{Law}(m_t, p_t) \quad \text{and} \quad Q_t = \text{Law}(\xi^1_t)$$

Theorem 1.2. Assume that $\lambda_{\min}(S) > 0$ and condition (8) is met with $\delta_{R,S} := (\epsilon \lambda_{R,S}) \wedge \delta_S \geq 2$. In this situation, there exists some $N_0 \geq 1$ and some $\beta \in [0, 1/2]$ such that for any $N \geq N_0$, we have the uniform non asymptotic estimates

$$\text{tr}(P_0)^2 \leq \lambda_S \left[\frac{1}{\lambda_R} + \frac{1}{\lambda_R \lambda_S}\right] \quad \implies \quad \sup_{t \geq 0} W_{\delta_{R,S}}(P^N_t, P_t) \leq cN^{-\beta} \quad (11)$$

In addition, when $\delta_{R,S} \geq 4$ we have the uniform propagation of chaos estimate

$$\sup_{t \geq 0} W_2(Q^N_t, Q_t) \leq cN^{-\beta} \quad (12)$$

We end this section with some comments on our regularity conditions.

The condition $\lambda_{\min}(S) > 0$ is needed to control the fluctuations of the trace of the sample covariance matrices of the En-EKF, even if the trace expectation is uniformly stable.

Despite our efforts, our regularity conditions are stronger than the ones discussed in [6] in the context of linear-Gaussian filtering problems. The main difference here is that the signal stability is required to compensate the possible instabilities created by highly informative sensors when we initialize the filter with wrong conditions.

Next we comment the trace condition in (11). As we mentioned earlier, the stability properties of the limiting EKF-diffusion (1) are expressed in terms of a stochastic Lyapunov exponent that depends on the trajectories of the signal process. The propagation of chaos properties of the mean field particle approximation (2) depend on the long time behavior of these stochastic Lyapunov exponents. Our analysis is based on a refined analysis of Laplace transformations associated with quadratic type stochastic exponents. The existence of these χ-square type Laplace transforms require some regularity on the signal process. For instance at the origin we have

$$(\text{tr}(P_0) \leq r_1 \rho(P_0) \leq 1/(4\delta) \implies \mathbb{E} \left[\exp \left[\delta \|X_0 - \hat{X}_0\|^2 \right] \right] \leq e \quad (13)$$

The proof of (13) and more refined estimates can be found in [7].

From the numerical viewpoint the trace condition in (11) is related to the initial location of the particles and the signal-observation perturbations. Signals with a large diffusion part are more likely to correct an erroneous initialization. In the same vein, the estimation
Proposition 2.1. We have the equivalence

\[\mathbb{E}(\tilde{X}_t) = \tilde{X}_0 \quad \text{and} \quad \mathcal{P}_{\eta_0} = P_0 \iff \forall t \geq 0 \quad \mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t) = \tilde{X}_0 \quad \text{and} \quad \mathcal{P}_{\eta_t} = P_t \]

Proof. Taking the \(\mathcal{G}_t \)-conditional expectations in (1), we find the diffusion equation

\[d\mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t) = A(\mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t)) \mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t) dt + \mathcal{P}_{\eta_t} B' R_2^{-1} \left[dY_t - (B \tilde{X}_t dt + R_2^{1/2} d\overline{V}_t) \right] \]

Let us compute the evolution of \(\mathcal{P}_{\eta_t} \). We set \(\tilde{X}_t = \tilde{X}_t \mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t) \). In this notation we have

\[d\tilde{X}_t = \hat{\partial} A(\mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t)) \tilde{X}_t dt + R_1^{1/2} d\overline{W}_t - \mathcal{P}_{\eta_t} B' R_2^{-1} \left[B \tilde{X}_t dt + R_2^{1/2} d\overline{V}_t \right] \]

= \[\hat{\partial} A(\mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t)) - \mathcal{P}_{\eta_t} S \] \(\tilde{X}_t dt + R_1^{1/2} d\overline{W}_t - \mathcal{P}_{\eta_t} B' R_2^{-1/2} d\overline{V}_t \]

2 Some preliminary results

This short section presents a couple of pivotal results. The first one ensures that the Extended Kalman-Bucy filter coincides with the \(\mathcal{G}_t \)-conditional expectations of the nonlinear diffusion \(\tilde{X}_t \). The second result shows that the stochastic processes \((m_t, p_t) \) satisfy the same equation as \((\tilde{X}_t, P_t) \), up to some local fluctuation orthogonal martingales with angle brackets that only depends on the sample covariance matrix \(P_t \).

Proposition 2.1. We have the equivalence

\[\mathbb{E}(\tilde{X}_0) = \tilde{X}_0 \quad \text{and} \quad \mathcal{P}_{\eta_0} = P_0 \iff \forall t \geq 0 \quad \mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t) = \tilde{X}_t \quad \text{and} \quad \mathcal{P}_{\eta_t} = P_t \]

Proof. Taking the \(\mathcal{G}_t \)-conditional expectations in (1), we find the diffusion equation

\[d\mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t) = A(\mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t)) \mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t) dt + \mathcal{P}_{\eta_t} B' R_2^{-1} \left[dY_t - (B \tilde{X}_t dt + R_2^{1/2} d\overline{V}_t) \right] \]

Let us compute the evolution of \(\mathcal{P}_{\eta_t} \). We set \(\tilde{X}_t = \tilde{X}_t \mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t) \). In this notation we have

\[d\tilde{X}_t = \hat{\partial} A(\mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t)) \tilde{X}_t dt + R_1^{1/2} d\overline{W}_t - \mathcal{P}_{\eta_t} B' R_2^{-1} \left[B \tilde{X}_t dt + R_2^{1/2} d\overline{V}_t \right] \]

= \[\hat{\partial} A(\mathbb{E}(\tilde{X}_t \mid \mathcal{G}_t)) - \mathcal{P}_{\eta_t} S \] \(\tilde{X}_t dt + R_1^{1/2} d\overline{W}_t - \mathcal{P}_{\eta_t} B' R_2^{-1/2} d\overline{V}_t \]
This implies that
\[d(\tilde{X}_t, \tilde{Y}_t') = \left\{ \frac{\partial A(\tilde{X}_t) - P_t S}{\tilde{X}_t} \tilde{X}_t \tilde{Y}_t' dt + \tilde{X}_t \tilde{Y}_t' \left[\frac{\partial A(\tilde{X}_t) - P_t S}{\tilde{X}_t} \right]' + (R + \mathcal{P}_n SP_n) \right\} dt + \left[R_{1/2}^t d\mathcal{W}_t - \mathcal{P}_n B'R_2^{-1/2} d\mathcal{V}_t \right] \tilde{X}_t' + \tilde{X}_t \left[R_{1/2}^t d\mathcal{W}_t - \mathcal{P}_n B'R_2^{-1/2} d\mathcal{V}_t \right]' \]

Taking the \(\mathcal{G}_t \)-conditional expectations we conclude that
\[\partial_t \mathcal{P}_n = \left[\frac{\partial A(\tilde{X}_t) - \mathcal{P}_n S}{\tilde{X}_t} \mathcal{P}_n dt + \mathcal{P}_n \left[H(\tilde{X}_t) - \mathcal{P}_n S \right]' + (R + \mathcal{P}_n S \mathcal{P}_n) \right] \]
\[= \frac{\partial A(\tilde{X}_t) \mathcal{P}_n + \mathcal{P}_n \partial A(\tilde{X}_t)'}{\tilde{X}_t} + R - \mathcal{P}_n S \mathcal{P}_n \]

This ends the proof of the proposition.

\[\text{Theorem 2.2 (Fluctuation theorem \[3\]). The stochastic processes \((m_t, p_t)\) defined in \[3\] satisfy the diffusion equations} \]
\[dm_t = A[m_t] dt + p_t \ B' \ R_2^{-1} \ (dY_t - Bm_t \ dt) + \frac{1}{\sqrt{N}} \ d\mathcal{M}_t \] \hspace{1cm} (14)

with the vector-valued martingale \(\mathcal{M}_t = (\mathcal{M}_t(k))_{1 \leq k \leq r_1} \) with the angle-brackets
\[\partial_t \langle \mathcal{M}_t(k), \mathcal{M}_t(k') \rangle_t = R(k, k') + (p_t S p_t)(k, k') \] \hspace{1cm} (15)

We also have the matrix-valued diffusion
\[dp_t = (\partial A[m_t] p_t + p_t \partial A[m_t]' - p_t S p_t + R) dt + \frac{1}{\sqrt{N-1}} \ d\mathcal{M}_t \] \hspace{1cm} (16)

with a symmetric matrix-valued martingale \(\mathcal{M}_t = (\mathcal{M}_t(k, l))_{1 \leq k, l \leq r_1} \) and the angle brackets
\[\partial_t \langle M(k, l), M(k', l') \rangle_t = \ (R + p_t S p_t)(k, k') \ p_t(l, l') + (R + p_t S p_t)(l, l') \ p_t(k, k') \]
\[+ (R + p_t S p_t)(l', k) \ p_t(k', l) + (R + p_t S p_t)(l, k') \ p_t(k, l') \] \hspace{1cm} (17)

In addition we have the orthogonality properties
\[\langle M(k, l), \mathcal{M}(l') \rangle_t = \langle M(k, l), V(k') \rangle_t = \langle \mathcal{M}(l'), V(k') \rangle_t = 0 \]

for any \(1 \leq k, l, l' \leq r_1 \) and any \(1 \leq k' \leq r_2 \).

Proof. We have
\[d(\xi_t^i - m_t) = [\partial A(m_t) - p_t B'S] (\xi_t^i - m_t) dt + dM_t^i \]
with the martingale
\[dM_t^i := R_{1/2}^t \left(d\mathcal{W}_t^i - \frac{1}{N} \sum_{1 \leq j \leq N} d\mathcal{W}_t^j \right) - p_t B'R_2^{-1/2} \left(d\mathcal{V}_t^i - \frac{1}{N} \sum_{1 \leq j \leq N} d\mathcal{V}_t^j \right) \]
Notice that
\[
\delta_t\langle M^i(k), M^j(k')\rangle_t = \left(1 - \frac{1}{N}\right) (R + p_t S p_t)(k, k')
\]
and for \(i \neq j\)
\[
\delta_t\langle M^i(k), M^j(k')\rangle_t = -\frac{1}{N} (R + p_t S p_t)(k, k')
\]
The end of the proof follows the proof of theorem 1 in [6], thus it is skipped. This ends the proof of the theorem.

3 Stability properties

This section is dedicated to the long time behavior of the EKF-diffusion (1), mainly with the proof of theorem 1. We use the stochastic differential inequality calculus developed in [6, 7]. Let \(Y_t\) be some non negative process defined on some probability space \((\Omega, \mathcal{F}, P)\) equipped with a filtration \(\mathcal{F} = (\mathcal{F}_t)_{t \geq 0}\) of \(\sigma\)-fields. Also let \((Z_t, Z_t^+)\) be some processes and \(\mathcal{M}_t\) be some continuous \(\mathcal{F}_t\)-martingale. We use the notation
\[
dY_t \leq Z_t^+ dt + d\mathcal{M}_t \iff (dY_t = Z_t dt + d\mathcal{M}_t \quad \text{with} \quad Z_t \leq Z_t^+)
\]
We recall some useful algebraic properties of the above stochastic inequalities.

Let \((\mathcal{Y}_t, \mathcal{Z}_t^+, \mathcal{Z}_t, \mathcal{M}_t)\) be another collection of processes satisfying the above inequalities, and \((\alpha, \bar{\alpha})\) a couple of non negative parameters. In this case it is readily checked that
\[
d(\alpha \mathcal{Y}_t + \bar{\alpha} \mathcal{Y}_t) \leq (\alpha Z_t^+ + \bar{\alpha} Z_t^+) dt + d(\alpha \mathcal{M}_t + \bar{\alpha} \mathcal{M}_t)
\]
and
\[
d(\mathcal{Y}_t \mathcal{Y}_t^+) \leq \left[Z_t^+ \mathcal{Y}_t + Z_t^+ \mathcal{Y}_t + \delta_t\langle \mathcal{M}, \mathcal{M}\rangle_t\right] dt + \mathcal{Y}_t d\mathcal{M}_t + \mathcal{Y}_t d\mathcal{M}_t
\]

We consider a couple of diffusions \((X_t, X_t)\) coupled with the same Brownian motions \((W_t, W_t)\) and the same observation process \(Y_t\), and we set
\[
\mathcal{F}_t := \mathcal{G}_t \vee \sigma \left((X_s, X_s), s \leq t\right)
\]
Next proposition provides uniform estimates of the \(L_\delta\)-centered moments of the EKF-diffusion with respect to the time horizon.

Proposition 3.1. Assume that \(\lambda_{\hat{v}A} > 0\). In this situation, for any \(\delta \geq 1\) and any time horizon \(s \geq 0\) we have the uniform almost sure estimates
\[
\mathbb{E} \left(\|X_t - \hat{X}_t\|^{2\delta} \mid \mathcal{F}_s\right)^{2/\delta} \leq e^{-\lambda_{\hat{v}A}(t-s)} \|X_s - \hat{X}_s\|^2
\]
\[
+ (2\delta - 1) \left[\lambda_R^{-1}(1 + 2(\lambda_R \lambda_S)^{-1}) + 2e^{-\lambda_{\hat{v}A}(t+s)}\text{tr}(P_0)^2 \lambda_S^{-1} \right]
\]
Proof. We have
\[d(X_t - \hat{X}_t) = \left[\partial A(\hat{X}_t) - P_t S \right] (X_t - \hat{X}_t) \, dt + R_1^{1/2} \, dW_t - P_t B^r R_2^{-1/2} \, dV_t \]
This implies that
\[d\|X_t - \hat{X}_t\|^2 \]
\[= 2\langle X_t - \hat{X}_t, \partial A(\hat{X}_t) - P_t S \rangle (X_t - \hat{X}_t) + \text{tr}(R_1) + \text{tr}(P_t^2 S) \, dt + dM_t \]
\[\leq \left[-\lambda_{\partial A} \|X_t - \hat{X}_t\|^2 + U_t \right] \, dt + dM_t \]
with the process
\[U_t := \text{tr}(R) + \text{tr}(P_t^2 S) \leq \text{tr}(R) + \rho(S) \text{tr}(P_t) \]
\[\leq \text{tr}(R) + \rho(S) \left(e^{-\lambda_{\partial A} t} \text{tr}(P_0) + 1/\lambda_R \right)^2 \]
and the martingale
\[dM_t := 2\langle X_t - \hat{X}_t, R_1^{1/2} \, dW_t - P_t B^r R_2^{-1/2} dV_t \rangle \]
Observe that the angle bracket of this martingale satisfy the property
\[\text{det}(M)_t = 4\langle X_t - \hat{X}_t, (R + P_t SP_t) (X_t - \hat{X}_t) \rangle \leq 4\|X_t - \hat{X}_t\|^2 \|R + P_t SP_t\| \]
By corollary 2.2 in [7] for any $\delta \geq 1$ we have
\[\mathbb{E} \left(\|X_t - \hat{X}_t\|^2 / \delta \mid \mathcal{F}_s \right) \leq \exp(-\lambda_{\partial A}(t-s)) \|X_s - \hat{X}_s\|^2 \]
\[+ (2\delta - 1) \int_s^t \exp(-\lambda_{\partial A}(t-u)) \left(\text{tr}(R) + \rho(S) \text{tr}(P_u)^2 \right) \, du \]
Observe that by (7)
\[\rho(S) \int_s^t \exp(-\lambda_{\partial A}(t-u)) \text{tr}(P_u)^2 \, du \]
\[\leq 2\rho(S) \int_s^t \exp(-\lambda_{\partial A}(t-u)) \left(e^{-2\lambda_{\partial A} u} \text{tr}(P_0)^2 + 1/\lambda_R^2 \right) \, du \]
\[\leq 2(\lambda_R^2 / \lambda_S)^{-1} + 2 \exp(-\lambda_{\partial A}(t+s)) \text{tr}(P_0)^2 \lambda_S^{-1} \]
This ends the proof of the proposition. \[\blacksquare \]
Theorem 3.2. When the initial random states \bar{X}_0 and \bar{X}_0 have the same first and second order statistics $(\bar{X}_0, P_0) = (\tilde{X}_0, \tilde{P}_0)$ we have the almost sure contraction estimates:

$$\|X_t - \bar{X}_t\|^2 \leq \exp[-\lambda_{\delta A} t] \|X_0 - \bar{X}_0\|^2$$

More generally, when condition (8) is met with $\lambda_S \geq 4^4$, for any $\epsilon \in [0, 1]$ there exists some s such that for any $t \geq s$ and any $1 \leq \delta \leq 4^{-4} \sqrt{\lambda_S}$ we have

$$\mathbb{E} \left(\|X_t - \bar{X}_t\|^{2\delta} \mid \mathcal{F}_s \right)^{1/\delta} \leq \exp \left[-(1 - \epsilon) \lambda_{\delta A} (t-s) \right] \left[\|X_s - \bar{X}_s\|^2 + \mathbb{E} \right] \tag{20}$$

with some exponent $\lambda_{\delta A} \geq \lambda_{\delta A} \wedge (\lambda_{\delta A}/2)$, and some process \mathbb{Z}_t satisfying the uniform moment condition

$$\sup_{t \geq 0} \mathbb{E} \left(\mathbb{Z}_t^{\alpha/4} \right) < \infty \quad \text{for any} \quad \alpha \leq \lambda_{R,S} \sqrt{\lambda_S}. \tag{21}$$

Before getting into the details of the proof of this theorem we mention that (10) is a direct consequence of (20), combined with the uniform estimates (19). Indeed, applying (20), for any $\delta \geq 2$ we have

$$\mathbb{E} \left(\|X_t - \bar{X}_t\|^{\delta} \right)^{1/\delta} \leq \exp \left[-(1 - \epsilon) \lambda_{\delta A} (t-s)/2 \right] \left(\mathbb{E} \left[\|X_s - \bar{X}_s\|^{\delta} \right]^{1/\delta} + \mathbb{E} \left[\mathbb{Z}_s^{\delta/2} \right]^{1/\delta} \right)$$

Using (19) and the fact that

$$1 \leq \delta/2 \leq 16^{-1} \sqrt{\lambda_S} \leq 4^{-1} \lambda_{R,S} \sqrt{\lambda_S}$$

we conclude that

$$\mathbb{W}_\delta(\eta_t, \bar{\eta}_t) \leq c \exp \left[-t (1 - \epsilon)(1 - s/t) \lambda_{\delta A}/2 \right] \leq c \exp \left[-t (1 - 2\epsilon) \lambda_{\delta A}/2 \right]$$

as soon as $s/t \leq \epsilon$. The end of the proof of (10) is now clear.

Now we come to the proof of the theorem.

Proof of theorem 3.2.

We have

$$d\bar{X}_t = A(\bar{X}_t, \hat{\bar{X}}_t) dt + R_{1/2} d\bar{W}_t + P_t B' R_{2}^{-1} \left[dY_t - (B \bar{X}_t dt + R_{2}^{1/2} d\bar{V}_t) \right]$$

Using the decomposition

$$P_t S\bar{X}_t - P_t S\bar{X}_t = -P_t S(\bar{X}_t - \hat{\bar{X}}_t) + (\hat{P}_t - P_t) S\bar{X}_t$$

we readily check that

$$d \left(\bar{X}_t - \hat{\bar{X}}_t \right)$$

$$= \left\{ A(\bar{X}_t, \hat{\bar{X}}_t) - A(\bar{X}_t, \hat{\bar{X}}_t) \right\} dt + \left[P_t - \hat{P}_t \right] S(\bar{X}_t - \hat{\bar{X}}_t) dt + d\mathcal{M}_t$$

13
with the martingale
\[d\mathcal{M}_t := \left[P_t - \tilde{P}_t \right] B'R_2^{-1/2} d(V_t - \tilde{V}_t) \]

\[\Rightarrow \frac{\partial_t}{\partial t} \langle \mathcal{M} \rangle_t = \left\| P_t - \tilde{P}_t \right\|^2 B'R_2^{-1/2} = \text{tr} \left(\left[P_t - \tilde{P}_t \right]^2 S \right) \leq \nu_t := \rho(S) \| P_t - \tilde{P}_t \|_F^2 \]

When the initial random states \(\mathcal{X}_0 \) and \(\tilde{X}_0 \) are possibly different but they have the same first and second order statistics we have

\[\tilde{X}_0 = X_0 \quad \text{and} \quad P_0 = \tilde{P}_0 \quad \Rightarrow \forall t \geq 0 \quad \tilde{X}_t = X_t \quad \text{and} \quad P_t = \tilde{P}_t \]

In this particular situation we have

\[A(\mathcal{X}_t, \tilde{X}_t) - A(\tilde{X}_t, \tilde{X}_t) = \partial A(\tilde{X}_t) (\mathcal{X}_t - \tilde{X}_t) \]

and

\[\frac{\partial_t}{\partial t} (\mathcal{X}_t - \tilde{X}_t) = \left[\partial A(\tilde{X}_t) - P_t S \right] (\mathcal{X}_t - \tilde{X}_t) \]

This implies that

\[\frac{\partial_t}{\partial t} \| \mathcal{X}_t - \tilde{X}_t \|^2 = 2\langle (\mathcal{X}_t - \tilde{X}_t), \left[\partial A(\tilde{X}_t) - P_t S \right] (\mathcal{X}_t - \tilde{X}_t) \rangle \leq -\lambda \| \mathcal{X}_t - \tilde{X}_t \|^2 \]

This ends the proof of the first assertion.

More generally, we have

\[A(\mathcal{X}_t, \tilde{X}_t) - A(\tilde{X}_t, \tilde{X}_t) \]

\[= \partial A(\tilde{X}_t) (\mathcal{X}_t - \tilde{X}_t) \]

\[+ \left[A(\tilde{X}_t) - A(\tilde{X}_t) \right] - \partial A(\tilde{X}_t)(\tilde{X}_t - \tilde{X}_t) + \left[\partial A(\tilde{X}_t) - \partial A(\tilde{X}_t) \right] (\mathcal{X}_t - \tilde{X}_t) \]

This yields the estimate

\[\langle \mathcal{X}_t - \tilde{X}_t, \left(A(\mathcal{X}_t, \tilde{X}_t) - A(\tilde{X}_t, \tilde{X}_t) \right) - P_t S(\mathcal{X}_t - \tilde{X}_t) \rangle \]

\[\leq -\frac{\lambda \| A \|}{2} \| \mathcal{X}_t - \tilde{X}_t \|^2 + \langle \mathcal{X}_t - \tilde{X}_t, \left[\partial A(\tilde{X}_t) - \partial A(\tilde{X}_t) \right] (\mathcal{X}_t - \tilde{X}_t) \rangle \]

\[+ \langle \mathcal{X}_t - \tilde{X}_t, \left[A(\tilde{X}_t) - A(\tilde{X}_t) \right] - \partial A(\tilde{X}_t)(\tilde{X}_t - \tilde{X}_t) \rangle \]

\[\leq -\frac{\lambda \| A \|}{2} \| \mathcal{X}_t - \tilde{X}_t \|^2 + \| \tilde{X}_t - \tilde{X}_t \| \| \mathcal{X}_t - \tilde{X}_t \| \left(\kappa \| A \| \| \mathcal{X}_t - \tilde{X}_t \| + \kappa \| A \| + \| \partial A \| \right) \]

We also have

\[\langle \mathcal{X}_t - \tilde{X}_t, \left[P_t - \tilde{P}_t \right] S(\mathcal{X}_t - \tilde{X}_t) \rangle \leq \| P_t - \tilde{P}_t \|_F \| \mathcal{X}_t - \tilde{X}_t \| \| S(\mathcal{X}_t - \tilde{X}_t) \| \]
This implies that
\[d\|X_t - \tilde{X}_t\|^2 \]
\[\leq \left[-\lambda \delta A \|X_t - \tilde{X}_t\|^2 + 2 \|\tilde{X}_t - \tilde{X}_t\| \|X_t - \tilde{X}_t\| \left(\kappa \delta A \|X_t - \tilde{X}_t\| + \kappa \delta A + \|\delta A\| \right) \right] dt
+ \left[2\|P_t - \tilde{P}_t\|_F \|X_t - \tilde{X}_t\| \|S(X_t - \tilde{X}_t)\| \right] dt + 2\sqrt{\nu_t} \|X_t - \tilde{X}_t\| d\mathcal{M}_t
\]
with
\[\nu_t = \rho(S) \|P_t - \tilde{P}_t\|_F^2 \]
and a rescaled continuous martingale \(\mathcal{M}_t\) such that \(\mathcal{M}_t \leq 1\). On the other hand, we have
\[2\|X_t - \tilde{X}_t\| \|\tilde{X}_t - \tilde{X}_t\| \left(\kappa \delta A \|X_t - \tilde{X}_t\| + \kappa \delta A + \|\delta A\| \right) \]
\[\leq \frac{\lambda \delta A}{4} \|X_t - \tilde{X}_t\|^2 + \frac{4}{\lambda \delta A} \|\tilde{X}_t - \tilde{X}_t\|^2 \left(\kappa \delta A \|X_t - \tilde{X}_t\| + \kappa \delta A + \|\delta A\| \right)^2 \]
and
\[2\|P_t - \tilde{P}_t\|_F \|X_t - \tilde{X}_t\| \|S(X_t - \tilde{X}_t)\| \]
\[\leq \frac{\lambda \delta A}{4} \|X_t - \tilde{X}_t\|^2 + \frac{4}{\lambda \delta A} \|P_t - \tilde{P}_t\|_F^2 \|S(X_t - \tilde{X}_t)\|^2 \]
We conclude that
\[d\|X_t - \tilde{X}_t\|^2 \leq \left[-\frac{\lambda \delta A}{2} \|X_t - \tilde{X}_t\|^2 + \mathcal{U}_t \right] dt + 2\sqrt{\nu_t} \|X_t - \tilde{X}_t\| d\mathcal{M}_t \]
with
\[\mathcal{U}_t := \alpha_t \|\tilde{X}_t - \tilde{X}_t\|^2 + \beta_t \|P_t - \tilde{P}_t\|_F^2 \]
and the parameters
\[\alpha_t := \frac{4}{\lambda \delta A} \left(\kappa \delta A \|X_t - \tilde{X}_t\| + \kappa \delta A + \|\delta A\| \right)^2 \quad \text{and} \quad \beta_t := \frac{4}{\lambda \delta A} \|S(X_t - \tilde{X}_t)\|^2 \]
By \[8\] and \[19\], for any \(\delta \leq 2^{-1} \sqrt{\lambda}\) and any \(t \geq s\) we have
\[\mathbb{E} \left(\alpha_t^{\delta/4} \|\tilde{X}_t - \tilde{X}_t\|^\delta/2 | \mathcal{F}_s \right)^{4/\delta} \leq \mathbb{E} \left(\|\tilde{X}_t - \tilde{X}_t\| \delta/2 | \mathcal{F}_s \right)^{2/\delta} \mathbb{E} \left(\alpha_t^{\delta/2} | \mathcal{F}_s \right)^{2/\delta} \]
\[\leq \mathcal{Z}_s \exp \left(-\hat{\lambda} \delta A (1 - \epsilon)(t - s) \right) \]
for some process \(\mathcal{Z}_s\) satisfying the uniform moment condition \[21\]. In the same vein we check that
\[\mathbb{E} \left(\mathcal{U}_t^{\delta/4} | \mathcal{F}_s \right)^{4/\delta} \leq \mathbb{E} \left(\mathcal{V}_t^{\delta/4} | \mathcal{F}_s \right)^{4/\delta} \leq \mathcal{Z}_s \exp \left(-\hat{\lambda} \delta A (1 - \epsilon)(t - s) \right) \]
for any \(s \geq t_0 \). By corollary 2.2 in [7] we have

\[
\mathbb{E} \left(\| X_t - \hat{X}_t \|^\delta/4 \mid F_s \right)^{8/\delta}
\leq \exp \left(- \left[\frac{\lambda_{\partial A}}{2} (t - s) \right] \right) \| X_s - \hat{X}_s \|^2
+ n \mathcal{Z}_s \int_s^t \exp \left(- \left[\frac{\lambda_{\partial A}}{2} (t - u) + \tilde{\lambda}_{\partial A} (1 - \epsilon) (u - s) \right] \right) \, du
\leq e^{-\frac{\lambda_{\partial A}}{2} (t-s)} \| X_s - \hat{X}_s \|^2 + \frac{n \mathcal{Z}_{t_0}}{|\tilde{\lambda}_{\partial A} (1 - \epsilon) - \lambda_{\partial A}/2|} |e^{-\frac{\lambda_{\partial A}}{2} (t-s)} - e^{-\tilde{\lambda}_{\partial A} (1-\epsilon)(t-s)}|.
\]

The end of the proof of the theorem is now easily completed.

\[\blacksquare\]

4 Quantitative propagation of chaos estimates

4.1 Laplace exponential moment estimates

The analysis of EKF filters and their particle interpretation is mainly based on the estimation of the stochastic exponential function

\[\mathcal{E}_T(t) := \exp \left(\int_0^t \Gamma_A(s) \, ds \right) \]

with the stochastic functional

\[\Gamma_A(s) := - \left[\lambda_{\partial A} - \left(2 \kappa_{\partial A} \operatorname{tr}(P_t) + \rho(S) \, \| X_t - \hat{X}_t \| \right) \right] \]

Assume condition (8) is satisfied and set

\[\Lambda_{\partial A}[\epsilon, \delta] / \lambda_{\partial A} := 1 - \frac{2}{\lambda_K \lambda_R} + \frac{1}{\lambda_S} \left(\frac{3}{4} - \delta \right) - \frac{1}{\delta} \frac{\epsilon \lambda_A}{2 \lambda_{\partial A}} \]

Observe that for any \(\delta > 0 \) we have

\[\epsilon = \frac{1}{2} \frac{\lambda_{\partial A}}{\lambda_A} \implies \Lambda_{\partial A}[\epsilon, \sqrt{\lambda_S/2}] = \tilde{\lambda}_{\partial A} \geq \Lambda_{\partial A}[\epsilon, \delta] \]

The next technical lemma provides some key \(\delta \)-exponential moments estimates. Its proof is quite technical, thus it is housed in the appendix, section 5.2.

Lemma 4.1. For any \(\delta > 0 \) and any \(0 \leq s \leq t \) we have the almost sure estimate

\[
\mathbb{E} \left(\left(\mathcal{E}_T(t)/\mathcal{E}_T(s) \right)^{-\delta} \mid F_s \right)^{1/\delta} \leq \exp \left(\Lambda_T^{-1} (t - s) \right) \quad \text{with} \quad \Lambda_T^{-1} = \lambda_{\partial A} \left[1 - \frac{2}{\lambda_K \lambda_R} \right]
\]

\[\blacksquare\]
• For any $\epsilon \in [0, 1]$, any $0 < \delta \leq \epsilon \lambda_{R,S}$ and any initial covariance matrix P_0 such that

$$\text{tr}(P_0)^2 \leq \sigma^2(\epsilon, \delta) := \frac{\lambda_S}{\lambda_R} \left[\frac{1}{2} + \frac{1}{\lambda_R \lambda_S} \right] (\epsilon \epsilon \lambda_{R,S} / \delta - 1)$$

for any time horizon $t \geq 0$ we have the exponential δ-moment estimate

$$\mathbb{E} \left[\mathcal{E}_t(t)^{\delta} \right]^{1/\delta} \leq c_\delta(P_0) \exp \left[\Lambda_\delta^+(\epsilon, \delta) \Delta t \right]$$

with the parameters

$$\Lambda_\delta^+(\epsilon, \delta) := 2 \epsilon \lambda_{R,S} \sigma(\delta) - \Lambda_{R,A} [\epsilon, \delta] - (\delta - 1) \rho(S)$$

$$c_\delta(P_0) := \exp \left((1/\delta + \delta \chi(P_0)/(2 \lambda_S)^2) \right)$$

• For any $\epsilon \in [0, 1]$ there exists some time horizon s such that for any $t \geq s$ and any $\delta \leq \sqrt{\lambda_S}/2$ we have the almost sure estimate

$$\mathbb{E} \left(\mathcal{E}_t(t)^{\delta} \mid \mathcal{F}_s \right)^{1/\delta} \leq \mathcal{E}_t(s) \mathcal{Z}_s \exp \left(- \left\{ (1 - \epsilon) \lambda_{R,A} + (\delta - 1) \rho(S) \right\} (t - s) \right)$$

for some positive random process \mathcal{Z}_t s.t.

$$\forall \alpha \leq \lambda_{R,S} \sqrt{\lambda_S} \sup_{t \geq 0} \mathbb{E} (\mathcal{Z}_t^\alpha) < \infty$$

4.2 A non asymptotic convergence theorem

This section is mainly concerned with the estimation of the δ-moments of the square errors

$$\Xi_t := \| (m_t, p_t) - (\hat{X}_t, P_t) \|^2 = \| m_t - \hat{X}_t \|^2 + \| p_t - P_t \|^2_F$$

The analysis is based on a couple of technical lemmas.

The first one provides uniform moments estimates with respect to the time parameter.

Lemma 4.2. Assume that $\lambda_{\min}(S) > 0$. In this situation there exists some $\nu > 0$ such that for any $1 \leq n \leq 1 + \nu N$ we have

$$\sup_{t \geq 0} \mathbb{E} (\text{tr}(p_t)^n) < \infty \quad \sup_{t \geq 0} \mathbb{E} (\| \xi_t^1 \|^n) < \infty \quad \text{and} \quad \sup_{t \geq 0} \mathbb{E} (\| \xi_t^1 \|^n) < \infty$$

The second technical lemma provides a differential perturbation inequality in terms of the Laplace functionals discussed in section 4.1.

Lemma 4.3. Assume that $\lambda_{\min}(S) > 0$. We have the stochastic differential inequality

$$d\Xi_t \leq \Xi_t \left[\Gamma_A(t) + \sqrt{2 \rho(S)} d\mathcal{Y}_t^{(1)} \right] + \left[\mathcal{V}_t dt + \sqrt{\mathcal{V}_t \Xi_t} d\mathcal{Y}_t^{(2)} \right]$$

with a couple of orthogonal martingales s.t. $\mathcal{V}_t (\mathcal{Y}_t^{(i), \mathcal{Y}_t^{(j)})} \leq 1_{i=j}$ and some non negative process \mathcal{V}_t such that

$$\sup_{t \geq 0} \mathbb{E} (\mathcal{V}_t^1)^{1/n} \leq c(n)/N \quad \text{for any } 1 \leq n \leq 1 + \nu N \text{ and some } \nu > 0.$$
The proofs of these two lemmas are rather technical thus they are provided in the appendix, section 5.3 and section 5.4. We are now in position to state and to prove the main result of this section.

Theorem 4.4. Assume that \((2^{-1} \sqrt{\lambda_R}) \land (e \lambda_R) \geq 2\). In this situation, there exists some \(N_0 \geq 1\) and some \(\alpha \in [0, 1]\) such that for any \(N_0 \leq N\), \(1 \leq \delta \leq (4^{-1} \sqrt{\lambda_R}) \land (2^{-1} e \lambda_R)\) and any initial covariance matrix \(P_0\) of the signal we have the uniform estimates

\[
\text{tr}(P_0) \leq \frac{1}{2} \frac{\lambda_S}{\lambda_R} \left[1 + \frac{2}{\lambda_R \lambda_S} \right] \implies \sup_{t \geq 0} \mathbb{E}[\Xi_t^{\delta}]^{1/\delta} \leq c/N^\alpha
\]

Proof. We set

\[
\Xi(t) := \mathcal{E}_\Gamma(t) \mathcal{E}_\Upsilon(t) = e^{L_t}
\]

with the exponential martingale

\[
\mathcal{E}_\Upsilon(t) := \exp \left[\sqrt{2 \rho(S)} \, \Upsilon_t^{(1)} - \rho(S)t \right]
\]

and the stochastic process

\[
L_t := \int_0^t \Gamma_A(u) \, du + \sqrt{2 \rho(S)} \, \Upsilon_t^{(1)} - \rho(S)t
\]

Observe that for any \(\delta \geq 0\) we have

\[
\mathcal{E}^{-\delta}_\Upsilon(t) = \exp \left[-\delta \sqrt{2 \rho(S)} \, \Upsilon_t^{(1)} + \delta \rho(S)t \right] = \exp \left[\delta(1 + 2\delta) \rho(S)t \right] \mathcal{E}^{1/2}_{-2\delta \Upsilon}(t)
\]

with the exponential martingale

\[
\mathcal{E}_{-2\delta \Upsilon}(t) := \exp \left[-2\delta \sqrt{2 \rho(S)} \, \Upsilon_t^{(1)} - 4\delta^2 \rho(S)t \right]
\]

In the same vein we have

\[
\mathcal{E}_\Upsilon^\delta(t) = \exp \left[\delta \sqrt{2 \rho(S)} \, \Upsilon_t^{(1)} - \delta \rho(S)t \right] = \exp \left[\delta(2\delta - 1) \rho(S)t \right] \mathcal{E}^{1/2}_{2\delta \Upsilon}(t)
\]

with the exponential martingale

\[
\mathcal{E}_{2\delta \Upsilon}(t) := \exp \left[2\delta \sqrt{2 \rho(S)} \, \Upsilon_t^{(1)} - 4\delta^2 \rho(S)t \right]
\]

This yields the estimates

\[
\mathbb{E} \left(\Xi^{-\delta}(t) \right) = \exp \left(\delta(1 + 2\delta) \rho(S)t \right) \mathbb{E} \left[\mathcal{E}_\Upsilon(t)^{-\delta} \mathcal{E}^{1/2}_{-2\delta \Upsilon}(t) \right] \\
\leq \mathbb{E} \left[\mathcal{E}_\Upsilon(t)^{2\delta} \right]^{1/2} \exp \left(\delta(1 + 2\delta) \rho(S)t \right)
\]

\[
\mathbb{E} \left(\Xi^\delta(t) \right) \leq \mathbb{E} \left[\mathcal{E}_\Upsilon(t)^{2\delta} \right]^{1/2} \exp \left(\delta(2\delta - 1) \rho(S)t \right)
\]

Using (22) and (23) we find the estimates

\[
\mathbb{E} \left(\Xi^{-\delta}(t) \right)^{1/\delta} \leq \exp \left(\left[(1 + 2\delta) \rho(S) + \Lambda_{\Upsilon}^- \right] t \right) \quad (25)
\]

\[
\mathbb{E} \left(\Xi^\delta(t) \right)^{1/\delta} \leq c_0(P_0) \exp \left(\left[(2\delta - 1) \rho(S) + \Lambda_{\Upsilon}^+(\epsilon, \delta) \right] t \right) \quad (26)
\]
The estimate (26) is valid for any $\epsilon \in [0, 1]$ and any
\[\delta \leq e \epsilon \lambda_{R,S} \quad \text{and} \quad \text{tr}(P_0) \leq \sigma(\epsilon, \delta) \]

Using the fact that
\[
d\mathcal{E}^{-1}(t) \leq -e^{-\mathcal{L}_t} \left(\Gamma_A(t) dt + \sqrt{2\rho(S)} \, d\Upsilon_1(t) - \rho(S) dt \right) + \frac{1}{2} e^{-\mathcal{L}_t} 2\rho(S) \, \hat{c}_t \langle \Upsilon_1(t) \rangle dt
\]
we find the stochastic inequality
\[
d(\mathcal{E}^{-1}(t)) \leq \mathcal{E}^{-1}(t) d\Xi_t + \Xi_t d\mathcal{E}^{-1}(t) - 2\mathcal{E}^{-1}(t) \Xi_t \rho(S) dt
\]
\[
\leq \mathcal{E}^{-1}(t) \Xi_t \left[\Gamma_A(t) + \sqrt{2\rho(S)} \, d\Upsilon_1(t) \right] + \mathcal{E}^{-1}(t) \left[\nu_t dt + \sqrt{\nu_t \Xi_t} \, d\Upsilon_2(t) \right]
\]
\[
- \mathcal{E}^{-1}(t) \Xi_t \left[\Gamma_A(t) dt + \sqrt{2\rho(S)} \, d\Upsilon_1(t) \right] - 2\mathcal{E}^{-1}(t) \Xi_t \rho(S) dt
\]
\[
= \mathcal{E}^{-1}(t) \left[(\nu_t - 2 \Xi_t \rho(S)) \ dt + \sqrt{\nu_t \Xi_t} \, d\Upsilon_2(t) \right]
\]

For any $\delta \geq 2$, this implies that
\[
d(\Xi_t \mathcal{E}^{-1}(t))^\delta \leq \delta \Xi_t^{\delta-1} \mathcal{E}^{-\delta}(t) \left[(\nu_t - 2 \Xi_t \rho(S)) \ dt + \sqrt{\nu_t \Xi_t} \, d\Upsilon_2(t) \right]
\]
\[
+ \delta \Xi_t^{\delta-1} \mathcal{E}(t)^{-\delta} \left(\frac{\delta-1}{2} \nu_t dt \right)
\]
\[
= \delta \Xi_t^{\delta-1} \mathcal{E}^{-\delta}(t) \left[\left(\frac{\delta+1}{2} \nu_t - 2 \Xi_t \rho(S) \right) \ dt + \sqrt{\nu_t \Xi_t} \, d\Upsilon_2(t) \right]
\]

Taking the expectation we obtain
\[
\hat{c}_t \mathbb{E} \left[(\Xi_t \mathcal{E}^{-1}(t))^\delta \right] \leq \frac{\delta(\delta+1)}{2} \mathbb{E} \left[(\Xi_t \mathcal{E}^{-1}(t))^{\delta-1} \mathcal{E}^{-1}(t) \nu_t \right]
\]
\[
- 2\delta \rho(S) \mathbb{E} \left[(\Xi_t \mathcal{E}^{-1}(t))^\delta \right]
\]

On the other hand using lemma 4.3 and the Laplace estimate (25) we have
\[
\mathbb{E} \left((\Xi_t \mathcal{E}^{-1}(t))^{\delta-1} \mathcal{E}^{-1}(t) \nu_t \right)
\]
\[
\leq \mathbb{E} \left((\Xi_t \mathcal{E}^{-1}(t))^\delta \right)^{1-1/\delta} \mathbb{E} \left(\mathcal{E}^{-2\delta}(t) \right)^{1/(2\delta)} \mathbb{E} \left(\nu_t^{2\delta} \right)^{1/(2\delta)}
\]
\[
\leq \frac{c}{N} \exp \left(\left(1 + 4\delta \right) \rho(S) + \Lambda_t^\gamma \right) \mathbb{E} \left((\Xi_t \mathcal{E}^{-1}(t))^\delta \right)^{1-1/\delta}
\]
This yields
\[
\partial_t \mathbb{E} \left((\Xi_t \mathbb{E}^{-1}(t))^{\delta} \right)^{1/\delta} \\
\leq \frac{1}{\delta} \mathbb{E} \left((\Xi_t \mathbb{E}^{-1}(t))^{\delta} \right)^{1/\delta - 1} \partial_t \mathbb{E} \left((\Xi_t \mathbb{E}^{-1}(t))^{\delta} \right) \\
\leq -2\rho(S) \mathbb{E} \left((\Xi_t \mathbb{E}^{-1}(t))^{\delta} \right)^{1/\delta} + \frac{(\delta + 1)}{2} \frac{c}{N} \exp \left((1 + 4\delta)\rho(S) + \Lambda_{t}^{-} \right) t
\]
from which we conclude that
\[
\mathbb{E} \left((\Xi_t \mathbb{E}^{-1}(t))^{\delta} \right)^{1/\delta} \leq \exp \{ -2\rho(S)t \} \mathbb{E} \left(\Xi_0^{\delta} \right)^{1/\delta} + \frac{c}{N} \exp \left((1 + 4\delta)\rho(S) + \Lambda_{t}^{-} \right) t \leq \frac{c}{N} \exp \left((1 + 4\delta)\rho(S) + \Lambda_{t}^{-} \right) t
\]
By Cauchy Schwartz inequality we also have
\[
\mathbb{E} \left(\Xi_t^{\delta/2} \right)^{2/\delta} = \mathbb{E} \left(\Xi(t)^{\delta/2} \left(\Xi_t \mathbb{E}^{-1}(t) \right)^{\delta/2} \right)^{2/\delta} \leq \mathbb{E} \left((\Xi_t \mathbb{E}^{-1}(t))^{\delta} \right)^{1/\delta} \mathbb{E} \left(\Xi(t)^{\delta} \right)^{1/\delta}
\]
Using (26) we conclude that for any $\epsilon \in [0, 1]$ and any $\delta \leq \epsilon \lambda_{R,S}$ and $\text{tr}(P_0) \leq \sigma(\epsilon, \delta)$
\[
\mathbb{E} \left(\Xi_t^{\delta/2} \right)^{2/\delta} \leq c_0(P_0) \frac{c}{N} \exp \left\{ (6\delta \rho(S) + \Lambda_{t}^{-} + \Lambda_{t}^{+}(\epsilon, \delta)) t \right\} \tag{27}
\]
On the other hand, by theorem 2.1 in [7] for any $\delta \geq 1$ we also have
\[
\mathbb{E} \left(\Xi_t^{\delta/2} \mid \mathcal{F}_s \right)^{2/\delta} \leq \mathbb{E} \left[\exp \left(\delta \int_s^t \{ \Gamma_A(u) + (\delta - 1)\rho(S) \} du \right) \mid \mathcal{F}_s \right]^{1/\delta} \\
\times \left\{ \Xi_s + \frac{\delta + 1}{2} \int_s^t \mathbb{E} \left[\nabla_u^{\delta} \mid \mathcal{F}_s \right]^{1/\delta} du \right\} \tag{28}
\]
with the rescaled process
\[
\nabla_t := \exp \left(\int_s^t [-\Gamma_A(u) + 2(1 - \delta)\rho(S)] du \right) \nu_t
\]
of the process ν_t defined in lemma 1.3
On the other hand using (26) for any $\epsilon \in [0, 1]$ there exists some time horizon $s = s(\epsilon)$ such that for any $t \geq s$ and any $\delta \leq \frac{1}{2} \sqrt{\lambda_s}$ we have the almost sure estimate
\[
\mathbb{E} \left(\Xi_t^{\delta/2} \mid \mathcal{F}_s \right)^{2/\delta} \leq Z_s \exp \left(-(1 - \epsilon) \hat{\lambda}_{\nu,A}(t - s) \right) \times \left\{ \Xi_s + \frac{\delta + 1}{2} \int_s^t \mathbb{E} \left[\nabla_u^{\delta} \mid \mathcal{F}_s \right]^{1/\delta} du \right\}
\]
with some process Z_s such that
\[
\sup_{t \geq 0} \mathbb{E} (Z_t^{\alpha}) < \infty \quad \text{for any} \quad \alpha \leq \frac{2}{\epsilon} \sqrt{\lambda_s} \left(\leq \frac{1}{2} \lambda_{R,S} \sqrt{\lambda_s} \right)
\]
Combining Cauchy-Schwartz inequality with (22) and lemma 4.3 we readily check that

\[
\mathbb{E}\left[\mathcal{V}_u^\delta \mid \mathcal{F}_s \right]^{1/\delta} \\
= \mathbb{E}\left[\mathcal{V}_u^\delta \exp\left(\delta \int_s^u \left[-\Gamma_A(v) + 2(1 - \delta)\rho(S) \right] dv \right) \mid \mathcal{F}_s \right]^{1/\delta} \\
\leq \mathbb{E}\left[\mathcal{V}_u^{2\delta} \right]^{1/(2\delta)} \exp\left((2(1 - \delta)\rho(S)(u - s)) \right) \mathbb{E}\left[(\mathcal{E}_r(u)/\mathcal{E}_r(s))^{-2\delta} \mid \mathcal{F}_s \right]^{1/(2\delta)} \\
\leq \frac{c}{N} \exp\left[(2(1 - \delta)\rho(S) + \Lambda_r^-) (u - s) \right]
\]

This yields the estimate

\[
\mathbb{E}\left(\Xi_t^{\delta/2} \mid \mathcal{F}_s \right) \leq 2^{\delta/2} \exp\left(-\frac{\delta}{2} (1 - \epsilon) \hat{\lambda}_{\delta, A} (t - s) \right) \\
\times \left\{ \Xi_s + \frac{c}{N} \exp\left[(2(1 - \delta)\rho(S) + \Lambda_r^-) (t - s) \right]\right\}^{\delta/2}
\]

This implies that for any \(1 \leq \delta/2 \leq \frac{1}{4} \sqrt{\lambda} \), we have

\[
\mathbb{E}\left(\Xi_t^{\delta/2} \mid \mathcal{F}_s \right) \leq c \cdot 2^{\delta/2} \exp\left(-\frac{\delta}{2} (1 - \epsilon) \hat{\lambda}_{\delta, A} (t - s) \right) \\
\times \left\{ \Xi_s^{\delta/2} + \frac{1}{N^{\delta/2}} \exp\left[\frac{\delta}{2} (2(1 - \delta)\rho(S) + \Lambda_r^-) (t - s) \right]\right\}
\]

Taking the expectation and choosing \(\epsilon \leq 1/2 \), there exists some time horizon \(t_0 \) such that for any \(s \geq 0 \) and any \(\tau \geq s + t_0 \)

\[
\mathbb{E}\left(\Xi_r^{\delta/2} \right)^{2/\delta} \\
\leq c \exp\left(-\hat{\lambda}_{\delta, A} (\tau - (s + t_0))/2 \right) \left\{ 1 + \frac{1}{N} \exp\left[(2(1 - \delta)\rho(S) + \Lambda_r^-) (\tau - (s + t_0)) \right]\right\}
\]

for any \(2 \leq \delta \leq 1 + \nu N \) for some \(\nu > 0 \), and for some finite constant \(c(\delta) < \infty \). This implies that for any time horizon \(t \geq 0 \) and any

\[
2 \leq \delta \leq 2^{-1} \sqrt{\lambda} \wedge (1 + \nu N)
\]

we have

\[
\mathbb{E}\left(\Xi_{s+t_0+t}^{\delta/2} \right)^{2/\delta} \leq c \exp\left(-\frac{\hat{\lambda}_{\delta, A}}{2} t \right) \left\{ 1 + \frac{1}{N} \exp\left[(2(1 - \delta)\rho(S) + \Lambda_r^-) t \right]\right\}
\]

This yields the uniform estimates

\[
\sup_{\xi \in [t_0 + t, \infty]} \mathbb{E}\left(\Xi_u^{\delta/2} \right)^{2/\delta} = \sup_{s \geq 0} \mathbb{E}\left(\Xi_{s+t_0+t}^{\delta/2} \right)^{2/\delta} \leq c \left\{ \exp\left(-\frac{\hat{\lambda}_{\delta, A}}{2} t \right) + \frac{1}{N} \exp[\lambda t] \right\}
\]

21
with the parameters

$$\lambda_\Gamma := \Lambda_\Gamma - 2\rho(S) = \frac{\lambda_B A}{2} \left[\left(1 - \frac{4}{\lambda_R \lambda_R} \right) + \left(1 - \frac{4}{\lambda_S} \right) \right] > 0$$

On the other hand, by (27) for any time horizon \(t \geq 0 \) and any \(\delta \leq \epsilon \lambda_{R, S} \) and any \(P_0 \) s.t. \(\text{tr}(P_0) \leq \sigma(1, \epsilon \lambda_{R, S}/2) \) we have the uniform estimates

$$\sup_{s \in [0, t_0 + t]} \mathbb{E} \left(\Xi_s^{\delta/2} \right)^{2/\delta} \leq c \left\{ \frac{1}{N} \exp \left[\lambda'_\Gamma \right] \right\}$$

with

$$\lambda'_\Gamma := 5 \epsilon \lambda_B A \lambda_{R, S} / \lambda_S + \Lambda_\Gamma + \Lambda'_\Gamma (1, \epsilon \lambda_{R, S}/2)$$

We conclude that for any time horizon \(t \geq 0 \)

$$\sup_{s \geq 0} \mathbb{E} \left(\Xi_s^{\delta/2} \right)^{2/\delta} \leq c \left\{ \frac{1}{N} \exp \left[(\lambda_\Gamma \lor \lambda'_\Gamma) \right] \right\}$$

Choosing \(t = t(N) \) such that

$$t = t(N) := \log N \left\{ \frac{\lambda_B A / 2}{(\lambda_\Gamma \lor \lambda'_\Gamma)} \right\}$$

We conclude that

$$\sup_{s \geq 0} \mathbb{E} \left(\Xi_s^{\delta/2} \right)^{2/\delta} \leq c \ N^{-\alpha} \ \text{ with } \ \alpha = \frac{\lambda_B A}{\lambda_B A + 2 \ (\lambda_\Gamma \lor \lambda'_\Gamma)} \in [0, 1]$$

This ends the proof of the theorem.

Corollary 4.5. Assume that \((4^{-1} \sqrt{\lambda_S}) \land (2^{-1} \epsilon \lambda_{R, S}) \geq 2 \). In this situation, there exists some \(N_0 \geq 1 \) and some \(\alpha \in [0, 1] \) such that for any \(N_0 \leq N \) and any initial covariance matrix \(P_0 \) of the signal

$$\text{tr}(P_0)^2 \leq \frac{1}{2} \frac{\lambda_S}{\lambda_R} \left[1 + \frac{2}{\lambda_R \lambda_S} \right] \implies \sup_{t \geq 0} \mathbb{E} \left(\| \xi^1_t - \zeta^1_t \|^2 \right) \leq c(P_0) / N^\alpha$$

for some finite constant \(c(P_0) < \infty \) whose values depends on \(P_0 \).

Proof. Using (2) we have

$$d(\xi^1_t - \zeta^1_t) = \left[(\partial A(m_t) - p_t S) \xi^1_t + p_t SX_t + A(m_t) - \partial A(m_t) m_t \right] dt$$

$$- \left[(\partial A(\tilde{X}_t) - P_t S) \zeta^1_t + P_t SX_t + A(\tilde{X}_t) - \partial A(\tilde{X}_t) \tilde{X}_t \right] dt + dM_t$$

with the martingale

$$dM_t := (p_t - P_t) B'R_2^{-1/2} d(V_t - \nabla^1_t)$$

22
This yields

\[
d(\xi_t^1 - \zeta_t^1) = \left[(\partial A(m_t) - p_tS)(\xi_t^1 - \zeta_t^1) + (p_t - P_t)S(X_t - \zeta_t^1) + (\partial A(m_t) - \partial A(\hat{X}_t))(\zeta_t^1) \right] dt \\
+ \left[(A(m_t) - A(\hat{X}_t)) + (\partial A(\hat{X}_t) - \partial A(m_t)) m_t + \partial A(\hat{X}_t)(\hat{X}_t - m_t) \right] dt + d\mathcal{M}_t
\]

with

\[
\sum_{1 \leq k \leq r_1} \partial_t \langle \mathcal{M}(k), \mathcal{M}(k) \rangle_t \leq 2\rho(S) \| p_t - P_t \|_F^2.
\]

This implies that

\[
d\| \xi_t^1 - \zeta_t^1 \|^2 \\
\leq 2\langle \xi_t^1 - \zeta_t^1, d(\xi_t^1 - \zeta_t^1) \rangle \leq 2\rho(S) \| p_t - P_t \|_F^2 dt \\
\leq \left\{ -\lambda_{\partial A} \| \xi_t^1 - \zeta_t^1 \|^2 + 2\rho(S) \| p_t - P_t \|_F^2 + 2\| \xi_t^1 - \zeta_t^1 \| \right\} \\
\times \left\{ \left\| p_t - P_t \|_F \| S(X_t - \zeta_t^1) \| + (\kappa_{\partial A}(\| \zeta_t^1 \| + \| m_t \|) + 2\| \partial A \|) \| m_t - \hat{X}_t \| \right\} \right\} dt + d\mathcal{M}_t
\]

with the martingale

\[
d\mathcal{M}_t = 2\langle \xi_t^1 - \zeta_t^1, d\mathcal{M}_t \rangle
\]

Notice that

\[
2\rho(S) \| p_t - P_t \|_F^2 \\
+ 2\| \xi_t^1 - \zeta_t^1 \| \left\{ \left\| p_t - P_t \|_F \| S(X_t - \zeta_t^1) \| + (\kappa_{\partial A}(\| \zeta_t^1 \| + \| m_t \|) + 2\| \partial A \|) \| m_t - \hat{X}_t \| \right\} \right\} \\
\leq \frac{\lambda_{\partial A}}{2} \| \xi_t^1 - \zeta_t^1 \|^2 \times \epsilon_t
\]

with the process

\[
\epsilon_t := 2\rho(S) \| p_t - P_t \|_F^2
\]

\[
+ 4 \left\{ \left\| p_t - P_t \|_F \| S(X_t - \zeta_t^1) \| \right\|^2 + (\kappa_{\partial A}(\| \zeta_t^1 \| + \| m_t \|) + 2\| \partial A \|)^2 \| m_t - \hat{X}_t \|^2 \right\} / \lambda_{\partial A}
\]

By theorem \[4.4\] we have

\[
\sup_{t \geq 0} \mathbb{E}(\epsilon_t) \leq c(P_0) / N^\alpha
\]

as soon as \((4^{-1}\sqrt{\lambda_S}) \wedge (2^{-1}e \lambda_{R,S}) \geq 2\) and initial covariance matrix \(P_0\) of the signal is chosen so that

\[
\text{tr}(P_0)^2 \leq \frac{1}{2} \frac{\lambda_S}{\lambda_R} \left[1 + \frac{2}{\lambda_R \lambda_S} \right]
\]
This implies that
\[\partial_t \mathbb{E} (\|\xi^1_t - \zeta^1_t\|^2) \leq -\frac{\lambda_{\beta A}}{2} \mathbb{E} (\|\xi^1_t - \zeta^1_t\|^2) + c(P_0)/N^\alpha \]

The end of the proof of the corollary is now a direct consequence of Gronwall lemma. \qed

5 Appendix

5.1 Regularity conditions

Notice that for any \(\alpha, x \geq 0 \) we have
\[
\frac{x}{1 + 1/x} > 2\alpha \iff x > \alpha \left(1 + \sqrt{1 + 2/\alpha}\right)
\]
and by (8)
\[
\lambda_{R,S} > (8e)^{-1} \lambda_{R} \sqrt{\lambda_{S}} \left[1 + \frac{1}{\lambda_{R}\sqrt{\lambda_{S}}}\right]^{-1}
\]
This shows that
\[
(8e)^{-1} \frac{\lambda_{R} \sqrt{\lambda_{S}}}{1 + \frac{1}{\lambda_{R}\sqrt{\lambda_{S}}}} > \alpha \iff \lambda_{R} \sqrt{\lambda_{S}} > 4\alpha e \left(1 + \sqrt{1 + 1/(2\alpha e)}\right) \implies \lambda_{R,S} > \alpha
\]
Also observe that
\[
\lambda_{S} > 4 \quad \text{and} \quad \lambda_{R} > 2\alpha e \left(1 + \sqrt{1 + 1/(2\alpha e)}\right) \implies \lambda_{R,S} > \alpha
\]
This yields the sufficient condition
\[
(\lambda_{K}\lambda_{R}) \wedge \lambda_{S} > 4 \quad \text{and} \quad \lambda_{R} \sqrt{\lambda_{S}} > 4e \left(1 + \sqrt{1 + 1/(2\alpha e)}\right) \iff (8)
\]
Also observe that for any \(\alpha \geq 1 \) we have
\[
(\lambda_{K}/\alpha) \wedge (\lambda_{S}/4) > 1 \quad \text{and} \quad \lambda_{R} > 2\alpha e \left(1 + \sqrt{1 + 1/(2\alpha e)}\right)
\]
\[
\implies (\lambda_{K}\lambda_{R}/4) \wedge (\lambda_{R,S}/\alpha) \wedge (\lambda_{S}/4) > 1
\]

5.2 Proof of lemma [4.1]

We have
\[
-\Gamma_{A}(t) = \lambda_{\beta A} - \left(2\kappa_{\beta A} \text{tr}(P_t) + \rho(S) \|X_t - \hat{X}_t\|\right) \leq \lambda_{\beta A} \left[1 - 2/(\lambda_{K}\lambda_{R})\right]
\]
The end of the proof of (22) is now clear. Observe that
\[
\mathcal{E}_{\Gamma}(t)^{\delta} = \exp \left[\delta \int_{0}^{t} \left[\left(2\kappa_{\beta A} \text{tr}(P_s) + \rho(S) \|X_s - \hat{X}_s\|\right) - \lambda_{\beta A}\right] ds\right]
\]
\[
\leq \exp \left[\delta \lambda_{\beta A} \left[\frac{2}{\lambda_{K}} \left(\text{tr}(P_0) + \frac{1}{\lambda_{R}}\right) - 1\right] t\right] \exp \left[\delta \rho(S) \int_{0}^{t} \|X_s - \hat{X}_s\| ds\right]
\]
We let $\phi_t(x) = X_t$ be the stochastic flows of signal starting at $X_0 = x$. We recall the contraction inequality
\[
\|\phi_t(x) - \phi_t(y)\| \leq \exp(-\lambda_{DA} t/2) \|x - y\|
\]
(29)

A proof of (29) can be found in [7], section 3.1. This inequality implies that
\[
\int_0^t \|X_t - \hat{X}_t\| \, dt = \int_0^t \|\phi_t(X_0) - \hat{X}_t\| \, dt
\]
\[
\leq \int_0^t \|\phi_t(X_0) - \phi_t(\hat{X}_0)\| \, dt + \int_0^t \|\phi_t(\hat{X}_0) - \hat{X}_t\| \, dt
\]
\[
\leq \left(\int_0^t e^{-\lambda_{DA} r/2} \, dr\right) \|X_0 - \hat{X}_0\| + \int_0^t \|\phi_t(\hat{X}_0) - \hat{X}_t\| \, dt
\]
\[
\leq 2\|X_0 - \hat{X}_0\|/\lambda_{DA} + \int_0^t \|\phi_t(\hat{X}_0) - \hat{X}_t\| \, dt
\]
This implies that
\[
\exp\left[\delta \rho(S) \int_0^t \|X_s - \hat{X}_s\| \, ds\right] \leq \exp\left[2\delta \|X_0 - \hat{X}_0\|/\lambda_S\right] \exp\left[\delta \rho(S) \int_0^t \|\phi_s(\hat{X}_0) - \hat{X}_s\| \, ds\right]
\]
Using the estimate $x - 1/4 \leq x^2$, which is valid for any x we have
\[
\int_0^t ((\|\phi_u(\hat{X}_0) - \hat{X}_u\| - 1/4) + 1/4) \, du \leq t/4 + \int_0^t \|\phi_t(\hat{X}_0) - \hat{X}_t\|^2 \, dt
\]
we find that
\[
\exp\left[\delta \rho(S) \int_0^t \|X_s - \hat{X}_s\| \, ds\right] \leq \exp\left[2\delta \|X_0 - \hat{X}_0\|/\lambda_S\right] \exp(\delta t \rho(S)/4)
\]
\[
\times \exp\left[\delta \rho(S) \int_0^t \|\phi_s(\hat{X}_0) - \hat{X}_s\|^2 \, ds\right]
\]
This yields
\[
\mathbb{E}\left[\exp\left[\delta \rho(S) \int_0^t \|X_s - \hat{X}_s\| \, ds\right] \mid X_0\right] \leq \exp(t\delta \rho(S)/4) \exp\left[2\delta \|X_0 - \hat{X}_0\|/\lambda_S\right]
\]
\[
\times \mathbb{E}\left[\exp\left[\delta \rho(S) \int_0^t \|\phi_s(\hat{X}_0) - \hat{X}_s\|^2 \, ds\right]\right]
\]
We also have the series of inequalities

\[
\frac{1}{\rho(S)} \frac{1}{1 + \pi_{\mathcal{A}}(0)} \frac{\lambda_A^2}{4\text{tr}(R)} \geq \frac{1}{\rho(S)} \frac{\lambda_A^2}{4} \frac{1}{1 + \pi_{\mathcal{A}}(0)} \frac{1}{4\text{tr}(R)} \geq \frac{\lambda_S \lambda_R}{2 \times 4^2} \left[\frac{1}{2} + \text{tr}(P_0)^2 (\rho(S)/\text{tr}(R)) + \rho(S)\text{tr}(R)/\lambda_A^2 \right] \\
= \frac{1}{4^2} \lambda_S \lambda_R \left(2 \frac{\lambda_R}{\lambda_S} \text{tr}(P_0)^2 + \left[1 + \frac{2}{\lambda_R \lambda_S} \right] \right)^{-1} \\
\geq e \sqrt{\lambda_S} \lambda_R \left[1 + \frac{2}{\lambda_R \lambda_S} \right]^{-1} \left(1 + 2 \frac{\lambda_R}{\lambda_S} \text{tr}(P_0)^2 \left[1 + \frac{2}{\lambda_R \lambda_S} \right]^{-1} \right)^{-1} \\
= e \lambda_{R,S} \left(1 + 2 \frac{\lambda_R}{\lambda_S} \text{tr}(P_0)^2 \left[1 + \frac{2}{\lambda_R \lambda_S} \right]^{-1} \right)^{-1}
\]

This shows that

\[
\delta \rho(S) \leq e \frac{\lambda_A^2}{4 \text{tr}(R)}
\]

for some \(\epsilon \in [0, 1] \) as soon as

\[
\text{tr}(P_0)^2 \leq \frac{1}{2} \frac{\lambda_S}{\lambda_R} \left[1 + \frac{2}{\lambda_R \lambda_S} \right] \left(\frac{e \epsilon}{\delta} \lambda_{R,S} - 1 \right) \quad \text{for any} \quad \delta \leq e \epsilon \lambda_{R,S}
\]

The end of the proof of (23) is a direct consequence of theorem 3.2 in [7].

The last assertion resumes to lemma 4.1 in [7]. This ends the proof of the lemma.

\[\square\]

5.3 Proof of lemma [4.2]

Using (16) we have

\[
d\text{tr}(p_t) = (\text{tr}((\partial A [m_t] + \partial A [m_t]^t)p_t) - \text{tr}(S p_t^2) + \text{tr}(R)) \ dt + \frac{1}{\sqrt{N - 1}} d\mathcal{M}_t
\]

with a martingale \(\mathcal{M}_t \) with an angle bracket

\[
\partial_t \langle \mathcal{M} \rangle_t = 4\text{tr}((R + p_t S p_t)p_t) \leq 4\text{tr}(p_t) \left(\rho(R) + \rho(S) \text{tr}(p_t)^2 \right)
\]

Using lemma 4.1 in [6] we have

\[
1 \leq n \leq 1 + \frac{(N - 1)}{2r_1} \frac{\lambda_{\text{min}}(S)}{\lambda_{\text{max}}(S)} \implies \sup_{t \geq 0} \mathbb{E} (\text{tr}(p_t)^n) < \infty
\]

26
By (14) we have
\[dm_t = [A [m_t] - p_t S m_t + p_t S X_t] \, dt + p_t \, B' R_2^{-1/2} \, dV_t + \frac{1}{\sqrt{N}} \, d\bar{M}_t. \]

Since \(\bar{M}_t \) is independent of \(V_t \) we have
\[d\|m_t\|^2 = (2 \langle m_t, [A [m_t] - p_t S m_t + p_t S X_t] \rangle + tr(R + p_t S p_t)) \, dt + d\bar{M}_t \]
with the martingale
\[d\bar{M}_t = 2 \langle m_t, p_t \, B' R_2^{-1/2} \, dV_t \rangle + 2 \frac{1}{\sqrt{N}} \langle m_t, d\bar{M}_t \rangle \]
and the angle bracket
\[\hat{\partial}_t \langle \bar{M} \rangle_t = 4 \langle m_t, (R + p_t S p_t) m_t \rangle / N + 4 \langle m_t, (p_t S p_t) m_t \rangle \leq V_t \|m_t\|^2 \]
with
\[V_t := 4 \left[tr(R + p_t S p_t) / N + tr(p_t S p_t) \right] \]

Observe that
\[\langle m_t, A [m_t] \rangle = \langle m_t - 0, A [m_t] - A(0) \rangle + \langle m_t, A [0] \rangle \leq -\lambda_A \|m_t\|^2 + \|A(0)\| \|m_t\| \leq -(\lambda_A / 2) \|m_t\|^2 + \|A(0)\|^2 / (2\lambda_A) \]
This yields the estimate
\[d\|m_t\|^2 \leq (\lambda_A \|m_t\|^2 + \|A(0)\|^2 / \lambda_A + 2\|m_t\| \|p_t S\| \|X_t\| \langle m_t, d\bar{M}_t \rangle \langle (R + p_t S p_t) \rangle \, dt + d\bar{M}_t \]
from which we find that
\[d\|m_t\|^2 \leq \left(\lambda_A / 2 \|m_t\|^2 + U_t \right) \, dt + \sqrt{V_t} \, d\bar{N}_t \]
with \(\hat{\partial}_t \langle \bar{N} \rangle_t \leq 1 \) and
\[U_t := \|A(0)\|^2 / \lambda_A \|S\|^2 \|X_t\|^2 / \lambda_A + tr(R + p_t S p_t) \]

Arguing as in the proof of theorem 3.2 we conclude that
\[\forall 1 \leq 3n \leq 1 + (N - 1) / (2r_1) \sup_{t>0} \mathbb{E} (\|m_t\|^{2n}) < \infty \]

Using (2) we have
\[d\xi_t^1 = [(\hat{\partial} A [m_t] - p_t S) \xi_t^1 + p_t S X_t + A [m_t] - \hat{\partial} A [m_t] \, m_t] \, dt + d\bar{M}_t \]
with the martingale
\[d\bar{M}_t := R_1^{1/2} d\bar{W}_t^1 + p_t B' R_2^{-1/2} d(V_t - \bar{V}_t) \]
This implies that
\[
d\|\xi_t^1\|^2 = 2\langle \xi_t^1, (\partial A [m_t] - p_t S) \xi_t^1 + p_t S X_t + A [m_t] - \partial A [m_t] m_t \rangle
+ \operatorname{tr}(R) + 2\operatorname{tr}(p_t S p_t) \rangle dt + d\mathcal{M}_t
\]

\[
\leq - (\lambda \partial A / 2) \|\xi_t^1\|^2 + \mathcal{U}_t \rangle dt + d\mathcal{M}_t
\]

with
\[
d\mathcal{M}_t := 2\langle \xi_t^1, d\mathcal{M}_t \rangle \Rightarrow \partial_t \langle \mathcal{M} \rangle_t \leq \mathcal{V}_t \|\xi_t^1\|^2
\]

and
\[
\mathcal{U}_t := 2\|p_t S X_t + A [m_t] - \partial A [m_t] m_t \|^2 \lambda \partial A + \operatorname{tr}(R) + 2\operatorname{tr}(S p_t^2)
\]
\[
\mathcal{V}_t := 4 \left(\operatorname{tr}(R) + 2\operatorname{tr}(p_t S p_t) \right)
\]

The end of the proof follows the same arguments as above, so it is skipped. This completes the proof of the lemma.

\[\blacksquare\]

5.4 Proof of lemma 4.3

By (14) and (16) we have
\[
d(p_t - P_t) = \Pi_t dt + d\mathcal{M}_t \quad \text{and} \quad d(m_t - \hat{X}_t) = \Pi_t dt + d\mathcal{M}_t
\]

with the drift terms
\[
\Pi_t = \left(\partial A(m_t) p_t - \partial A(\hat{X}_t) P_t \right) + \left(\partial A(m_t) p_t - \partial A(\hat{X}_t) P_t \right)'
+ (P_t - p_t) S P_t + ((P_t - p_t) S P_t)' - (P_t - p_t) S (P_t - p_t)
\]
\[
\Pi_t = (A(m_t) - A(\hat{X}_t)) - p_t S (m_t - \hat{X}_t) + (p_t - P_t) S (X_t - \hat{X}_t)
\]

and the martingales
\[
d\mathcal{M}_t := \frac{1}{\sqrt{N} - 1} dM_t \quad d\mathcal{M}_t := (p_t - P_t) B^R R_2^{-1/2} dV_t + \frac{1}{\sqrt{N}} d\mathcal{M}_t
\]

Using the decomposition
\[
\partial A(m_t) p_t - \partial A(\hat{X}_t) P_t = \partial A(m_t) (p_t - P_t) + (\partial A(m_t) - \partial A(\hat{X}_t)) P_t
\]

we check that
\[
\Pi_t = \left[\partial A(m_t) - \frac{1}{2} (p_t + P_t) S \right] (p_t - P_t) + (p_t - P_t) \left[\partial A(m_t) - \frac{1}{2} (p_t + P_t) S \right]'
+ (\partial A(m_t) - \partial A(\hat{X}_t)) P_t + P_t (\partial A(m_t) - \partial A(\hat{X}_t))'
\]

28
This implies that

\[\langle p_t - P_t, \Pi_t \rangle \leq -\lambda \| p_t - P_t \|_F^2 + 2\kappa \lambda \| p_t - P_t \|_F \| m_t - \hat{X}_t \| \]

from which we prove that

\[d\| p_t - P_t \|_F^2 = 2 \langle p_t - P_t, d(p_t - P_t) \rangle \\
+ \frac{2}{N-1} [\text{tr}((R + p_t S p_t) p_t) + \text{tr}(R + p_t S p_t) \text{tr}(p_t)] \, dt \]

\[\leq \left\{ -2\lambda \| p_t - P_t \|_F^2 + 4\kappa \lambda \| p_t - P_t \|_F \| m_t - \hat{X}_t \| \\
+ \frac{2}{N-1} [\text{tr}((R + p_t S p_t) p_t) + \text{tr}(R + p_t S p_t) \text{tr}(p_t)] \right\} \, dt + dN_t \]

with the martingale

\[dN_t = \frac{2}{\sqrt{N-1}} \langle p_t - P_t, dM_t \rangle = \text{tr}((p_t - P_t) dM_t) \]

After some computations we find that

\[\hat{\gamma}_t \langle N \rangle_t \leq \frac{4}{N-1} \| p_t - P_t \|_F^2 \text{ tr}(p_t (R + p_t S p_t)) \]

In much the same vein we have

\[\langle m_t - \hat{X}_t, \Pi_t \rangle = \langle m_t - \hat{X}_t, (A(m_t) - A(\hat{X}_t)) - p_t S (m_t - \hat{X}_t) + (p_t - P_t) S (X_t - \hat{X}_t) \rangle \]

\[\leq -\lambda \| m_t - \hat{X}_t \|^2 + \rho(S) \| X_t - \hat{X}_t \| \| p_t - P_t \|_F \| m_t - \hat{X}_t \| \]

This implies that

\[d\| m_t - \hat{X}_t \|^2 = 2 \langle (m_t - \hat{X}_t), d(m_t - \hat{X}_t) \rangle \\
+ \left(\text{tr}(S(p_t - P_t)^2) + \frac{1}{N} \text{tr}(R + p_t S p_t) \right) \, dt \]

\[\leq \left\{ -2\lambda \| m_t - \hat{X}_t \|^2 + 2\rho(S) \| X_t - \hat{X}_t \| \| p_t - P_t \|_F \| m_t - \hat{X}_t \| \\
+ \rho(S) \| p_t - P_t \|_F^2 + \frac{1}{N} \text{tr}(R + p_t S p_t) \right\} \, dt + d\overline{N}_t \]

with the martingale

\[d\overline{N}_t = 2 \langle (m_t - \hat{X}_t), d\overline{M}_t \rangle = 2 \langle (m_t - \hat{X}_t), (p_t - P_t) B' R_2^{-1/2} dV_t \rangle + \frac{2}{\sqrt{N}} \langle (m_t - \hat{X}_t), d\overline{M}_t \rangle \]

In addition we have

\[\hat{\gamma}_t \langle \overline{N} \rangle_t \leq 4\rho(S) \| m_t - \hat{X}_t \|^2 \| p_t - P_t \|_F^2 + \frac{4}{N} \langle (m_t - \hat{X}_t), (R + p_t S p_t) (m_t - \hat{X}_t) \rangle \]

\[\leq 2\rho(S) \left(\| m_t - \hat{X}_t \|^2 + \| p_t - P_t \|_F^2 \right)^2 + \frac{4}{N} \| m_t - \hat{X}_t \|^2 \text{ tr}(R + p_t S p_t) \]
Combining the above estimates we find that
\[d \Xi_t \leq \left\{ -2\lambda_A \| m_t - \hat{X}_t \|^2 + 2 \| p_t - P_t \|_F \| m_t - \hat{X}_t \| \left(2\kappa_{\hat{A}} \tr(P_t) + \rho(S) \| X_t - \hat{X}_t \| \right) \right\} dt \]
\[- (2\lambda_{\hat{A}} - \rho(S)) \| p_t - P_t \|^2 dt \]
\[+ \frac{1}{N} \left\{ \tr(R + p_t S p_t) + \frac{2N}{N-1} [\tr((R + p_t S p_t) p_t) + \tr(R + p_t S p_t) \tr(p_t)] \right\} dt + dN_t + dN_t^{\Xi} \]

Recalling that
\[2\lambda_A \geq \lambda_{\hat{A}} > 0 \quad \text{and} \quad 2\lambda_{\hat{A}} - \rho(S) \geq \lambda_{\hat{A}} \]
this yields the estimate
\[d \Xi_t \leq \left\{ -\lambda_{\hat{A}} \Xi_t + 2 \| p_t - P_t \|_F \| m_t - \hat{X}_t \| \left(2\kappa_{\hat{A}} \tr(P_t) + \rho(S) \| X_t - \hat{X}_t \| \right) \right\} dt \]
\[+ \frac{1}{N} \left(\frac{4N}{N-1} \tr(R + p_t S p_t) \tr(p_t) + \tr(R + p_t S p_t) \right) dt + dN_t + dN_t^{\Xi} \]

On the other hand using the inequality \(2ab \leq a^2 + b^2 \) we prove that
\[d \Xi_t \leq -\left\{ \lambda_{\hat{A}} - \left(2\kappa_{\hat{A}} \tr(P_t) + \rho(S) \| X_t - \hat{X}_t \| \right) \right\} \Xi_t dt \]
\[+ \frac{1}{N} \left(1 + \frac{4}{1 - 1/N} \tr(p_t) \right) \left[\tr(R) + \tr(S) \tr(p_t)^2 \right] dt + dN_t + dN_t^{\Xi} \]
from which we conclude that
\[d \Xi_t \leq \left(\Gamma_A(t) \Xi_t + \frac{1}{N} U_t \right) dt + dY_t \quad \text{with} \quad U_t := (1 + 8\tr(p_t)) \left[\tr(R) + \rho(S) \tr(p_t)^2 \right] \]
and the martingale \(Y_t := Y^{(1)}_t + Y^{(2)}_t \) given by
\[dY^{(1)}_t := 2 \langle (m_t - \hat{X}_t), (p_t - P_t) \, B'R_2^{-1/2} dV_t \rangle \]
\[dY^{(2)}_t := \frac{2}{\sqrt{N}} \langle (m_t - \hat{X}_t), dM_t \rangle + \frac{2}{\sqrt{N-1}} \langle p_t - P_t, dM_t \rangle \]

Observe that
\[\langle Y^{(1)}_t, Y^{(2)}_t \rangle_t = 0 \]
\[\partial_t \langle Y^{(1)}_t \rangle_t \leq 2\rho(S) \left(\| m_t - \hat{X}_t \|^2 + \| p_t - P_t \|_F^2 \right) \leq 2\rho(S) \Xi_t^2 \]
\[\partial_t \langle Y^{(2)}_t \rangle_t \leq \frac{4}{N} \left[\| m_t - \hat{X}_t \|^2 + 2 \| p_t - P_t \|_F^2 \tr(p_t) \right] \tr(R + p_t S p_t) \leq \frac{4}{N} U_t \Xi_t \]

This ends the proof of the lemma.
References

Pierre DEL MORAL
INRIA Bordeaux Research Center (France) & UNSW School of Mathematics and Statistics (Australia)
p.del-moral@unsw.edu.au

Aline KURTZMANN
Université de Lorraine, Institut Elie Cartan de Lorraine
CNRS, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506, France.
aline.kurtzmann@univ-lorraine.fr

Julian TUGAUT
Univ Lyon, Université Jean Monnet, CNRS UMR 5208, Institut Camille Jordan
Maison de l’Université, 10 rue Tréfilerie, CS 82301, 42023 Saint-Etienne Cedex 2, France
tugaut@math.cnrs.fr