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AUTOMATIC CHOICE OF THE THRESHOLD OF A GRAIN FILTER

VIA GALTON-WATSON TREES. APPLICATION TO GRANITE

CRACKS DETECTION

ROMAIN ABRAHAM, MAITINE BERGOUNIOUX, AND PIERRE DEBS

Abstract. The goal of this paper is the presentation of a post-processing method al-
lowing to remove impulse noise in binary images, while preserving thin structures. We
use a grain filter as in [5]. We propose a method to automatically determine the required
threshold using Galton-Watson processes. We present numerical results and a complete
analysis on a synthetic image. We end the numerical section considering a specific ap-
plication to granite samples crack detection: here we deal with X-tomography images
that have been binarized via preprocessing techniques and we want to remove residual
impulse noise while keeping cracks and micro-cracks structure.

Keywords: Image processing; Galton-Watson; grain filters; cracks.
MSC classification: 60J80, 68U10, 94A12

1. Introduction

A challenging issue in imaging processing is the identification of thin structures. It may
be blood vessels, leaf veins or streets in a satellite or aerial image. From a mathematical
point of view these structures have a zero Lebesgue measure and we have to use the
Hausdorff measure instead. From a practical point of view, these structures may be not
viewed once the discretization has been done. There are many methods to achieve this goal
both from theoretical and numerical points of view (as the morphological skeletonization
for example). However, they may be not very satisfactory since the images are very often
corrupted with a high level of noise that, in addition, may not be Gaussian.

The goal of this paper is not the presentation of an image processing model that would
identify the structures better than the existing ones but rather give a post-processing
method allowing to remove any residual noise effect. Therefore, we do not report on thin
structures recovering techniques, and do not quote the related works.

The example we have in mind is the recovery of cracks inside a granite block. More
precisely, the sample has been imaged1 via X-tomography process and we have to deal
with a 3D image whose size is 1287 x 1287 x 99. For more details on the geological context
one can refer to [14, 21]. Figure 1.1 shows a 2D slice of such a stack. The right hand
side image is the result of a pre-processing method that we briefly present in Section 3
without any focus on it; it allows to get rid of contours that are not cracks. However, there
is a residual impulse noise that we would like to remove while keeping cracks, especially
micro-cracks.

Date: January 10, 2017.
1We thank Olivier Rozenbaum , ISTO, Université d’Orléans, CNRS, BRGM
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(a) Original Slice (b) Binarized Slice

Figure 1.1. Original and binarized 2D slice of a 3D granite sample

There are few methods devoted to crack identification in geological context. In bi-
ological context (angiography or X-ray imaging for example) mathematical morphology
(skeletonization) is often used. On can mention the use of fuzzy measures in [12] as well. In
material context, there are many works that focus on cracks in roads or concrete. Different
tools are used as statistical ones (co-occurence matrices in [15] and anisotropic diffusion
with region linkage in [17]), wavelets [23], geodesic contours [6], multiscale approach[7]
together with Markov modeling or image-based percolation models [26] and dealing with
brightness and connectivity as in [16].

To address this problem, we focus here on a grain filter. This filter, introduced in [25]
in the framework of Mathematical Morphology and then generalized in [13], consists in
removing all the connected components of a binary image (or of the level sets for a grey
level image) of size smaller than a fixed threshold. It is mainly used for image denoising
but also for feature extraction, see [20]. We refer to [5] for more details on this filter.
In what follows, we suppose that we have a binary image containing features we want to
extract (namely thin structures as cracks). The image is corrupted by an impulse noise
where every pixel is 1 with probability p and 0 with probability 1 − p independently of
the others. One feature that allows to distinguish cracks from the noise is that the cracks
size is much larger than the connected components (that we define in the sequel) the noise
may create. Therefore, a grain filter can be used in order to suppress the small connected
components and keep the ones whose size is greater than some threshold a0. The aim of
this paper is to give a method to compute the threshold of the grain filter via a statistical
hypothesis testing. This method enters the large class of a contrario frameworks whose
ideas first appeared in [24] and which is now widely used since the pioneer works [27, 9].
We refer to the book [10] for a complete review of these methods. The general idea of the
a contrario method is to compute the probability of appearance of the looked after feature
in a pure noise image. If this probability is very small (less than some fixed ε), the feature
is said to be “meaningful” i.e. it cannot appear “accidentally” and thus can be viewed as
an important characteristic of the studied image.
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Throughout the paper, we consider that the image contains only an impulse noise with
parameter p (hypothesis H0). Under H0, we denote by C0 the connected component of
the image that contains a given point, say the origin (0, 0), and by ]C0 its cardinal. We
then fix a level ε > 0 for the test and find a0 such that, under H0,

P(]C0 ≥ a0) ≤ ε.

Keeping the connected components of size greater than a0, we remove most of those due to
the noise. The goal of this paper is to get an upper bound for the looked after probability,
and hence to automatically compute the threshold a0, by comparing the size of C0 with
the total population size of a Galton-Watson process.

Let us stress that this problem has already been tackled in [8] where an asymptotic
(as the size of the image tends to +∞) of the probability P(]C0 ≥ a0) is obtained. This
asymptotic contains a combinatorial term ak (namely the number of connected components
one can make with exactly k pixels) which is only known (up to k = 47) for the 4-
connectivity. Our approach first gives an exact bound of the probability and not an
approximation as in [8] (which is not very relevant as the size of our images are quite
large and the approximations of [8] are sharp), second allows to use different features to
discriminate cracks from noise. In Section 2, we focus on the size of a given connected
component for the 8-connectivity and give all the details for the proofs but the ideas can
be easily adapted to handle other definitions of connectivity, the same problem for 3D
images or to use the diameter of the connected component instead of its size as developed
as well.

We present the computation of the threshold in the next section and Section 3 is devoted
to the numerical realization (algorithms and numerical experimentation).

2. Computation of the threshold

2.1. Notations. If k < ` are two integers, we denote by [[k, `]] the set {n ∈ Z, k ≤ n ≤ `}.
We work with the infinite norm on Z2 i.e. if x1 = (i1, j1), x2 = (i2, j2) are two points

of Z2, we set ‖x1 − x2‖ = max(|i1 − i2|, |j1 − j2|).
For x ∈ Z2, B̄(x) denotes the closed ball (with respect to the previous norm) centered

at x with radius 1 and B(x) is the pointed ball B̄(x) \ {x}. The elements of B(x) are
called the neighbors of x.

For any finite subset A of Z2, we denote by ]A the cardinal of A.

Definition 2.1. A set A ⊂ Z2 is said to be connected if, for every x, y ∈ A, there exists
a finite sequence (x0, . . . , xn) such that

• x0 = x, xn = y;
• ∀i ∈ [[0, n]], xi ∈ A;
• ∀i ∈ [[1, n]], xi ∈ B(xi−1).

We fix a positive integer N and consider (for simplicity) the domain Ω = [[−N,N ]]2. A
binary image on Ω will be an application X : Ω 7−→ {0, 1}. In all the paper, we always
make the confusion between the binary image X and the set X−1(1) = {x ∈ Ω, X(x) = 1},
which is the set of the black pixels . In particular, we talk of the connected components
of the image instead of the set X−1(1).

2.2. Galton-Watson process. A Galton-Watson process is a branching stochastic model
introduced in 1873 by Francis Galton to describe population growth and is still the object
of active research. We refer to [2] for a comprehensive exposition on this topic. We first
give a formal definition of this process.
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Definition 2.2. A Galton-Watson process is a stochastic process (Zn)n∈N defined as fol-
lows: consider a probability measure ν on the set of non-negative integers (called the

offspring distribution) and a family (ξ
(n)
i , n ≥ 0, i ≥ 1) of i.i.d. random variables with

distribution ν. Then the process (Zn)n∈N is defined recursively by
Z0 = 1,

Zn+1 =

Zn∑
i=1

ξ
(n)
i for n ≥ 0

with the convention that Zn+1 = 0 if Zn = 0.

To give an intuitive picture of that process (Zn)n∈N, let us describe it informally as
a population evolution model. We start with a single individual at generation 0. This

individual gives birth to a random number ξ
(0)
1 of offspring with distribution ν which form

generation 1. These offspring reproduce according to the same distribution ν indepen-
dently of each other and independently of the past and so on. Hence, the variable Zn
represents the population size at generation n whereas the variable ξ

(n)
i represents the

number of offspring of the i-th individual of the n-th generation.
Of course, if the population dies out at some time n, then the population is zero for all

further time: 0 is called an absorbing state for the process (Zn)n∈N.
One of the initial questions raised by Francis Galton was the computation of the prob-

ability that the population dies out in finite time. This probability is called the extinction
probability and is given by

P(∃n ∈ N, Zn = 0) = lim
n→+∞

P(Zn = 0).

To avoid trivialities, we suppose that ν(0) > 0 (if not, the extinction probability is 0) and
that ν(0) + ν(1) < 1 (if not, the extinction probability is clearly 1).
The answer to the question is given by the following result (see Chapter 1 Section 5 of
[2]).

Proposition 2.1. Let ξ be a random variable with distribution ν. We denote by

µ = E[ξ] =
+∞∑
k=0

kν(k)

the mean number of offspring, and by

F (s) = E[sξ] =

+∞∑
k=0

ν(k)sk for s ∈ [−1, 1],

the generating function of ν.
Then, the extinction probability of the process (Zn)n≥0 is given by the smallest non-

negative root q of the equation s = F (s).
In particular, if µ ≤ 1, q = 1 (extinction arises almost surely) whereas if µ > 1, then

q < 1 (the population has a positive probability for living forever).

The offspring distribution ν and the Galton-Watson process (Zn)n≥0 are called sub-
critical (resp. critical, super-critical) if µ < 1 (resp. µ = 1, µ > 1).
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2.3. Stochastic domination. Let m be the number of neighbors of one pixel. With our
definition of B(x), we have m = 8 but the method remains valid for a general neighbor-
hood. Let p ∈ (0, 1) and (Zn)n≥0 a Galton-Watson process with the binomial B(m, p)
distribution as offspring distribution ν, that is, for 0 ≤ k ≤ m,

ν(k) =

(
m

k

)
pk(1− p)m−k.

According to Proposition 2.1, in order to obtain a sub-critical Galton-Watson process, we
assume that mp < 1. We denote by ]Z the total population size:

]Z =
+∞∑
n=0

Zn.

Theorem 2.3. Under H0, the size ]C0 of the connected component C0 (and thus of any
connected component) is stochastically dominated by ]Z, that is:

∀k ∈ N, P(]C0 ≥ k) ≤ P(]Z ≥ k).

Proof. The main ideas of the proof are taken from [18] where the size of a connected
component that arises in continuum percolation is compared to the size of a Galton-
Watson process with Poisson offspring distribution.

Let (X(i,j), (i, j) ∈ Z2) be a family of i.i.d. Bernoulli random variables with parameter
p. This models the noise of the image under H0. Remark that if the stochastic domination
is true for an infinite image, it is a fortiori true for an image defined on [[−N,N ]]2. If A is
a subset of Z2, we denote by

XA = {(i, j) ∈ A, X(i,j) = 1}.
Then, ]XA is distributed according to a binomial distribution with parameters p and ]A.
Moreover, if A and B are disjoint subsets of Z2, then XA and XB are independent.

In order to label the points of some subset in a unique way, we define a total order
(denoted by ≤) on Z2. Let x1, x2 ∈ Z2:

• if ‖x1‖ < ‖x2‖ then we set x1 ≤ x2.
• if ‖x1‖ = ‖x2‖ = n, we label the 8n points of norm n as on Figure 2.1

1

234

5

6 7 8

Figure 2.1. Labeling of points of norm n

5



and we say that x1 ≤ x2 if the label of x1 is less than the label of x2.

We first construct the connected component C0 recursively. The process is illustrated in
Figure 2.2.

(a) Initial state (b) Conditionnally on W̃0,

W̃1 = {(1, 1), (0, 1), (−1, 0), (0,−1)}

(c) Conditionnally on W̃0,

W̃1 = {(1, 1), (0, 1), (−1, 0), (0,−1)}
(d) Conditionnally on W̃0,

W̃1 = {(1, 1), (0, 1), (−1, 0), (0,−1)},
W̃2 = {(2, 2), (−2, 1), (−2, 0), (0,−2)}

Figure 2.2. Generation of the sequence Wn

We define a sequence (W̃n)n≥0 of subsets of Z2 such that C0 =
⋃
n≥0 W̃n in the following

way:

• W̃0 = {(0, 0)}.
• Suppose that W̃0, . . . , W̃n are constructed with W̃n = {x1, . . . , xk} labeled in in-

creasing order. Then, we set

W̃n+1 =
k⋃
`=1

XC`

where

C` = B(x`) \

`−1⋃
j=1

B̄(xj)

n−1⋃
i=0

⋃
x∈W̃i

B̄(x)

 ,
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with the convention
0⋃
j=1

B̄(xj) = ∅.

• If W̃n = ∅, then we set W̃k = ∅ for every k > n.

The set C` at step n is the set of neighbors of x` that have not been involved yet in
one of the Ck-type set constructed during the previous steps. Consequently, these sets
C` are pairwise disjoint and the random variables XC`

are independent and distributed
respectively according to a binomial B(]C`, p) law.

In a second step, we consider a branching random walk (Wn)n≥0 on Z2 (we refer to
[22] for more details on branching random walks). This process takes its values in the set⋃
n≥0(Z2)n of finite sequences of points of Z2 (with the convention (Z2)0 = {∅}) and is

also defined recursively as follows:

• W0 = (0, 0).
• Let us suppose that Wn is given and is non-empty, say Wn = (xn1 , . . . , x

n
kn

). For ev-
ery i ≤ kn, we consider the 8 neighbors of xni (ranked as on Figure 2.3) (y1, . . . , y8)
and consider the sub-sequence W i

n+1 formed by taking each yj with probability
p, independently of the others (and independently of the other points xnj , i 6= j).

Then Wn+1 is the concatenation of all the sub-sequences (W i
n+1, 1 ≤ i ≤ kn).

Remark that a pixel may appear several times in the sequence Wn+1.

1

234

5

6 7 8

Figure 2.3. Labeling of the neighbors of a point x

• If Wn = ∅, then Wn+1 = ∅.
The subsequence W i

n+1 may be seen as the offspring of the pixel xi and ]W i
n+1 is dis-

tributed according to a binomial B(8, p) distribution. Therefore, the process (]Wn+1)n≥0

is distributed as a Galton-Watson process starting from a single individual and with off-
spring distribution B(8, p).

We now define a pruning procedure for the process (Wn)n≥0 which defines a set-valued

process (Ŵn)n≥0 as follows:

• Ŵ0 = {(0, 0)}.
• Suppose that we have constructed Ŵ0, Ŵ1, . . . , Ŵn where each set Ŵi is composed

of elements of Wi, with Ŵn = {x̂n1 , . . . , x̂nk} (ranked in increasing order). To every
x̂ni there corresponds a point xnji of Wn and we set

Ŵ i
n+1 = W ji

n+1 \

i−1⋃
`=1

B̄(x̂n` )

n−1⋃
r=0

⋃
x∈Ŵr

B̄(x)


and then

Ŵn+1 =

k⋃
i=1

Ŵ i
n+1.
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• If Ŵn = ∅, then Ŵn+1 = ∅.

(a) W1 = {(0, 1), (1, 1)} (b) W2 = W 1
2 ∪W 2

2 where
W 1

2 = {(2, 0), (1, 1), (0, 0), (0,−1)} and
W 2

2 = {(2, 1), (2, 2)(1, 2), (0, 2), (2, 0)}

Figure 2.4. Example for the two first prunings

As the process (Ŵn)n≥0 is distributed as the process (W̃n)n≥0 (since the recursive for-
mulas are the same), we have for every a ≥ 0

P(]C0 ≥ a) = P
(
]
⋃
W̃n ≥ a

)
= P

(
]
⋃
Ŵn ≥ a

)
.

Furthermore, it is clear by construction (pruning procedure) that ]Ŵn ≤ ]Wn for every
n ≥ 0, which yields

P
(
]
⋃
Ŵn ≥ a

)
≤ P

(
]
⋃
Wn ≥ a

)
= P(]Z ≥ a)

which ends the proof. �

Remark 2.2. Looking at Figure 2.2, it seems that we could in fact take m = 5 except for
the first generation of the tree where we must keep m = 8. The corresponding tree is not
stricto sensu a Galton-Watson tree (as the offspring distribution is not always the same),
however the computations of the next subsection can probably be adapted to this case. For
sake of simplicity, we take m = 8 in what follows to have a true Galton-Watson process.

2.4. Computation of the threshold. Let (Zn)n≥0 be a a sub-critical Galton-Watson
process with offspring distribution a binomial B(m, p). For this offspring distribution to
be sub-critical, recall that we must suppose that

(2.1) mp < 1.

We need an upper bound for the probability P(]Z ≥ k). For this purpose, we use Dwass
formula that relates the total population size of any sub-critical (or critical) Galton-Watson
process to the associated Lukasiewicz random walk, see [11]:

Proposition 2.3. Let (Zn)n≥0 be a critical or sub-critical Galton-Watson process with
offspring distribution ν. Let (Yn)n≥1 be a sequence of i.i.d. random variables with distri-
bution ν. We set for every n ≥ 1

Sn =

n∑
i=1

Yi.
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Then we have

P(]Z = n) =
1

n
P(Sn = n− 1).

Recall that ν is the binomial B(m, p) distribution; then for every n ≥ 1, Sn is distributed
according to a binomial B(mn, p) distribution (as the sum of i.i.d B(m, p) random vari-
ables). Therefore

(2.2) P(]Z = n) =
1

n

(
mn

n− 1

)
pn−1(1− p)mn−n+1.

This exact formula allows us to compute the looked after threshold:

Proposition 2.4. We set

(2.3) q =
mmp(1− p)m−1

(m− 1)m−1
, and C =

√(
m

m− 1

)
e(1− p)
pK2

1

1− q

with K = e
3
2

(1−ln 3
2

). Then, for every ε > 0, a threshold is given by

(2.4) a0 =
ln ε

C

ln q

that is for every a ≥ a0, we have

P(]Z ≥ a) ≤ ε.

Proof. By Proposition 2.3 and Equation (2.2), we get for every a > 0

P(]Z ≥ a) =
∑
n≥a

P(]Z = n) ≤
∑
n≥a

(
mn

n

)
pn−1(1− p)mn−n+1,

since
1

n

(
mn

n− 1

)
≤
(
mn

n

)
.

We now use the following bounds for the factorial function whose proof is postponed to
the end of this section:

Lemma 2.4. For every positive integer n, we have

(2.5) Knn+ 1
2 e−n ≤ n! ≤ nn+ 1

2 e−ne

with K = exp
(

3
2

(
1− ln 3

2

))
.

Using these bounds in the binomial coefficient, we get

P(]Z ≥ a) ≤
∑
n≥a

(mn)mn+ 1
2 e−mne

K2nn+ 1
2 e−n(mn− n)mn−n+ 1

2 e−mn+n
pn−1(1− p)mn−n+1

≤
(

m

m− 1

) 1
2 e(1− p)

pK2

∑
n≥a

(
mmp(1− p)m−1

(m− 1)m−1

)n
n−

1
2

≤
(

m

m− 1

) 1
2 e(1− p)

pK2

∑
n≥a

qn.
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Let us remark that the function x 7−→ x(1−x)m−1 reaches its maximum on the interval
[0, 1] at x = 1

m . As we supposed that p < 1
m , then

q <
mm 1

m

(
1− 1

m

)m−1

(m− 1)m−1
= 1.

The previous sum is then finite and

P(]Z ≥ a) ≤
(

m

m− 1

) 1
2 e(1− p)

pK2

qa

1− q
= Cqa.

Therefore (recall that q < 1 which gives ln q < 0),

a ≥
ln ε

C

ln q
⇒ Cqa ≤ ε⇒ P(]Z ≥ a) ≤ ε.

�

Proof of Lemma 2.4. By the trapezoidal rule, as the logarithm function is concave, we
have for every positive integer k

ln(k + 1) + ln k

2
≤
∫ k+1

k
ln t dt.

This implies

n−1∑
k=1

ln(k + 1) + ln k

2
≤
∫ n

1
ln t dt ⇔ lnn!− lnn

2
≤ n lnn− n+ 1

⇔ lnn! ≤
(
n+

1

2

)
lnn− n+ 1

⇔ n! ≤ nn+ 1
2 e−ne

which gives the upper bound.
Still using the concavity of the logarithm function, its graph is always below its tangent

which is is given at point k by the equation

y =
1

k
x− 1 + ln k.

This yields∫ k+1/2

k−1/2
ln t dt ≤ ln k + 1/2k + ln k − 1/2k

2
= ln k

⇒
∫ n+1/2

3/2
ln tdt ≤

n∑
k=2

ln k = lnn!

⇒ (n+ 1/2) ln(n+ 1/2)− n− 3

2
ln

3

2
+ 1 ≤ lnn!

⇒ (n+ 1/2) lnn+ (n+ 1/2) ln(1 + 1/2n)− n− 3

2
ln

3

2
+ 1 ≤ lnn!

To get the lower bound, it suffices to check that

(n+ 1/2) ln(1 + 1/2n) ≥ 1/2

which comes immediately from the inequality

∀x ≥ 0, ln(1 + x) ≥ x− x2

2
·
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2.5. Other cases. We gave all the details of the proofs with the 8-connectivity for 2D
images but the arguments of the previous subsections can be adapted to many other situ-
ations. We present some of them without detailing the proof of the stochastic domination.

2.5.1. Other definitions of connectivity. We focused on the 8-connectivity but the same
arguments work for the 4-connectivity (taking m = 4). Numerical tests are performed in
the next section to compare the performances of each connectivity.

We can also extend this work to epsilon-connectivity (see [19] for a more precise in-
troduction) where two pixels are said to be connected if their `∞-distance is less than k.
For instance, for k = 2, this allows to fill small gaps between cracks that may be created
because of the noise and/or the thickness of the cracks. All the previous computations
remain valid taking m = 24 since a neighborhood of a pixel is now a 5x5 square.

2.5.2. 3D images. We also may extend the results to 3D stacks. Recall that we consider
a 3D stack whose size is 1287 x 1287 x 99. If we consider the nearest neighbors of a pixel
to define connectivity, the neighborhood of a pixel is now a cube of size 3 and the results
apply with m = 26. Some numerical experiments are presented in Section 3.4.

2.5.3. Diameter of the connected component. Let us go back to 2D-images and 8-connectivity.
Let C0 be the connected component of the image that contains 0. For x, y ∈ C0, we set
Γx,y as the set of connected paths that go from x to y remaining inside C0. For γ ∈ Γx,y,
we denote by `(γ) its length i.e. the number of pixels γ is composed with. Finally, we
define the diameter of C0 by

diam(C0) = max
x,y∈C0

min
γ∈Γx,y

`(γ).

This diameter can be used to discriminate cracks from noise. It also discriminates
cracks (that have a quite large diameter) from ball-like connected components with the
same number of pixels. Moreover our method still apply since we have, for every positive
integer a,

P(diam(C0) ≥ 2a) ≤ P(Za > 0)

where (Zn)n≥0 is a Galton-Watson process with binomial B(m, p) offspring distribution
with m = 8. Indeed, if diam(C0) ≥ 2a, there exists two points x, y ∈ C0 whose shortest
path between them has length greater than 2a. Then, at least one of the shortest paths
from the origin to x or y is greater than a and the Galton-Watson process needs at least
a generations to attain this point.

To compute the looked after threshold, we use the following lemma.

Lemma 2.5. Let (Zn)n≥0 be a Galton-Watson process with binomial B(m, p) offspring
distribution. Then, for every positive integer n, we have

P(Zn > 0) ≤ (mp)n.

Proof. Let us denote by F (z) the generating function of the binomial B(m, p) distribution:

F (z) = (pz + 1− p)m.

Let us also denote for every n ≥ 0 by Fn(z) the generating function of Zn. Then we have
the classical recursive formula:

∀n ≥ 0, Fn+1(z) = F (Fn(z)) = Fn(F (z)).

11



Moreover, we have P(Zn > 0) = 1− Fn(0) and P(Z0 > 0) = 1. Therefore, we get

P(Zn+1 > 0) = 1− Fn+1(0)

= 1− (1− p(1− Fn(0))m

≤ mp(1− Fn(0)) = mpP(Zn > 0).

The result follows from an easy induction. �

In that case, the threshold satisfies

(2.6) a0 = 2
log ε

log(mp)
.

This second threshold gives a geometric information, since we only keep structures with
large diameters. In our case, this favors the cracks, that have anisotropic structure, with
respect to the noise that can be viewed as small isotropic elements. Numerical tests, are
reported in subsection 3.1.4.

3. Application to crack detection

As already mentioned, the application we have in mind is the identification of the cracks
that appear in granite samples. Here, we are interested in denoising as a post-processing
final step in for a complete crack identification method (based on a variational formulation)
that we briefly describe in the sequel. That is why we focus on binary images (though the
method works with grey level images as well) and the impulse noise that has to be deleted.
The grain filter is a very efficient tool to achieve this goal: that is why we decided to focus
on some improvements and automatic thresholding.

The numerical experimentation2 has been performed with MATLAB. We do not report
on the computation time (we used different machines, and the codes are not optimized,
especially in the 3D case). However, we may emphasize that the most time consuming
step is the computation of the size (or geodesic diameter) of connected components. We
used a built in MATLAB function, but this step should/can be improved with ad-hoc
methods.

3.1. Tests with a 2D synthetic black and white image. We first perform numerical
tests on a synthetic image that has been built with the image of Figure 1.1(a). It has
been manually modified to get a image close to real data. This will be considered as the
ground truth and we add impulse noise whose level is p, for p ∈ [0.01, 0.35]. The image
is presented in Figure 3.1. We assume that m (the number of neighbors in the chosen
neighborhood) and ε (the test level) are given. A typical choice for m is m = 32 − 1 = 8
for 2D images (though we shall test m = 4 as well) and m = 39 − 1 = 26 for 3D images
(using 3 x 3 x 3 neighborhoods). The parameter ε is chosen small enough. We will make
this precise in the sequel, when we study the sensitivity with respect to ε.
Let us mention that we should only consider p < 0.125 since we have chosen m = 8 and
we have to fit the assumption (2.1). However, we have added noise up to level 0.35. In
the case where p is known (it is the noise level) the algorithm writes

2All the images of this section, can be download here http://maitinebergounioux.net/PagePro/

Publications_files/Images_JMIV.rar
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Algorithme 0 Case where p is known

Given data: black and white (noisy) image u, ε and m; p is known.
Compute the threshold value a0 with (2.3) and (2.4).
2. Find the connected components of u (and their size).
3. Suppress the connected components of u whose size is less than a0 to get the signifi-
cant contours u∗.

(a) Ground truth (synthetic image) (b) Impulse noise with p=0.15

Figure 3.1. Ground truth and noisy image

However, in the real data case, the probability p is unknown and its estimate is an
important issue (that also determines the m value). We may first estimate it using the

number of black pixels of the binary image divided by its total size M : p ' Size (u=1)
M .

This rough method gives an upper bound for p that is too large an estimate. Indeed,
the number of black pixels includes both the noise and the cracks, whereas we only want
to count the noisy pixels. So we adopt a multi-scale like strategy to perform successive
updates of p once we have performed a more accurate selection of cracks pixels.

Algorithme 1 Algorithm with iterative update of p

Given data: black and white (noisy) image u, ε and m.
Find the connected components of u (and their size).
0. Initialization: k = 1, u0 = 0.
1. Iteration k
Compute u− uk and

pk =
Size (( u− uk) = 1)

M
.

Compute the threshold value ak with (2.3) and (2.4).
Suppress the connected components of u whose size is less than ak: we get uk+1.
2. Stopping criterion. Stop when the sequence (pk)k∈N becomes stationary.

We report in Table 3.1 the values of the computed probability p and the threshold
with and without this strategy with respect to the noise level. This corresponds to the
computed values at iteration 1 of Algorithm (1) and at the last iteration Algorithm (1) .
We have set the maximal number of iterations at 20.
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Noise Computed Computed Threshold Threshold Number
level probability probability (# pixels) (# pixels) of

Iteration 1 Last iteration Iteration 1 Last iteration iterations
in Algorithm (1)

0.01 0.032 0.0096 26 11 3
0.02 0.042 0.019 38 16 3
0.03 0.051 0.029 54 23 3
0.04 0.062 0.038 79 33 3
0.05 0.071 0.048 121 48 4
0.06 0.081 0.058 201 71 4
0.07 0.091 0.068 354 107 4
0.08 0.1 0.080 766 191 4
0.09 0.11 0.093 2266 435 5
0.10 0.12 0.12 26284 26284 2
0.11 0.13 0.130 2347 2347 2
0.12 0.14 0.131 2648 1633 20 (Max)
0.125 0.14 0.131 1521 1584 20 (Max)

Table 3.1. Computed probability and threshold with respect to the noise
level, with Algorithm (1) with (last iteration) and without (first iteration)
the adaptative strategy- m = 8, ε = 10−6.

We can also see in Figure 3.2 the behavior of the computed threshold with respect to
the noise level for the different approaches. We clearly see the change of behavior for a
noise level greater than 0.11. This is consistent with the theoretical assumption (2.1).

Figure 3.2. Evolution of the threshold with respect to the noise level in
the range [0 0.35] - X axis is the noise level p and Y-axis is the threshold
value (number of pixels) with log10- scale. The continuous line corresponds
to the case where p is computed once (iteration 1) and the dotted curve
to the computed threshold with adaptative strategy (last iteration of Al-
gorithm (1)) - m = 8, ε = 10−6.
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(a) Level noise= 0.05 (b) Computed Solution (c) Difference with the
data

(d) Difference with the
ground truth

(e) Level noise= 0.09 (f) Computed Solution (g) Difference with the
data

(h) Difference with the
ground truth

(i) Level noise= 0.15 (j) Computed Solution (k) Difference with the
data

(l) Difference with the
ground truth

Figure 3.3. Noisy image, solution given by Algorithm (1) and difference
with the ground truth, for different noise levels - m = 8, ε = 10−6 - The
differences are presented as negative images for a better insight (white is
equal to 0, black is maximum).

3.1.1. Sensibility with respect to ε. We now investigate the sensibility of the solution com-
putation with respect to ε. A typical choice of ε is the inverse of the number of connected
components as, by independence, the mean number of false positives would be 1 in this
case.
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Noise Probability Threshold (# pixels)

level ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−2 ε = 10−4 ε = 10−6

0.01 0.0095 0.0095 0.0096 5 8 11
0.03 0.0287 0.0288 0.0290 11 17 24
0.05 0.0477 0.0480 0.0483 22 35 48
0.10 0.1203 0.1203 0.1203 158 215 271
0.15 0.1496 0.1509 0.1517 476 635 792

Table 3.2. Computed probability and threshold with respect to the noise
level, with the adaptative strategy Algorithm (1) and different values of ε
- m=8.

(a) ε = 10−2. (b) ε = 10−4. (c) ε = 10−6.

Figure 3.4. Examples of solutions given by Algorithm (1) for ε =
10−2, 10−4, 10−6 - Noise =0.05.

This comparison shows that the role of ε has not a big influence when the noise level
belongs to [0, 0.125] (the image size is 1.653 106). In the sequel, we choose ε ' 1/M where
M is the size of u that is, roughly speaking, ε = 10−6.

3.1.2. Sensibility with respect to the connectivity. We compare here the results obtained
with these two different connectivities corresponding to m = 4 and m = 8. As expected,
the behavior of the threshold value for m = 4 changes for a noise level equal to 0.25, which
is consistent with Assumption (2.1).

Next figure presents the solutions that are obtained with Algorithm (1) for the same
noisy data and m=4, 8 respectively.
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(a) Noise: 0.01, m=4. (b) Noise: 0.01, m=8.

(c) Noise: 0.05, m=4. (d) Noise: 0.05, m=8.

(e) Noise: 0.15 m=4. (f) Noise: 0.15, m=8.

Figure 3.5. Comparison of the solutions computed with Algorithm (1)
for m = 4, m = 8 and ε = 10−6.
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We can see on Figure 3.5 that the use of 4-connectivity gives worse results. Indeed, the
use of a 4-neighborhood does not take the diagonal connections into account. Therefore,
thin cracks are lost and thick ones may be disconnected.

3.1.3. Comparison with other filters and/or other thresholds. Though, there are a lot of
filters to deal with impulse noise we limit our comparison to the median one and a mor-
phological one, namely an opening filter with two different structural elements: a disk of
radius 1 (which corresponds to the 4-connectivity) and a square 3× 3 (which corresponds
to the 8-connectivity). Results are reported in Figure 3.6 for a noise level of 0.05.
Visually speaking the solution that we get with Algorithm (1) is the best one. If we com-
pare with the ground truth, we get a quantitative estimate of the performance, with δ1

which is the `1 norm of the difference between the ground truth and the solution.

(a) Median filter 3× 3, δ1 = 6371. (b) Opening with disk of radius , δ1 =
9900.

(c) Opening with square of size 3× 3,
δ1 = 21344.

(d) Algorithm (1), m=8, ε = 10−6,
δ1 = 3621.

Figure 3.6. Comparison of the solutions computed with different filters,
for a noise level equal to 0.05. Here δ1 is the `1 norm of the difference
between the ground truth and the solution, that is the number of pixels
that are different.
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3.1.4. Use of the connected components diameter. As mentioned in subsection 2.5.3, we
can use Algorithm (1) and consider the geodesic diameter of connected components instead
of the size. The modified algorithm writes

Algorithme 2 Use of the geodesic diameter

Given data: black and white (noisy) image u, ε and m.
Find the connected components of u and their diameter.
0. Initialization: k = 1, u0 = 0.
1. Iteration k
Compute u− uk and

pk =
Size (( u− uk) = 1)

M
.

Compute the threshold value ak with (2.6).
Suppress the connected components of u whose diameter is less than ak: we get uk+1.
2. Stopping criterion. Stop when the sequence (pk)k∈N becomes stationary.

(a) Ground truth. (b) ε = 10−3 (threshold = 37).

(c) ε = 10−4 (threshold = 51). (d) ε = 10−6 (threshold = 87).

Figure 3.7. Solutions computed with Algorithm (2) for m = 8 and dif-
ferent values of ε.
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The use of the geodesic diameter is not appropriate if the noise is too large. Indeed, if
mp is too close to 1 then the threshold a0 = 2 log ε

logmp becomes quite large and we loose most

of the crack information. If the noise is small enough, then we get good results provided ε
is not too large. However, the method seems to be robust with respect to small ε. Figures
3.7 and 3.8 present the results for a noise level equal to 0.09 and m = 8

(a) Solution with Algorithm (1). (b) Solution with Algorithm (2).

(c) Difference with the ground truth. (d) Difference with the ground truth.

Figure 3.8. Comparison of the solutions computed with Algorithms (1)
and (2) for m = 8, ε = 10−4 and a noise level 0.09.

3.2. Tests with 2D a real black and white image.

3.2.1. Preprocessing. We present some results on a 2D slice of a granite sample stack, for
the sake of simplicity (see Figure 1.1 (a)). Though, it is not our purpose here, we briefly
present the preprocessing method:

(1) Original (2D or 3D) images are pre-processed with the method of [3, 4]. More pre-
cisely, we use a variational model that allows to split the image in three components
denoted v, u and w:
• the v component is a smooth (continuous) function whose distributional de-

rivative is of bounded variation: it represents the image dynamic;
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• the u component is a bounded variation function and ideally, should be piece-
wise constant. It is called a cartoon component: the image contours are given
by the jump set of u;
• the w component is a L2 function that represents the details and/or the noise.

The main inconvenient of variational methods is their dependence to some pa-
rameters. The result of the above decomposition depends on the choice of such
parameters. We refer to [4] to get tuning rules for the two parameters λ and µ to
be used in this context. From a practical point of view we choose µ ' 1.4λ. The
tests we present here use λ = 5, µ = 7.

The preprocessing method is robust enough with respect to the choice of pa-
rameters and we can get rid of most noise (involved in the w component). So we
focus on the cartoon component u that involves all the contours. However, though
the gaussian part of the noise has been removed, impulse noise still remains. The
challenge is to distinguish the cracks that are thin structures from the noise (which
is unstructured). However, it will be still quite difficult to recover micro-cracks.

(2) Next, the u component has to be binarized. This is a delicate step since the
threshold parameter is not easy to find. We decided to choose s = m(u) − σ(u)
where m and σ are the mean value and the standard deviation respectively of u.
This is an heuristic choice that we cannot fully justify by now.

(3) Last, we use the thresholded (binary) image and use Algorithm (1).

(a) Original (2D) image. (b) u component.

(c) v component. (d) w component.

Figure 3.9. Image decomposition with λ = 5 and µ = 7 - The contrast
and lightning have been emphasized to provide a better view of the images.
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(a) u component. (b) Thresholded u component.

Figure 3.10. Thresholded component used as the binary data

3.2.2. 2D results. From now, we use the binary thresholded cartoon component as the
data (see Figure 3.10). We report in Table 3.3 the evolution of p estimate. We see that
the iterative process becomes stationary very quickly (5 iterations).

Iteration 1 2 3 4

pk 4.6928 10−2 3.3656 10−2 3.0146 10−2 2.9171 10−2

ak 7.4827 107 4.6183 107 4.0659 107 3.9236 107

Table 3.3. Computed probability pk and corresponding threshold ak dur-
ing the iterations - m = 8 and ε = 10−6.

Next figure shows the solution with Algorithms (1) and (2) :

(a) Noisy data. (b) Solution with Algorithm (1). (c) Solution with Algorithm (2).

Figure 3.11. Solutions computed by Algorithms (1) and (2) with m = 8
and ε = 10−6.
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3.3. Grey level images. We have considered binary images, which implies some thresh-
olding process when dealing with gray-level images. However, following [8] we may adapt
the algorithm by considering the image level sets. Precisely, for each level k ∈ [0, 255], we
consider the thresholded image uk = 1u≥k(where 1A is the indicator function of the set A)

and we recover the grey level solution as u∗ =
255∑
k=0

uk. This gives the following algorithm

Algorithme 3 Algorithm for grey level images

Given data: grey level image u.
0. Initialization: k = 0, u∗ = 0.
1. Iteration k
Compute uk with Algorithm (1) applied to

bwk :=

{
1 if u ≥ k,
0 else.

u∗ = u∗ + uk.
2. End.

Next figure shows the solution with the image of Lena, for m = 4 and 8 respectively.

(a) Noisy data - noise level 0.05. (b) Solution, m=4. (c) Solution, m=8.

(d) Noisy data - noise level 0.15. (e) Solution, m=4. (f) Solution, m=8.

Figure 3.12. Lena denoising for two different noise levels - ε = 10−6 and
m = 4, 8.
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We end this subsection with Algorithm (3) applied to the cartoon image of the granite
image (before performing thresholding).

(a) u component. (b) Solution.

Figure 3.13. Granite denoising Cartoon part - ε = 10−6 and m = 8.

We could now use an a posteriori thresholding process on this solution as well to recover
the cracks, but this will not be very good since one can see that we have lost the micro-
cracks structure.

3.4. 3D images. Though, we have presented the method with 2D images (whose domains
are J−N,NK2) we may extend the result to 3D stacks. Recall that we consider a 3D stack
whose size is 1287 x 1287 x 99. If we consider the nearest neighbors of a pixel to define
connectivity, the neighborhood of a pixel is now a cube of size 3 and the results apply with
m = 26 and Algorithm (1) works similarly in the 3D case. The main difference was the
choice of the built in MATLAB function to compute the connected components directly
with the 3D stack (and m = 26).

The preprocessing was performed directly on the 3D stack (and not slice by slice)
as explained in [4] and it was natural to use the 3D stack to perform binarization and
denoising with Algorithm (1). Of course, the computation time is quite large since we
have to estimate the size of a great number of connected components. Therefore, we have
to develop further strategies to improve the 3D method as for example parallelization.
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(a) Original Image. (b) Smooth component v.

(c) Noise component w. (d) Cartoon component u.

(e) Binarized cartoon component.

Figure 3.14. Decomposition of the 3D stack and binarized cartoon component.

Next figure shows the solution computed with Algorithm(1), m = 26 and ε = 10−6.
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Figure 3.15. Solution.

4. Conclusion

The automatic threshold we propose seems to be performing and we are able to recover
a lot of information from the binary images. Though, we have presented the method on
a 2D material image, it can be applied to any binary images arising from appropriate
pre-processings. One may think of as angiography images for example.

However, we could say that the size of the connected components is rather a crude
criterion for distinguishing cracks for noise and some other geometric characteristic (as
the diameter) would better discriminate our features. The key point is that we need an
upper bound for the tail probability of the looked after characteristic (we obtained such
a bound for P(]Z ≥ k) in the case of the total population size, and for P(Zn > 0) in the
case of the diameter) which is not obvious in general (see for instance [1] for recent works
in this direction).

Another point that we did not really focus on is the estimation of the parameter p as
it was not the central point of this work. Our method (especially after iterations) seems
rather satisfactory but always overestimates this probability. Some more sophisticated
methods have been developed in the literature and may be used to improve the results.
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E-mail address: romain.abraham, maitine.bergounioux,pierre.debs@univ-orleans.fr

27


	1. Introduction
	2. Computation of the threshold
	2.1. Notations
	2.2. Galton-Watson process
	2.3. Stochastic domination
	2.4. Computation of the threshold
	2.5. Other cases

	3. Application to crack detection
	3.1. Tests with a 2D synthetic black and white image
	3.2. Tests with 2D a real black and white image
	3.3.  Grey level images 
	3.4. 3D images

	4. Conclusion
	References

