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Various expressions have been proposed previously for the rise velocity of gas bubbles
for homogeneous steady bubbly flows, generally a monotonically decreasing function of
the bubble volume fraction. For suspensions of freely moving bubbles, some of these are
of the form expected for ordered arrays of bubbles, and vice versa, as they do not reduce
to the behaviour expected theoretically in the dilute limit. The microstructure of weakly
inhomogeneous bubbly flows not being known generally, the effect of microstructure
is an important consideration. We revisit this problem here for bubbly flows at small
to moderate Reynolds number values for deformable bubbles, using direct numerical
simulation and analysis. For ordered suspensions, the rise velocity is demonstrated not to
be monotonically decreasing with volume fraction due to cooperative wake interactions.
The fore-and-aft asymmetry of an isolated ellipsoidal bubble is reversed upon increasing
the volume fraction, and the bubble aspect ratio approaches unity. Recent work on rising
bubble pairs is used to explain most of these results; the present work therefore forms
a platform of extending the former to suspensions of many bubbles. We adopt this new
strategy also to support the existence of the oblique rise of ordered suspensions, the
possibility of which is also demonstrated analytically. Finally, we demonstrate that most
of the trends observed in ordered systems also appear in freely evolving suspensions.
These similarities are supported by prior experimental measurements, and attributed to
the fact that free bubbles keep the same neighbours for extended periods of time.

1. Introduction

Bubble columns are widely employed in industry because they can offer excellent heat
and mass transfer characteristics without requiring any additional mechanical stirring.
They are conceptually simple: a gas is sparged at the bottom of a liquid-filled vessel, and
the bubbles rise under the effect of buoyancy. High transfer rates can then be attained
owing to the increased contact area between the gas and the liquid phases, and to the
liquid agitation induced by the bubbles’ motion. Since a reliable prediction of bubble
residence time and available interfacial area is crucial for an accurate and successful
design of industrial columns, the understanding of bubble flow dynamics is essential.

In this context, a fundamental problem is the accurate prediction of the average
bubble rise velocity in a statistically homogeneous buoyancy-driven flow of monodisperse
bubbles, with the intention of using the results to systems with weak confinement and/or
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large-scale gradients. The average bubble rise velocity relative to the average velocity
of the entire suspension is termed herein the drift velocity and the magnitude of the
drift velocity is denoted by U . In the dilute limit (wherein the bubble volume fraction is
vanishingly small), if no clustering occurs, bubbles behave as if they were isolated, and the
drift velocity approaches the terminal velocity U0 of a single bubble in unbounded liquid
under otherwise the same conditions, for which a number of correlations is available (Clift
et al. 1978; Loth 2008). As volume fraction increases, U generally departs from U0. We
therefore define G(φ) = U/U0, where φ is the gas volume fraction; the dependencies of G
on various other dimensionless groups (termed herein as ‘flow conditions’) are suppressed
in the notation for G for brevity, but are not ignored.

A common form of the dependency on volume fraction used in empirical correlations
is the Richardson-Zaki expression G(φ) = (1 − φ)n (Richardson & Zaki 1954; Ishii
& Zuber 1979), where n is an empirical parameter that depends on flow conditions.
Various experiments have been carried out previously to determine G(φ) by injecting
bubbles of millimetric size in a vertical column filled with clean water. In their respective
experiments, Zenit et al. (2001) found that their measurements could be approximately
described by the Richardson-Zaki formula with exponent n = 2.8, Garnier et al. (2002)
obtained instead G(φ) = 1 − φ1/3, and Colombet et al. (2015) fitted their data by
G(φ) = (0.28+0.72 exp(−15φ))1/2. Experimental complexities may have arisen that could
explain these differences. For example, it is challenging to purify water of surfactants, to
rule out wall effects, and to obtain a truly monodisperse suspension. A main inconvenience
is that usually the bubble diameter cannot be kept constant if the volume fraction is
changed, and the terminal velocity (and shape) of a single bubble strongly depends on
the bubble size (Clift et al. 1978). This renders difficult disentangling the dependency of
drift velocity on hydrodynamic interactions - along with the microstructure - from that
on bubble size, if the latter is varied simultaneously with volume fraction.

Theoretical predictions of the drift velocity of bubbles are available for asymptotic and
ideal systems. The drift (or rather, sedimentation) velocity derived by Batchelor (1972)
for rigid particles in Stokes flow, wherein a uniformly random sedimenting suspension of
particles is considered, has been generalized to droplets and bubbles, yielding G(φ) =
1 − 4.44φ + O(φ2) for bubbles whose viscosity can be ignored compared to that of the
liquid (Keh & Tseng (1992); earlier work cited therein used various approximations
for the mobility matrix). This linear correction includes a contribution −φ due to the
back flow induced by the bubble motion, to maintain the mixture velocity of the entire
suspension. It also includes a contribution −3φ from a volume-exclusion effect: a test
bubble drags some liquid along with it which is compensated by a downflow further
away; other bubbles cannot access the fluid in the direct vicinity of the test bubble (as
this would require bubbles to overlap) and therefore sample a net fluid downflow (see
Batchelor (1972) and for the application to bubbles/droplets see Wacholder (1973), albeit
that an approximation for the mobility was used by the latter). The remainder of the
linear term in G(φ) is due to near-bubble interactions.

The drift velocity strongly depends already on the microstructure in the dilute limit,
though. If the probability of finding a particulate near a test particulate is uniform outside
the excluded volume, as is appropriate for colloidal dispersions (Glendinning & Russel
1982) and as is assumed in the work cited above, interactions with nearby particulates
result in G(φ) ∼ 1−O(φ), whereas for a microstructure wherein a dominant contribution
comes from particulates at a distance that corresponds to the mean separation (Vp/φ)1/3,
with Vp the particulate volume, one expects G(φ) = 1 − O(φ1/3) (e.g., Davis & Acrivos
(1985)). A well-known example of the latter is a microstructure wherein particulates
are arranged in a regular, ordered array. For bubbles arranged in an ordered array,
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G(φ) = 1 − bφ1/3 + O(φ2), where the coefficient b is known for several cubic arrays,
and the O(φ) term cancels if the gas viscosity is ignored compared to the liquid viscosity
(Sangani & Acrivos 1983; Sangani 1987). The microstructure is not known a priori,
therefore these limiting cases of random and ordered arrays may provide the means to
determine the possible magnitude of the effects of order of the microstructure.

Besides Stokes flows, a weakly-viscous theory based on potential-flow interactions
has also been developed (Spelt & Sangani 1998). Exceptionally, the probability density
function for a configuration of identical spherical bubbles is known in that case. The
pair probability shows a peak around the horizontal plane and a deficit for bubbles
aligned vertically, both vanishing at large separation, if the drift velocity is not small
compared to bubble velocity fluctuations, as may be expected from a Bernoulli effect.
The averaged drag coefficient could therefore be determined analytically in the dilute
limit whilst accounting for the microstructure. In the present notation, this yielded
G(φ) = 1−

(
17
8 + 9

20A
)
φ+O(φ2), where A is the ratio of U2 and the root-mean-square

bubble velocity; a Padé approximation for use beyond the dilute limit is presented in
Spelt & Sangani (1998), and an extension for non-spherical bubbles at small A is also
available (Kushch et al. 2002). The dependency on A enters there because it affects the
pair-probability density function in that analysis, this being nearly isotropic at low A
whilst showing a preference for bubbles rising nearly side by side at large A. Thus, in this
description, the microstructure is determined from the significance of the drift velocity
compared to that of bubble velocity fluctuations, the latter being the result of local
inhomogeneities such as the shear rate (see Spelt & Sangani (1998)).

Beyond these theoretical approaches, direct numerical simulations (DNS) of unbounded
buoyancy-driven flows, in the sense of resolving the full Navier-Stokes equations coupled
with the bubble dynamics and deformation, have been performed in prior work for
cubic domains that contain a finite number of freely-moving bubbles, subject to periodic
boundary conditions. Conveniently, this setup allows variation between microstructures.
On the one hand, for a given volume fraction, using a large number of bubbles in the
unit cell is of interest as a model of real suspensions, although convergence with number
of particulates would have to be verified, since for Stokes interactions this may be slow
(Phillips et al. 1988), or a dependency on system size may even persist (Guazzelli &
Hinch 2011); in the studies cited below, typically O(10) to O(100) bubbles are used in
a unit cell, and the effect of system size is found to be small. In the other extreme, the
special case of one freely-rising bubble in the unit cell, one recovers a simple cubic array.
We shall herein refer to this setup with more than one bubble in the unit cell as a free
array, and to that with one bubble in the cell as an ordered array.

For spherical bubbles rising at low (O(1)) Reynolds numbers, the DNS results of
Esmaeeli & Tryggvason (1998), suggest that G(φ) for free arrays may be similar to
that predicted for ordered arrays, but the system studied was concluded to be too small
to draw definitive conclusions. Bunner & Tryggvason (2003) found that their results
at moderate (O(10)) Reynolds numbers could be represented by G(φ) = 1 − φ1/3 for
spherical bubbles in free arrays, and a Richardson-Zaki expression with exponent n = 3
for deformable bubbles, but that no theoretical justification for these scalings could be
offered, beyond an observed difference in preferential spatial configurations of bubbles,
discussed further below. Also, the expressions for G(φ) inferred in these pioneering studies
could only be fitted from just a few different values of the volume fraction comprised
between 2 and 12 %, their validity outside this range seems unclear. Further results
for free arrays at moderate Reynolds numbers were obtained by Yin & Koch (2008),
for volume fractions ranging from 1 to 25 %, using a lattice-Boltzmann method. They
used O(100) bubbles in a periodic cell, rather than O(10) in most of the early studies
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cited above, and imposed a spherical shape, facilitated by a force balance that includes
the surface integral of the traction acting on the bubble and the buoyancy force. Their
results demonstrate that G(φ) is not well fitted by the Richardson-Zaki formula, and they
suggest that this is associated with the anisotropic microstructure of bubbly suspensions
in this regime. Gillissen et al. (2011) conducted similar simulations using a combination of
lattice-Boltzmann and immersed boundary methods, and obtainedG(φ) = 1−O(φ1/3) for
spherical bubbles rising at small to moderate Reynolds number, in qualitative agreement
with earlier studies (Esmaeeli & Tryggvason 1998; Bunner & Tryggvason 2003).

From these prior studies, the microstructure, along with the drift velocity, is known to
vary significantly with bubble Reynolds number and shape. For spherical bubbles rising
at O(100) Reynolds number, strong preference for horizontal alignment is observed in
the simulated pair probability (Esmaeeli & Tryggvason 2005), in agreement with the
trends reviewed above for the idealized potential-flow interactions. The anisotropy in
microstructure is larger than that observed in the experiments of Zenit et al. (2001),
possibly because of bubble deformation: indeed the simulations of Esmaeeli & Tryggvason
(2005) revealed that oblate ellipsoidal bubbles do not form horizontal rafts but instead
are rather uniformly distributed. At O(10) Reynolds number, the dynamics of bubble-
bubble interactions is dominated by wake effects. A vertical pair of spherical bubbles
changes its orientation to horizontal through a drafting-kissing-tumbling mechanism,
resulting in preferential side by side alignment (Esmaeeli & Tryggvason 1999; Bunner &
Tryggvason 2002a; Yin & Koch 2008), whereas deformable bubbles tend to organize in
vertical structures owing to the reversed lift force which attract a bubble in the wake
of its preceding neighbour (Bunner & Tryggvason 2003). These effects decrease with
decreasing Reynolds number, and nearly no preference is observed at O(1) Reynolds
number (Esmaeeli & Tryggvason 1998; Cartellier & Rivière 2001).

In the DNS studies cited thus far, the microstructure is allowed to develop naturally.
For use of the results in general flows, wherein microstructure can be affected by weak
gradients, it is necessary to know the role of and sensitivity to the microstructure. DNS
results for rising deformable bubbles in an ordered arrangement have been conducted
by Sankaranarayanan et al. (2002), using a lattice-Boltzmann method. An empirical
correlation of Richardson-Zaki form was used to represent the results for a vast range of
flow regimes, albeit for 5 6 φ 6 25% and with the reservation that the correlation does
not reduce to the analytical result discussed above for creeping flows of ordered arrays.

Despite their apparent artificiality, ordered arrays of bubbles, as well as their relevance
to real bubbly flows, certainly deserve further investigation. Firstly, a number of prior
simulations and experiments reviewed above for 1 . Re . 1000 found a bubble rise ve-
locity scaling as φ1/3 (Esmaeeli & Tryggvason 1998; Bunner & Tryggvason 2003; Gillissen
et al. 2011; Garnier et al. 2002). This scaling is the same as that obtained assuming a
periodic arrangement of the bubbles, albeit under the Stokes flow approximation (Sangani
& Acrivos 1983). The study of ordered arrays beyond the Stokes-flow limit is therefore of
fundamental interest in order to connect theoretical, numerical, and experimental work.
Secondly, prior experimental and numerical work on bubbly flows at moderate to high
Reynolds number has shown that the magnitude of the bubble velocity fluctuations is
substantially smaller than the bubble rise velocity (Bunner & Tryggvason 2002b; Esmaeeli
& Tryggvason 2005; Zenit et al. 2001; Martinez-Mercado et al. 2007), at least when
the gas volume fraction remains below approximately 10 %. This further motivates a
study of a representation of bubbly suspensions by ordered arrays (zero bubble velocity
fluctuations). Thirdly, only experimental investigations can assess the relevance (or lack
thereof) of the ordered model to describe real bubbly suspensions. By re-examining prior
experimental data (Garnier et al. 2002; Martinez-Mercado et al. 2007; Riboux et al. 2010;
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Colombet et al. 2015), we will show that available measurements support the idea that
ordered arrays are indeed relevant to bubbly flows of practical interest.

In this paper, we investigate the ordered and free rise of bubbles at low and moderate
Reynolds numbers over a wide range of volume fractions, using DNS and analysis; the
problem statement is presented in section 2, and the numerical methods in section 3. The
first objective (in section 4) is to determine the connection between the DNS results and
theory for dilute ordered systems and, beyond the dilute limit, the connection between the
DNS results and prior work on bubble pairs, which have been studied analytically (e.g.,
Harper (1970, 1997)), experimentally (Katz & Meneveau 1996) and computationally
(Yuan & Prosperetti 1994; Legendre et al. 2003; Hallez & Legendre 2011). For that
purpose, the first effects of inertia are determined analytically, and a comprehensive
parametric DNS study is presented at low and moderate Reynolds number in section 4.1.
The study includes ordered suspensions of strongly deformed (skirted) bubbles that have
not been studied thus far. The results are summarized in a practical relation that covers
a wide range of flows and reduces to analytical results in the dilute limit. In particular,
the DNS and the theory in the dilute limit demonstrate that G(φ) is not monotonic
at low φ; Bunner & Tryggvason (2002a) and Roghair et al. (2011) remarked that G(φ)
increases at small volume fractions, but did not investigate this further. The surprising
dynamics of ordered suspensions is then investigated in section 4.2. A steady oblique rise
was observed in the DNS in some cases, as a precursor to unsteady (periodic and non-
periodic) behaviour. Oblique motion of two-dimensional square arrays of bubbles has been
observed previously (Sankaranarayanan et al. 2002; Sankaranarayanan & Sundaresan
2002; Theodoropoulos et al. 2004), but remains essentially unexplained. We support the
existence of oblique rise for ordered suspensions with analysis in the dilute limit, and
demonstrate that the inferred lift coefficient is similar to that obtained for the rise of
bubble pairs. The second objective of the present work is to revisit (in section 5) arrays
of free bubbles in light of these findings for ordered arrays, and to contrast and compare
these two systems. In section 5.2, numerical results are presented for freely evolving
bubbly suspensions at small and intermediate volume fractions, and similarities with
ordered systems are highlighted. These are supported by a comparison with experimental
data in section 5.3. Finally, conclusions are presented in section 6.

2. Mathematical formulation

2.1. Problem statement

We consider an infinite, homogeneous, monodisperse suspension of bubbles rising under
the effect of buoyancy in otherwise quiescent liquid. The density and viscosity of each
fluid, as well as the surface tension, are assumed to be constant. The suspension is
represented by the periodic repetition of a cubic unit cell containing a given number of
bubbles. The gravity is aligned with a primary axis of the periodic array (due to the large
number of parameters already involved in the problem, the influence of the orientation
of gravity is not investigated here).

The behaviour of this system depends on nine parameters: the number of bubbles Nb
in the cell, the gas volume fraction φ, the gravitational acceleration g, the bubble volume
or, more conveniently, its characteristic size db defined as the diameter of the volume-
equivalent sphere, and the physical properties of the two fluids, namely their densities
(ρd, ρc), their viscosities (µd, µc), and the surface tension (γ). The subscripts d and c
refer to the disperse (gaseous) and continuous (liquid) phases, respectively.

In addition to the gas volume fraction and to the number of bubbles, four independent
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dimensionless groups can be constructed from the remaining parameters. Two of these
are the ratios of the gas density and viscosity to those of the surrounding liquid. These
are usually very small and of the same order for most gas-liquid systems of practical
interest. As a consequence their influence will not be investigated, and unless otherwise
mentioned, these parameters will be set to ρd/ρc = 10−3 and µd/µc = 10−2, which
roughly corresponds to air bubbles in water. The last two dimensionless numbers are the
Archimedes number

Ar =

√
ρc|ρd − ρc|gd3b

µc
, (2.1)

or equivalently the Galilei number Ga = Ar2, and the Bond number (also known as the
Eötvös number),

Bo =
|ρd − ρc|gd2b

γ
. (2.2)

The Archimedes and Bond numbers can be defined a priori, without the knowledge of
the bubble velocity, and are therefore traditionally employed to describe the macroscopic
conditions of buoyancy-driven bubbly flow (numerical) experiments.

At time zero, the bubbles are released from rest and start rising. The time evolution
of the system is monitored through U(t), defined as the average drift velocity of the
bubbles and computed at any time from

U = 〈u〉d − 〈u〉, (2.3)

where 〈 〉 denotes a volume average over the entire unit cell and 〈 〉d denotes a volume
average over the disperse phase only. In most situations U is parallel to gravity, so there
is no need to distinguish between |U | and the vertical component of U . For simplicity,
and unless mentioned otherwise, U is used to denote the (positive) vertical component
of U . The drift velocity is used as the characteristic velocity scale to define the dynamic
counterparts of the Archimedes and Bond numbers: the Reynolds number

Re =
ρcUdb
µc

(2.4)

and the Weber number

We =
ρcU

2db
γ

=
BoRe2

Ar2 , (2.5)

which compare the effects of inertia, viscosity and surface tension. In a system at
equilibrium for vertical rise, the hydrodynamic force acting on a bubble, whose magnitude
is denoted f , equals the buoyancy force. It follows that the Reynolds number is related
to the Archimedes number through

CD =
4

3

Ar2

Re2 with CD =
8f

πd2bρcU
2
, (2.6)

where CD is the drag coefficient.
Assuming that a (possibly quasi-)steady state is reached independently of the initial

conditions (which is not necessarily the case, but we will come to that later), the (quasi-
)steady average bubble drift velocity can be written as U = U(Nb, φ,Ar ,Bo). Similarly
the (quasi-)steady average bubble shape, as described by a parameter χ (which will be
specified later, typically an aspect ratio), reads χ = χ(Nb, φ,Ar ,Bo). Our first goal
is to characterize U(φ,Ar ,Bo) and χ(φ,Ar ,Bo) when the bubbles have a fixed position
relative to their neighbours (Nb = 1), and to understand how the imposed flow conditions
(Ar ,Bo) affect the dependency of these quantities on the volume fraction. Our second
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goal is to assess the effect of introducing additional degrees of freedom (Nb > 1) in the
system, and to compare the behaviour of freely evolving suspensions (sufficiently large
Nb) with that of ordered suspensions (Nb = 1).

2.2. Flow regimes

Since we want to assess the effect of volume fraction under various conditions of
Archimedes and Bond numbers, it seems natural to refer to the limiting case of a single
bubble released in an unbounded quiescent liquid under the same conditions. At steady-
state, this bubble is characterized by its shape (and an associated aspect ratio χ0), and
its terminal velocity U0, usually expressed in the form of a terminal Reynolds number
Re0 = ρcU0db/µc. The subscript 0 will be used hereinafter when an isolated bubble is
considered.

A rather general description of the equilibrium state reached by a buoyancy-driven
bubble is given in the shape regime diagram of Grace (1973). This diagram splits
the (Bo, Re0) parameter space in a number of subregions and maps them onto the
corresponding shape regimes. It also provides a graphical correlation between the Bond
number, the Reynolds number, and the Morton number Mo = (|ρd − ρc|gµ4

c)/(ρ
2
cγ

3) =
Bo3/Ar4, which is often used in experimental work in place of the Archimedes number.
In a simplistic manner, the terminal Reynolds number increases (non-linearly) with the
Archimedes number, while the bubble departs from a spherical shape as the Bond number
increases.

We considered nine different cases defined by the pair (Ar ,Bo). A complete description
of these cases and of the corresponding flow regimes is provided in table 1. They cover
Reynolds numbers ranging from 0 to 60 and several shape regimes: spherical (cases “S”),
ellipsoidal (cases “E”), and dimpled ellipsoidal-cap (case “C”). The parameters for case
C correspond to a single-bubble experiment of Bhaga & Weber (1981), which was later
reproduced numerically by Hua et al. (2008). The terminal Reynolds number and shape
of the equivalent isolated bubble have therefore been determined directly from their data.
For the other cases, the single-bubble terminal Reynolds number and aspect ratio have
been estimated using the correlations for spherical and ellipsoidal bubbles recommended
in the review of Loth (2008).

2.3. Governing equations

In both phases the fluid motion is governed by the incompressible Navier-Stokes
equations

∇ · un = 0, (2.7)

∂ρnun
∂t

+∇ · ρnunun =∇ · Tn +Gn where Tn = −pnI + µn(∇un +∇uTn ), (2.8)

where n = {c, d} is used here to denote either phases, u is the velocity field, T the
stress tensor, I denotes the identity tensor, p the pressure field, and G is the sum of
external forces per unit volume, given by Gn = (ρn − 〈ρ〉)g. The first term in this
last expression, ρng, is the weight of a unit volume of fluid. Because the suspension we
consider is infinite, i.e. not bounded by walls, an additional body force −〈ρ〉g, with 〈ρ〉
the system average density, is required to prevent the entire system from accelerating in
the downward vertical direction†.

These equations are coupled through the appropriate boundary conditions at the

† This body force is equivalent to the average hydrostatic pressure gradient that would be
generated by the base of a flow container to balance the total gravitational force on the mixture.
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case Bo Ar Mo shape Re0 We0 χ0

S0 0.38 0.15 1.00×102 spherical 1.94×10−3 6.11×10−5 1.000
S1 0.38 5.03 8.60×10−5 spherical 1.80 4.88×10−2 1.007
S2 0.38 10.0 5.49×10−6 spherical 5.94 0.134 1.015
S3 0.38 15.3 1.00×10−6 spherical 12.1 0.236 1.024
S4 0.38 27.2 1.00×10−7 spherical 31.4 0.507 1.064
S5 0.38 40.7 2.00×10−8 spherical 62.5 0.897 1.124
E1 2.0 29.9 1.00×10−5 ellipsoidal 31 2.1 1.32
E2 5.0 30.0 1.54×10−4 ellipsoidal 26 3.8 1.62
C 243 15.2 2.66×102 dimpled ellipsoidal-cap 7.77 63.2 1.89

Table 1. Simulated regimes: Bo, Ar , and Mo = Bo3/Ar4 are input parameters (with
ρd/ρc = 10−3 and µd/µc = 10−2). The shapes, Re0, We0 = BoRe2

0/Ar
2, and χ0 of an isolated

buoyancy-driven bubble at steady-state are also given. Shapes are predicted by the diagram
of Grace (1973). The values of Re0 are estimated from the correlation of Mei et al. (1994) for
spherical bubbles (cases S0 to S5) and from the correlation of Loth (2008) for ellipsoidal bubbles
(cases E1 and E2); the experimental value measured by Bhaga & Weber (1981) is reported for
case C. The aspect ratio χ0 is estimated from the correlation of Loth (2008) for all cases except
case C, for which it is directly measured from visualizations of Hua et al. (2008).

interface. In the presence of viscous effects a no-slip condition is applied, which, combined
with the absence of mass flux across the interface, leads to

[u] = 0 (2.9)

where [X] = Xc−Xd denotes the jump of a variable across the interface. Neglecting any
variation of surface tension along the interface, the shear stress is continuous across it,
and the jump of normal stress is balanced by the curvature force per unit area:

[n · T ] = γκn, (2.10)

where n is the unit vector normal to the interface and directed outward from the bubbles,
and κ is the interface curvature defined by κ = ∇ · n (e.g., Tryggvason et al. (2011),
Appendix A.4).

This set of equations is solved numerically within a periodic unit cell using the methods
described in the next section.

3. Numerical methods

A comprehensive description of our numerical approach is provided in appendix A.1.
A brief overview of its salient features is given hereinafter.

Our approach relies on the one-fluid formulation of the governing equations. In this
formulation, the different fluids are treated as a single phase with discontinuous density
and viscosity, and surface tension is incorporated as a singular source term. This results
in the standard continuum surface force model of Brackbill et al. (1992). To circumvent
numerical difficulties due to the introduction of discontinuous and singular functions, the
interface is given a finite thickness proportional to the grid spacing. Surface tension is
therefore treated as a volume force distributed over several mesh points, and material
properties vary continuously from one phase to the other.

The incompressible Navier-Stokes equations are integrated in their one-fluid form by
a projection method (Chorin 1968), and the moving interface separating the two fluids
is captured by a level-set method (Osher & Sethian 1988; Sussman et al. 1994). The
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velocity field is then solution of the system of equations:

∂ρu

∂t
+∇ · ρuu = −∇p+∇ · µ(∇u+∇uT ) + (ρ− 〈ρ〉)g − γκ∇Hε (3.1)

∇ · u = 0, (3.2)

where the interface curvature is calculated from (e.g., Prosperetti & Tryggvason (2007),
section 3.5)

κ =∇ ·
(
∇ψ
|∇ψ|

)
, (3.3)

the variable density and viscosity are given by

ρ = Hερc + (1−Hε)ρd, µ = Hεµc + (1−Hε)µd, (3.4)

and Hε denotes the smoothed Heaviside function

Hε(ψ) =


1 if ψ > ε,

0 if ψ < −ε,
1

2

[
1 +

ψ

ε
+

1

π
sin

(
πψ

ε

)]
if |ψ| 6 ε,

(3.5)

where ε is half the interface thickness (ε = 1.5∆x, with ∆x the grid spacing). ψ denotes
the level-set function, positive in the continuous phase and negative in the disperse
one. It is the solution of the following advection equation, in which the zeroth-order
approximation of the additional source term proposed by Sabelnikov et al. (2014) is
embedded:

∂ψ

∂t
+ u ·∇ψ = A(u, ψ)ψ, with A(u, ψ) = ∇iψ∇iuj∇jψ (3.6)

(A(u, ψ) is the local zeroth-order approximation of the source term in the region close to
the interface). The level-set function is reinitialized as a signed distance function at each
time step using the procedure devised by Russo & Smereka (2000). These modifications
yield better numerical efficiency and accuracy compared to the original level-set method.

The major drawback of basic level-set methods is their poor ability to conserve the
mass (volume) of each phase. When using high-order schemes and sufficient resolution,
the volume change between two successive timesteps is often negligible. It is, however,
not exactly zero, and may even become substantial when accumulated over very long
integration times. For this reason, we enforce volume conservation using the correction
proposed by Sussman & Uto (1998) (also used by, e.g., Spelt (2006)): at the end of
each timestep, the iso-contours of the level-set function are slightly shifted such that the
volume of each phase is conserved exactly. We demonstrate in appendix A.2 that the loss
of accuracy induced by this correction is negligible compared to the overall numerical
error made in the interfacial region, and has therefore no adverse effect on the flow
dynamics.

Our time integration algorithm is based on third-order and second-order TVD Runge-
Kutta schemes for the level-set advection and reinitialization equations, respectively, and
on a mixed Crank-Nicolson/third-order Adams-Bashforth scheme for the Navier-Stokes
equations. The spatial discretization is carried out using a standard finite difference/finite
volume discretization on a uniform Cartesian staggered grid: fifth-order WENO schemes
are used for advection terms, and second-order centered schemes are used otherwise.
Periodic boundary conditions are imposed at the bounds of the computational domain.

A standard benchmark test for the simulation of disperse flows consists in comparing
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Figure 1. Time evolution of the drift velocity of arrays of deformable bubbles rising at moderate
Reynolds numbers (case E1). Solid line: prior DNS of Esmaeeli & Tryggvason (1999). Non-solid
lines: present DNS. (a) Ordered array (Nb = 1, φ = 13 %, ρd/ρc = µd/µc = 0.1), different
resolutions (db is the bubble volume-equivalent diameter, ∆x the grid spacing). (b) Free array
(Nb = 8, φ = 6.5 %, ρd/ρc = µd/µc = 0.05), with three realizations of the flow.

the terminal velocity and shape of an isolated bubble to those obtained experimentally in
various regimes. We do not simulate here the rise of a single bubble in an unbounded fluid,
but of an array of bubbles. A tempting idea to approach this ideal situation would be to
introduce a single bubble in a very large unit cell, so that the influence of periodicity could
be neglected. We will see in section 4 that even at very low volume fractions (very large
domains, in the limit of what is computationally feasible), the bubbles’ rise velocity and
shape are still significantly affected by their interactions, making such a comparison to
experiments irrelevant. The code has therefore been validated against available solutions
for regular (Nb = 1) and free (Nb > 1) arrays of rising bubbles.

We reproduced the numerical simulations of Esmaeeli & Tryggvason (1999) who
considered arrays of deformable bubbles rising at moderate Reynolds number (case E1).
As shown in figure 1, the transient rise of both regular and free arrays of bubbles is
reproduced accurately by our code. We also compared our simulations with the theory
of Sangani (1987) for cubic arrays of spherical bubbles in the creeping flow limit (case
S0). The evolution of the steady drift velocity with volume fraction is shown in figure 2.
Excellent agreement between the numerical and analytical solutions has been obtained.
The effect of resolution is also shown in the same figures. Additional benchmark and
sensitivity tests can be found in appendix A.2. Further comparison against prior work is
included where prior work is available in subsequent sections.

Grid convergence tests have been carried out systematically for each of the cases
reported in table 1 in an ordered array configuration and for one value of the volume
fraction. A resolution of 20 grid cells per bubble diameter was found to be sufficient for
all regimes except for case S5, which requires a resolution of 30 grid cells per diameter
because of the higher Reynolds numbers associated to this regime, and for case C, for
which a resolution of 60 grid cells per diameter was needed for capturing the thin skirts
of the bubbles. With these resolutions, the error in the steady rise velocity due to the
grid spacing is not larger than 2 % in case C and 1 % in the other cases. For a given
case, the same resolution is used for all volume fractions, and for both ordered and free
arrays. The choice of the time step is constrained by the condition of numerical stability,
and the error due to the time discretization is smaller than that due to the spatial one.
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Figure 2. Steady drift velocity of an ordered array of spherical bubbles normalized by that of
an isolated bubble in the Stokes flow regime (case S0) as a function of volume fraction, compared

with the analytical solution of Sangani (1987). The effect of resolution is shown for φ1/3 = 0.4
(db is the bubble volume-equivalent diameter, ∆x the grid spacing).

4. Ordered arrays

We examine in this section the dynamics of cubic arrays of deformable bubbles
(“ordered arrays”) in the presence of liquid inertia. The main objective here is to connect
DNS results, theoretical analysis for dilute systems, and prior work on bubble pairs.

Specifically, the effect of volume fraction on the rise velocity and shape of deformable
bubbles in a simple cubic array is revisited here. Direct numerical simulations have been
performed for the nine sets of flow conditions summarized in table 1. For each of these
cases, the volume fraction φ = π/6(db/h)3 (where h is the linear size of the unit cell of
the array) was varied from 0.1 to 30 % by changing the size of the computational domain
(i.e., the lattice spacing) while keeping the bubble size constant.

Initially, both fluids were at rest, the bubbles were spherical, and gravity was switched
on at time zero. After a transient regime, various forms of bubble motion could be
observed: steady vertical rise, steady oblique rise, or unsteady oblique rise. The steady
vertical rise is first examined in section 4.1. Other types of motions are then discussed
in section 4.2.

Simulations were run until the bubble drift velocity became either constant or sta-
tistically stationary. This steady state is independent of the initial oblateness of the
bubbles, and is reached when the velocity disturbances induced by bubbles’ motion have
diffused in all directions throughout the liquid, i.e., in a time of order O(h2ρc/µc). As a
consequence, from a numerical point of view, the investigation of small volume fractions
(large domain sizes) is limited both by the needed number of grid points (∼ h3) and by
the computation time (∼ h2).

4.1. Steady vertical rise of bubbles

The cubic lattice of bubbles is not only convenient from a computational point of
view, it is also attractive from a theoretical standpoint since the solution only needs to
be determined in a unit cell. When the bubbles rise steadily along straight paths parallel
to an axis of the periodic array (as is the case in most of the cases presented here, since
gravity is oriented along a lattice axis), the symmetries of the problem greatly simplify
the analysis. We determine in this context an analytical expression accounting for the
first effect of inertial interactions in cubic arrays of spherical bubbles (at small Reynolds
numbers). Outside this narrow range of validity, the influence of the volume fraction on
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the steady rise velocity and shape of deformable bubbles will be determined from our
numerical simulations.

4.1.1. Spherical bubbles at low to moderate Reynolds number

The correction to the drift velocity due to finite volume fraction in the Stokes-flow
regime has been determined by Sangani (1987) for cubic arrays of spherical fluid particles
(bubbles or drops). The first term arises from a point-force approximation of the particles
and reads, for a simple cubic array,

U

U0,Stokes
− 1 = −1.1734µ∗φ1/3 +O(φ), (4.1)

where U0,Stokes is the terminal velocity of a spherical fluid particle translating through an
unbounded ambient fluid in Stokes-flow conditions (Hadamard 1911; Rybczynski 1911):

U0,Stokes =
1

12

|ρc − ρd|gd2b
µ∗µc

, with µ∗ =
µc + 3/2µd
µc + µd

. (4.2)

The case of a rigid sphere (µd/µc →∞) is recovered as µ∗ → 3/2, whereas the case of a
clean bubble (µd/µc → 0) corresponds to the limit µ∗ → 1. Numerical simulations have
been carried out for spherical bubbles rising at very small Reynolds numbers (case S0,
Re0 = 1.94 × 10−3), and excellent agreement with the theory has been obtained over a
wide range of volume fractions, as shown in figure 2. Note that the relation between U
and φ1/3 seems linear even at high volume fraction: indeed even though the analytical
solution of Sangani (1987) includes O(φ) and O(φ2) terms, for clean bubbles the O(φ)
correction is zero and the O(φ2) correction is negligible compared to the O(φ1/3) term
(whereas these corrections are substantial for solid particles).

For small but non-zero Reynolds numbers, the Stokes equations are still valid near and
inside the fluid particles, but should be replaced by the Oseen equations farther away,
since inertial effects become comparable to viscous ones at distances from the particle
of order O(db/Re). The first correction to the drag force arising from inertial effects has
been determined by Hill et al. (2001) for a cubic array of solid spheres. The extension
of their result to bubbles and drops is straightforward and is provided in appendix B.
We show there that the correction to the bubble drift velocity due to liquid inertia and
hydrodynamic interactions can be approximated at any φ� 1 by

U

U0,Stokes
− 1 ≈ −1

8
µ∗Re − 1.1734µ∗φ1/3 +

25

8
µ∗

Reφ1/3

Re + 25φ1/3
. (4.3)

The first term accounts for the effect of liquid inertia on an isolated bubble, the second
term results from Stokes interactions, and the last term captures the effect of inertial
interactions. The significance of each of these terms as a function of volume fraction can
be understood as follows.

At zero volume fraction, the drag exerted on a single bubble normalized by the Stokes
drag increases linearly with the Reynolds number (Brenner & Cox 1963). This results in
the negative correction to the drift velocity

U0

U0,Stokes
− 1 = −1

8
µ∗Re, (4.4)

where U0 is the terminal velocity of the isolated bubble. At small volume fraction, inertial
interactions result in a positive O(φ1/3) correction which overwhelms the negative O(φ1/3)
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Figure 3. Steady drift velocity of an ordered array of spherical bubbles, normalized by the
terminal velocity of an isolated bubble in Stokes flow conditions, as a function of volume fraction
for small Archimedes numbers. (a) The effect of small but finite Ar , from Oseen-flow analysis. (b)
Comparison of analytical and numerical solutions for Ar = 5.03 (case S1). Analytical solutions
are obtained from (4.3). In (b), ——: analysis; •: DNS; ◦: isolated bubble, estimated from Mei
et al. (1994); - - - -: numerical fit of the form of (4.8) matching DNS and isolated-bubble data;

and · · · · · ·: numerical data and fit by a Richardson-Zaki relation from Sankaranarayanan et al.
(2002).

Stokes-flow correction

U − U0

U0,Stokes
≈ −1.1734µ∗φ1/3 +

25

8
µ∗φ1/3 ≈ 2.0µ∗φ1/3 when φ1/3 � Re, (4.5)

so the net result is a drift velocity that increases with φ1/3. At large volume fraction
(with respect to the Reynolds number), the drift velocity correction due to hydrodynamic
interactions reads

U − U0

U0,Stokes
= −1.1734µ∗φ1/3 +

1

8
µ∗Re

(
1− Re

25φ1/3

)
when Re � φ1/3 � 1. (4.6)

The O(Re) contribution from inertia is negligible compared to the Stokes O(φ1/3)
correction: the drift velocity therefore overall decreases linearly with φ1/3, as for creeping
flows.

The drift velocity U can be computed, for any φ � 1, by finding the positive root
of (4.3) (quadratic in U). The solution for various Archimedes numbers is shown in
figure 3(a). Note that higher Archimedes number corresponds to higher isolated-bubble
Reynolds number: it can be shown from (2.1), (2.4), (4.2) and (4.4) that in this regime

Re0 =
1

12

Ar2

µ∗

(
1 +

Ar2

96

)−1
. (4.7)

The non-monotonicity of the function U(φ)/U0,Stokes at finite Archimedes number con-
trasts with the case of Stokes flow, for which this function is strictly decreasing. This
behaviour results from the competition between “cooperative” long-range inertial in-
teractions, which increase the drift velocity, and “hindering” viscous interactions which
reduce it. At small volume fraction, inertial effects dominate, whereas at large volume
fraction the liquid is more confined, inertial forces therefore cannot prevail over viscous
ones and a Stokes-flow behaviour is recovered.

The Oseen approximation is limited to Re < 1, which for an isolated clean bubble
roughly corresponds to Ar < 3.5. For Ar = 3, the maximum of U/U0,Stokes is obtained for
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Figure 4. Steady drift velocity of an ordered array of spherical bubbles, normalized by the
terminal velocity of an isolated bubble in Stokes flow conditions, as a function of volume fraction
for a large range of Archimedes numbers. Symbols: DNS; ——: analytical Oseen-flow solutions
obtained from (4.3) for small Ar ; - - - -: numerical fits of the form of (4.8) matching DNS and
isolated-bubble data for larger Ar . In case S5, for which the bubbles motion is not steady and/or
not parallel to gravity, the crosses are time-averaged vertical drift velocities.

φ = 6×10−6. Direct numerical simulation of such a small volume fraction is prohibitively
expensive, so our analysis cannot be confirmed by numerical experiments in its expected
range of validity. Nevertheless a comparison between the solution obtained from (4.3) and
DNS for Ar = 5.03 is shown in figure 3(b), together with the numerical data obtained by
Sankaranarayanan et al. (2002) for the identical flow regime using the lattice Boltzmann
method. In their study, they found that the effect of volume fraction could be captured
by a Richardson-Zaki type of (empirical) correlation Re = 1.58(1 − φ)4.72. Although
their data is well-fitted by this relation over the narrow range of volume fractions they
investigated (0.05 < φ < 0.12), our DNS results show that this expression cannot be
used to extrapolate the effect of volume fraction outside this range. In addition, their
correlation gives a drift velocity at φ = 0 that differs from the terminal velocity of
an isolated bubble by more than 10 %. In contrast, the functional dependency of the
drift velocity on volume fraction given by our analysis is in very good agreement with
numerical simulations; the modest difference at small volume fractions arises from the
limitation of Oseen theory to Reynolds numbers less than unity: for an isolated bubble
rising in still liquid, the Oseen-flow solution yields Re0 = 1.66 whereas the empirical
correlation of Mei et al. (1994) gives Re0 = 1.80.

We now turn to ordered arrays of spherical bubbles rising at moderate Reynolds
numbers. The bubble drift velocity has been determined for Archimedes numbers ranging
from 0 to 40 (case S0 to S5). The numerical results for U(φ)/U0,Stokes are shown in
figure 4 (symbols) together with those of our analysis for small Archimedes numbers
(solid lines). It is remarkable that the evolution of the drift velocity with volume fraction
for Archimedes numbers up to approximately 30 is consistent with the Oseen-flow analysis
carried out for Archimedes numbers that are, at best, O(1). In particular, for Ar = 27.2
(case S4), the predicted increase of the drift velocity at low volume fraction is confirmed
numerically. For Archimedes numbers greater than 30 (case S5), the drift velocity of
a cubic array of spherical bubbles does not necessarily remain parallel to gravity; we
postpone discussion of this to section 4.2.

Figure 5 shows the vertical component of the liquid velocity in a vertical symmetry
plane passing through the center of a bubble at φ = 0.2 %. The first row corresponds to
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Figure 5. Vertical component of the liquid velocity normalized by the bubble drift velocity in a
vertical symmetry plane passing through the center of a bubble in an ordered array configuration
at φ = 0.2 %. Gravity is pointing downward (g = −ge3). Increasing Archimedes numbers from
left to right, and increasing Bond numbers from top to bottom.

spherical bubbles (Bo = 0.38) with increasing Archimedes numbers from left to right. It
reveals that the region of liquid dragged up by each bubble extends quite far downstream.
Since the bubble motion is parallel to a primary axis of the array, each bubble benefits
from this upwards motion by its ‘upstairs’ neighbour(s). This effect is stronger at larger
Archimedes numbers, corresponding to higher Reynolds numbers and for which the wakes
of the bubbles therefore extend further downstream. Cooperative rise is thus due to the
strong wake interactions between vertically aligned bubbles. Wake interactions are also
visible in the transient evolution of the drift velocity shown in figure 6. This quantity first
levels off after an initial transient, then the bubbles experience a significant acceleration
at t = O(h/U0), that is as they enter into the wake of their first preceding neighbour.
At the smallest volume fraction considered, the time scales separation and the wakes
strength are sufficient to distinguish the same phenomenon at t ≈ 2h/U0: the bubbles
rise is then influenced by the wake of their second preceding neighbour, they accelerate
again, and so on until convergence.

To complete this analysis we now evaluate how a simple prediction based on pair
interaction compares with our results. We estimate for this the drag coefficient of the
trailing bubble of a vertically-aligned pair separated by a distance h (our lattice spacing)
and translating with a velocity U identical to that of the array of bubbles at the
corresponding volume fraction φ = π/6(db/h)3 using the model of Hallez & Legendre
(2011) (equation (6.7) therein). Their expression, which accounts for potential and wake
interactions, has been established for Re > 20, so we show in figure 7 the results obtained
for case S4 and φ1/3 < 0.55, where this condition is met. At very small volume fraction
(φ1/3 . 0.13), the drag acting on a bubble of the array is comparable to that exerted
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Figure 6. Time signal of the normalized drift velocity of an ordered array of bubbles at small
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Figure 7. Drag coefficient as a function of volume fraction for case S4. 5: ordered array;
∗: trailing bubble of a vertically-aligned pair within the same conditions (Reynolds number,
separation distance), from Hallez & Legendre (2011); H: isolated bubble, estimated from Mei
et al. (1994).

on the trailing bubble of pair rising in line, as expected since in dilute conditions, wake
interaction between vertically-aligned neighbours dominates. At elevated volume fraction,
the dimensionless distance between vertically-aligned bubbles h/db is smaller, but the
drag is no longer governed primarily by such pair interactions, as the departure from the
pair-interaction results is seen to be substantial in figure 7.

4.1.2. Deformed bubbles at moderate Reynolds numbers

We now examine the effect of the Bond number on bubble deformation and on
hydrodynamic interactions. The effect of volume fraction on U/U0 is first shown, for
different values of the Bond number and comparable Archimedes numbers, in figure 8(a)
(Ar ≈ 30) and figure 8(b) (Ar ≈ 15). The data points that are apparently missing
at some intermediate volume fractions for case E1 actually correspond to bubbles that
do not rise steadily and vertically (discussion of these is postponed to section 4.2 and
figure 15(a)), and only small volume fractions are shown for case C because bubbles
cannot exist at higher φ (instead, unsteady elongated bodies of gas are obtained). We
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Figure 8. Normalized steady drift velocity of an ordered array of deformable bubbles as a
function of volume fraction for various Bond numbers. (a) Ar ≈ 30: spherical and ellipsoidal
bubbles. (b) Ar ≈ 15: spherical and dimpled ellipsoidal-cap bubbles. Open symbols: present
DNS. Black crosses: prior DNS of Bunner & Tryggvason (2002a) (Ar = 29.7, Bo = 0.98,
ρd/ρc = µd/µc = 0.02). Dashed lines: numerical fits of the form of (4.8) matching DNS and
isolated-bubble data.

have also included in figure 8(a) the numerical data obtained by Bunner & Tryggvason
(2002a), who noticed that normalized drift velocities could be larger than unity at low
volume fraction (black crosses). In their study, they estimated Re0 = 36 by interpolating
the data of Ryskin & Leal (1984). Using the correlation of Loth (2008), as we did for
our own sets of parameters, we obtained Re0 = 33. For consistency we kept this value
for re-plotting their data. Their results follow approximately the same trend as ours,
although their normalized drift velocities are slightly lower. This is probably because the
effect of the gas viscosity is assumed to be zero when estimating Re0, a hypothesis better
approached by our DNS than by that from Bunner & Tryggvason (2002a), who used a
gas viscosity twice as large.

The shape of U(φ)/U0, specifically its non-monotonicity, is similar to that obtained
for spherical bubbles, but the faster rise at small volume fraction is more pronounced at
higher Bond numbers. The origin of this behaviour becomes clear if one examines the
effect of the Bond number on bubbles wakes in figure 5, in which the vertical component
of the liquid velocity is represented in a vertical symmetry plane, at small volume fraction
(φ = 0.2 %). Each column corresponds to comparable Archimedes numbers (Ar ≈ 15 and
Ar ≈ 30 for the second and third columns, respectively) with increasing Bond numbers
from top to bottom. As the Bond number increases, the bubbles flatten (as discussed
below) and their drag coefficient increases (for a given Re) as a result of the increase
of their frontal area (e.g., Loth (2008)). This induces greater upward liquid velocities
in their wakes and therefore stronger cooperative interactions between in-line objects.
The transient evolution of the drift velocity is shown in figure 6. It is similar to that of
spherical bubbles, with accelerations at time intervals O(h/U0) but a slightly different
initial transient in which the time dependence of acceleration is non-monotonic, a feature
related to the bubble deformation from a sphere to an ellipsoid.

These results can be directly compared with those of Sankaranarayanan et al. (2002),
who found that the evolution of the drift velocity with the volume fraction follows a
Richardson-Zaki relation Re = Re0(1− φ)n (Richardson & Zaki 1954), where n is given

by an empirical closure relation in terms of Re0Bo1/4/Ar (in the present notation). The
trends predicted by this relation strongly disagree with our numerical results, and are
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Figure 9. Fitted coefficients for U(φ)/U0 as given by (4.8): (a) as a function of the Archimedes
number for Bo = 0.38, (b) as a function of the Bond number for Ar ≈ 15 (open symbols) and
for Ar ≈ 30 (filled symbols). The coefficients are obtained by least-squares fits of DNS and
isolated-bubble data.

therefore not shown. Once again, it appears that this power law dependency on volume
fraction may be used to obtain a coarse estimate of the drift velocity at high volume
fraction, but does not capture the complex influence of hydrodynamic interactions on
the rise of cubic arrays of deformable bubbles for low values of φ.

To formulate a semi-empirical law for the function U(φ)/U0 consistent with the Oseen-
flow analysis and that would be valid for smaller φ values and very deformed bubbles,
we note that the positive root of (4.3) for U can be written in the form

U

U0
= 1 +

U0,Stokes

U0
µ∗
C0 − (1.1734 + C1)φ1/3

1 + Cm1φ−1/3
, (4.8)

where U0,Stokes is given by (4.2). We have introduced in this expression three fitting
parameters C0, C1, and Cm1 that we have computed for each case by a least-squares fit
of DNS data at finite volume fraction and isolated-bubble data at zero volume fraction.
The fitted values are shown in figure 9. These parameters account for the effect of
inertial interactions (they are zero in the Stokes-flow regime, Ar = 0), and are monotonic
functions (increasing and decreasing, respectively) of the Archimedes and Bond numbers.
The fitted expression of the normalized drift velocity is shown with dashed lines for each
case in figure 3(b), figure 4 and figure 8, which show that the effect of volume fraction is
well described by this law for all the flow regimes considered.

We now investigate the bubbles’ shape. At low Bo (not shown here), the bubbles
remain approximately spherical as volume fraction is varied; the aspect ratio χ (the
maximum bubble width W divided by the maximum bubble height H, see figure 10)
does not deviate from 1 by more than 5 %, due to the low value of the Weber number.
At Bo > O(1), the bubble shape strongly depends on volume fraction, and is investigated
below. For intermediate Reynolds numbers, say 1 < Re < 100, no theoretical expression
of χ is available. At low Re and We a theoretical result is available (Taylor & Acrivos
1964) for the shape modes introduced below, but this has been found not to predict
accurately results of numerical simulations for an isolated bubble if We is increased to
unity (Ryskin & Leal 1984). The analysis by Moore (1959) is for values of Re well over
100. Therefore, as a starting point in the following, the results of numerical simulations
of an isolated bubble by Ryskin & Leal (1984) are used.
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We first focus on ellipsoidal bubbles (cases E1 and E2)†. In all the simulations
reported here, bubbles are virtually axisymmetric, but may exhibit significant fore-and-
aft asymmetry. In figure 10, we present the aspect ratio as a function of volume fraction
for these cases. Also shown are the first two shape coefficients a2,3 defined by writing the
local bubble radius R(θ) as

R(θ) =
∑
n

anPn(cosθ), (4.9)

where Pn is the Legendre polynomial of order n and θ is the angle between the position
vector at the bubble surface and the bubble velocity (a0 is the radius of the sphere with
the same volume). The coefficients were obtained from a distribution of points (at least
500) on the bubble surface and integrating the orthogonality relation for each Legendre
polynomial.

In figure 10(a-d), for both cases E1 and E2, as the volume fraction is increased, χ
decreases monotonically to unity, and a2 goes to zero, from about their respective values
for isolated bubbles. The corresponding single bubbles (for which results are shown in the
figure with filled symbols, with shape coefficients obtained from Ryskin & Leal (1984)),
are of oblate-ellipsoid shape. This shape is expected for isolated bubbles at large Re,
through a Bernoulli suction effect in the vicinity of the bubble rim, and is expected also
at low Re (Taylor & Acrivos 1964). It may be anticipated that the demise of this shape
at elevated volume fraction is partly due to the dependencies of Re and We on volume
fraction. We have verified, however, that the empirical correlation by Loth (2008) for the
aspect ratio of isolated bubbles, using the values of these dimensionless groups obtained
from the simulations, although yielding good agreement at φ = 0, gives a very poor
prediction of the results presented in figure 10 (and is therefore not shown). The reduction
of suction at the bubble rim is therefore due to the detailed bubble interactions. In their
study of the hydrodynamic interactions between two spherical bubbles rising side by side,
Legendre et al. (2003) showed that at small to moderate Reynolds number (Re . 30,
as encountered in our study), the transverse force is repulsive and increases when the
separation decreases. Such a reduction or elimination of suction between bubbles suggests
the liquid downflow due to a bubble pair occurs around the pair as a whole. In a 3D
cubic array, although the room for liquid to flow down with little opposition is reduced
further (at four sides along a bubble rim), some remains present along vertical edges
of each cell in the array. Therefore, any suction effect normally arising at the rim of a
bubble would be reduced in between bubbles lying in the same horizontal plane. This
may be somewhat countered by an increase elsewhere along the bubble periphery (if not
at a greater distance from the bubble), but a variation in curvature is opposed by surface
tension.

In addition to this reduction in aspect ratio, the fore-and-aft asymmetry of the shape of
an isolated bubble is altered significantly by the finite volume fraction. For single bubbles,
cases E1 and E2 are near the boundary between a low-Re regime of bubbles with a blunt
tail and, at the same We but larger Re, a regime of bubbles with a flat nose (Ryskin & Leal
1984); only a slightly flattened nose is observed, mostly in case E2, resulting in a positive
value of a3 in (4.9). The results in figure 10(b,d) show that already at small but finite
volume fraction, this asymmetry is reversed. The bubble nose becomes rather pointed
and the tail blunt as the volume fraction is increased further. This tendency for oblate
ellipsoidal bubbles arranged in regular arrays to have their nose pulled upwards at finite

† The denomination “ellipsoidal bubble” refers to a bubble that is approximately spheroidal
with weak fore-and-aft asymmetry, but does not mean that the bubble shape is strictly
ellipsoidal.
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Figure 10. Steady aspect ratio (a,c,e) and shape coefficients (b,d) of bubbles in an ordered
array configuration as a function of volume fraction for: (a,b) case E1 (Bo = 2.0, Ar = 29.9);
(c,d) case E2 (Bo = 5.0, Ar = 30.0); (e) case C (Bo = 243, Ar = 15.2). Bubbles shapes are
shown in grey for the highest and the lowest simulated volume fractions. Open symbols: DNS.
Filled symbol: isolated bubble (aspect ratios estimated from Loth (2008) for cases E1 and E2
and from Hua et al. (2008) for case C; shape coefficients estimated from Ryskin & Leal (1984)).

volume fraction has been observed previously by Sankaranarayanan et al. (2002), and
attributed to a wake effect. Indeed Hallez & Legendre (2011) showed that in the present
range of Reynolds numbers, two spherical bubbles rising in line are attracted toward
each other for separation distances greater than approximately 1.3 bubble diameter,
which would be equivalent to φ1/3 = 0.62, a value close to the upper bound of the
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Figure 11. Influence of volume fraction on the deformation of an ordered array of oblate
ellipsoidal bubbles (case E2): relative velocity (urel = u− 〈u〉d) and pressure fields in a vertical
symmetry plane passing through the center of a bubble. Increasing volume fractions from left
to right: (a,c) φ = 0.1 %, U/U0 = 1.34, and (b,d) φ = 13 %, U/U0 = 0.73. Top row: magnitude
of the liquid relative velocity in the entire unit cell. Bottom row: total pressure (including the
mixture-average hydrostatic component) near and inside a bubble. Gravity is pointing downward
(g = −ge3). The black lines show the interface location.

range of volume fractions we consider. To investigate this further, the amplitude of the
P3 mode in (4.9) is included in figure 10. It is seen that in concentrated arrays this
becomes as significant as that of the P2 mode. The presence of successive bubbles in each
others’ wakes does reduce the variation in velocity magnitude between them, as can be
seen in figure 11 (top row). The significance of the stagnation-point flow at the bubble
nose is thereby reduced as volume fraction is increased, and the large dynamic pressure
at a stagnation point in the liquid is reduced (the pressure field is shown in figure 11,
bottom row), along with the magnitude of normal deviatoric stress. Both these result in
an increase in the jump in normal stress and hence an increase in interface curvature.

Finally we note that the results for aspect ratio and shape coefficients for cases E1 and
E2 differ by a factor of approximately two, which roughly corresponds to the ratio of the
bubble Weber numbers at all volume fractions. As we have not undertaken to extend our
parametric study even further to confirm, it is concluded that the results for (χ− 1) and
a2,3 versus Weber number, in the present range of We < 7, are consistent with a linear
dependency.

We have also investigated a regime characterized by a very high Bond number (case C,
Bo = 243). The evolution of the bubbles’ “aspect ratio” and shape with volume fraction
is shown in figure 10(e). The corresponding bubbles in isolation are indented ellipsoidal
caps (Bhaga & Weber 1981; Hua et al. 2008). As the volume fraction increases, the
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Figure 12. Influence of volume fraction on the deformation of an ordered array of dimpled
ellipsoidal-cap bubbles (case C): vertical component of the relative velocity (urel = u−〈u〉d) in
a vertical symmetry plane passing through the center of a bubble. Increasing volume fractions
from left to right: (a) φ = 0.2 %, U/U0 = 1.22, and (b) φ = 2.4 %, U/U0 = 1.17. Same
conventions as in figure 11. Only the region near and inside a bubble is shown.

upside-down crown of gas issuing from the bubble rim becomes thinner and longer to
form a skirt with an inward curvature (in the direction of the bubble axis of symmetry).
The range of φ values that can be considered in this case is relatively narrow, since for
φ & 6 % the bubbles become so elongated that they coalesce.

The theory of Ray & Prosperetti (2014) indicates that the finite length of the skirt
is dictated by the thinning of the skirt downstream of its point of formation. According
to their model, the skirt thickness is proportional to

√
−us, where us is the (negative)

vertical component of the relative velocity (that is, the liquid velocity in the bubble’s
frame of reference) at the outer side of the skirt at a given altitude (the inward curvature
of the skirt being neglected). We show in figure 12 the vertical relative velocity urel3 =
u3 − 〈u3〉d in the vicinity of bubble (with gravity pointing in the −e3 direction). It can
be observed that as the distance from the rim increases, |us| (

∣∣urel3

∣∣ along the outer side
of the skirt) decreases and the skirt tapers, until the skirt ends for a critical value of |us|,
in (qualitative) agreement with the model of Ray & Prosperetti (2014). By comparing
figure 12(a) and (b) one remarks that at high volume fractions a significant downflow of
liquid develops outside of bubbles wakes. This backflow of liquid, which is particularly
strong because the bubbles rise velocity is not substantially reduced for large values of
φ, increases the value of |us| at a given altitude. Therefore, at higher volume fraction,
the skirt must extend further downstream to reach the critical value of |us| at which the
skirt ends, as observed in our simulations.

The aspect ratio of the skirted bubble decreases towards unity as the volume fraction
is increased, even if the skirt is not included in the height. Indeed given the moderate
value of the Reynolds number (Re ≈ 10), the same reasoning as above for ellipsoidal
bubbles is expected to apply, that is, a decrease of the suction effect as the size of the
gap between side neighbours decreases. At low volume fraction, an extrapolation of the
results to zero volume fraction appears consistent with the corresponding result for a
single bubble.

4.2. Steady and unsteady oblique rise of bubbles

In the range of parameters considered thus far, the motion of a single bubble in
unbounded liquid is straight, steady, and parallel to gravity. Bubble motion that is
oblique (i.e., not aligned with gravity) was observed, however, for cases E1 and S5 at
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Figure 13. Subset of analytical solutions obtained from solving (B 3) for Ar = 20 and
ρd/ρc = µd/µc = 0: bubble drift velocity horizontal (a) and vertical (b) components, given
as Reynolds numbers Rei = Uiρcdb/µc, as a function of volume fraction. Gravity is pointing in
the −e3 direction. · · · · · ·: vertical rise (U1 = U2 = 0); - - - -: oblique rise with U2 = 0; ——:
oblique rise with |U2| = |U1|.

certain volume fractions. Such oblique motions have been reported previously for two-
dimensional square arrays of bubbles (Sankaranarayanan et al. 2002; Sankaranarayanan
& Sundaresan 2002; Theodoropoulos et al. 2004), but their triggering and their stability
remain essentially unexplained. We analyse oblique rise further here. In this subsection
the bubble drift velocity vector is denoted by U = Uiei and the gravity vector by
g = −ge3, where ei are the unit primary vectors of the periodic array.

First, existence of such oblique solutions is demonstrated at Reynolds numbers that
are small but finite. The Oseen analysis in appendix B yields the system of equations
(B 3) that involve the bubble velocity and the force exerted by the fluid on the bubble.
As this force is prescribed (it balances buoyancy), (B 3) yields the bubble velocity. The
main solution is naturally a velocity vector aligned with gravity, as studied in section 4.1.
Equation (B 3) does, however, allow for other solutions which satisfy the nonlinear system
of equations (B 12). We have found these non-trivial solutions at values of Ar around
20. The most convenient way to obtain these solutions was found to be, for a given
inclination of the bubble velocity (with respect to the upward vertical direction), to
reduce the problem to a single nonlinear equation for the Reynolds number based on the
lattice spacing and the magnitude of the bubble velocity (Reh in the Appendix), and to
obtain the volume fraction from the remainder of the system of equations. Two types of
non-trivial solutions were studied: either the horizontal bubble velocity component was
aligned with one of the lattice unit vectors, or it was diagonal to the lattice. The results
are presented in figure 13. It is seen that these exist below a critical value of the volume
fraction (which we have found to increase rapidly with the value of Ar), the inclination
angle strongly increasing as the volume fraction is reduced. Oblique rise of single light
solid particles has already been observed in numerical simulations (Jenny et al. 2004) and
experiments (Veldhuis & Biesheuvel 2007), also arising as a non-trivial further solution
(Fabre et al. 2012), but the present solutions crucially involve bubble interactions, we
investigate this further below.

We now return to numerical results. After an initial transient during which they
accelerate from rest under the effect of buoyancy, the bubbles may be deflected from
their original vertical trajectories. At this point, the horizontal components of the
bubble velocity grow in magnitude while the rise velocity drops off. After that, velocity
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Figure 14. Time signals of the bubble drift velocity components (given as Reynolds numbers
Rei = ρcUidb/µc), with U = Uiei and gravity pointing in the −e3 direction, in the three
regimes of motion: steady oblique rise (a,b), oscillatory oblique rise (c), and chaotic oblique rise
(d). These regimes are obtained for (a) case E1 at φ = 0.8 %, (b) case S5 at φ = 13 %, (c) case
S5 at φ = 3.8 %, (d) case S5 at φ = 0.5 %.

fluctuations set in. Three types of dynamic behaviours have been identified depending
on the evolution of these fluctuations: (i) the fluctuations may rapidly dampen out, and
the bubbles finally rise steadily on a straight (but skewed to gravity) path; (ii) they
may take the form of oscillations, so that the bubbles motion is oscillatory around a
straight oblique path; (iii) they may become aperiodic, so the bubble rise is chaotic and,
on average, not aligned with gravity. These regimes are exemplified in figure 14, and will
be respectively referred to as steady oblique rise (a,b), oscillatory oblique rise (c), and
chaotic oblique rise (d).

The bubble drift velocities are in all cases either steady or statistically stationary,
so mean drift velocities can be defined by averaging over a sufficient time period. The
horizontal and vertical components of the (statistically-)steady drift velocity are plotted
against volume fraction in figure 15 for cases E1 and S5. Filled symbols are used for steady
bubbles motion, vertical or oblique. For unsteady bubble motion, the time-averaged drift
velocity is shown with open symbols, and the standard deviation is represented using
vertical bars. In case E1 (figure 15(a)), steady vertical rise is obtained at low and high
volume fractions, whereas at intermediate volume fractions the bubbles rise steadily
along an oblique path with an inclination angle of about 3◦. This figure shows that
three solutions exist in this regime: a symmetric vertical solution (U1 = U2 = 0), and
two asymmetric oblique solutions consisting of horizontal velocity components of equal
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Figure 15. Quasi-steady drift velocity components (U = Uiei) in the form of Reynolds numbers
(Rei = ρcUidb/µc) as a function of volume fraction for an ordered array of bubbles in the cases
where bubbles exhibit non-vertical motions. Gravity is pointing in the −e3 direction. (a) Case
E1 (Bo = 2.0, Ar = 29.9, note that the horizontal components have been multiplied by 10 for
clarity). (b) Case S5 (Bo = 0.38, Ar = 40.7). Filled symbols are used when the bubbles motion
is steady (oblique or vertical). Open symbols and vertical bars are used when the bubbles motion
is unsteady: symbols indicate the mean drift velocity, and bars show its root mean square. The
dashed line is a numerical fit of the form of (4.8) matching DNS and isolated-bubble data for
the vertical rise only.

magnitude (|U1| = |U2| 6= 0), as predicted from the Oseen-flow analysis (figure 13).
In case S5 (figure 15(b)), steady vertical rise, steady oblique rise, oscillatory oblique
rise, and chaotic oblique rise are obtained in that order as volume fraction is decreased.
Inclination of the velocity with respect to the upward vertical direction is between 6 and
13◦(maximum for φ1/3 = 0.4). As volume fraction approaches zero, the steady vertical
rise of the isolated bubble must be recovered, although the occurrence of this transition
cannot be evidenced by numerical simulations owing to their prohibitive cost.

It is possible to obtain insight in this behaviour by using prior results for bubble
pairs. At steady-state, the integral of fluid stresses over the bubble surface, denoted
by f , is balanced by the buoyancy force fbuoy: f = −fbuoy, with fbuoy = fbuoye3 =
1
6πd

3
b(ρc − ρd)ge3. The total surface force f acting on the bubble can be decomposed

into a drag force fdrag and a lift force f lift, defined by

fdrag = (f ·U)
U

|U |2
, f lift = f − fdrag, (4.10)

and corresponding to longitudinal and transverse components of f with respect to
the direction of motion, respectively (these definitions can be used for unsteady but
statistically stationary systems by replacing U and f by their time averages). The
persistence of a (possibly average) oblique motion implies the existence of a net (average)
lift force exerted on the bubble. The magnitude of this lift force is classically presented
in the form of a dimensionless lift coefficient CL defined by

CL =
|f lift|

0.125πd2bρc|U |
2 . (4.11)

The (average) lift coefficient is plotted as a function of volume fraction in figure 16 for
case E1 (open grey triangles) and case S5 (open black squares).

Since the tilt angle remains small (not larger than 13◦ in our simulations), each bubble
is in the wake of its predecessor, and the oblique path is expected to originate from
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Figure 16. Average lift coefficient as a function of volume fraction for case E1 (grey triangles)
and case S5 (black squares). Open symbols: for a bubble of an ordered array, present DNS.
Filled symbols: for the trailing bubble of a pair of spherical bubbles within the same conditions
(orientation, Reynolds number, separation distance) as two vertically-aligned bubbles of the
ordered array, with (large symbols) and without (small symbols) accounting for the interaction
with the wake of the leading bubble, from Hallez & Legendre (2011).

the vorticity produced by the preceding bubble. We therefore investigate whether the
lift force induced by the preceding bubble can be estimated from prior work on bubble
pairs separated by a fixed distance equal to the present lattice spacing, both rising at a
constant velocity U and where the angle between U and the vertical line joining their
centers is the inclination angle measured from our simulations. The model proposed by
Hallez & Legendre (2011) for bubble pairs (equation (6.12) therein) is used here for this
purpose. A spherical bubble shape appears a reasonable approximation given that in
our simulations the aspect ratio does not exceed 1.3 for case E1, and 1.1 for case S5.
The results are shown in figure 16 with larger filled symbols. To assess the influence
of the leading bubble’s wake, the lift coefficient obtained for bubble pairs without the
contribution from the wake is shown on the same figure with smaller filled symbols.
The trend obtained by considering the pair interaction is in excellent adequacy with
our numerical results for periodic arrays when the wake of the top bubble is accounted
for, thereby demonstrating that oblique rise is essentially a wake-induced effect. The lift
coefficient in ordered suspensions is found to be larger than that due to the interaction
with the wake of a single bubble, and the difference is more pronounced at higher volume
fractions, since in the periodic configuration the bubble has an infinite number of top
neighbours that may contribute to the lift force.

This reasoning can even be made more precise by considering the expression of the lift
force acting on a single spherical bubble moving in a (e.g. wake-induced) rotational flow
(Auton 1987; Legendre & Magnaudet 1998; Hallez & Legendre 2011):

f lift ∝ d3bρcΩ ×U . (4.12)

In this expression, Ω = |Ω|eh is the liquid vorticity “seen” by the bubble and produced
by the motion of all the other bubbles. No clear definition of this quantity is available if
vorticity is not uniform at the bubble scale, as is the case in the present study, but it is
reasonable to assume that it can be qualitatively estimated by examining vorticity profiles
in the bubble vicinity. In turbulent flows, Merle et al. (2005) and Naso & Prosperetti
(2010) approximated the velocity and vorticity “seen” by bubbles and solid particles
respectively, by the average of these quantities over shells of different sizes. In order to
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Figure 17. Liquid vorticity horizontal component ωh = ω · eh in the vertical plane passing
through the center of a bubble and containing its drift velocity, for ordered arrays of bubbles
rising steadily in an oblique direction: (a) case E1, φ = 0.8 %; (b) case S5, φ = 6.5 %. Positive
(negative) values upstream of the bubble would give a positive (negative) contribution to the
lift force as modeled by (4.12). The thin black arrow shows the direction of bubble drift velocity.
The thick arrows show the magnitudes and directions of the drag (green arrows) and lift (orange
arrows) forces scaled by the buoyancy force.

show that our results are qualitatively consistent with (4.12), it is thus convenient to
introduce an orthonormal direct basis (e‖, e⊥, eh), defined by the unit vectors

e‖ =
U

|U |
, e⊥ =

f lift

|f lift|
, eh = e‖ × e⊥. (4.13)

The bubble’s steady motion is contained in the vertical plane defined by (e‖, e⊥). We
now examine the sign and magnitude of the liquid vorticity component ωh = ω ·eh ahead
of the bubble, where it should overall give a positive contribution to |Ω| for the above
model to be correct. We show in figure 17 the liquid vorticity field projected onto eh in
the vertical plane normal to eh for two examples of steady oblique rise. The bubble in the
right panel experiences a stronger lift force (indicated by the thick orange arrow) than
the bubble in the left panel. This is consistent with (4.12) and the fact that, upstream of
the bubble (its drift velocity being shown with the black arrow), ωh is positive, and its
magnitude is larger than that in the left panel (although only two examples are shown
here the same result holds for all our simulations). In addition it is seen from figure 17
that ωh is transported from the surface of preceding bubbles, hence confirming the key
role played by the wakes and the associated lift force for the stability of oblique motion.

We will now examine the time dependence of bubbles motion in the unsteady regimes.
As illustrated in figure 18, which depicts the single-sided amplitude spectra of the discrete
Fourier transforms of the drift velocity components time signals in the oscillatory (left)
and chaotic (right) rise regimes, a spectral analysis of the unsteady velocity signals reveals
clear peaks at a frequency equal to fh = (U1 +U2)/(2h) (where the bar denotes a time-
average). Normalizing frequencies by f3 ≡ U3/h (not shown here) does not lead to a
collapse of the curves. This suggests that the force fluctuations experienced by a bubble
are also driven by the interaction with the wakes of the preceding bubbles that are
not on the same vertical axis. As a consequence, the dynamic behaviour of a bubble
in an ordered array, although greatly influenced by the direct interaction with its top
neighbour, is also dictated by longer-range nonlinear interactions with other bubbles
located in above horizontal planes.

In the light of these results, we are now in a position to propose the following scenario
for explaining the transitions between the various regimes of motion reported in figure 15.
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Figure 18. Single-sided amplitude spectra of discrete Fourier transforms of the drift velocity
components time signals. Unsteady oblique rise of ordered arrays of bubbles: (a) oscillatory
motion (case S5 at φ = 3.8 %), (b) chaotic motion (case S5 at φ = 1.6 %). The amplitude

is normalized by the average vertical drift velocity U3, the frequency is normalized by
fh = (U1 + U2)/(2h).

First, non-vertical motion can only occur when the flow conditions allow sufficiently
high Reynolds numbers to be attained (here, cases E1 and S5). Vorticity then becomes
significant in the vicinity of each bubble due to the wake of its predecessor; an infinitesimal
asymmetry can then result in a lift force that is sufficient to result in oblique motion (Koch
1993). If each bubble is only influenced by the wake of its immediate predecessor, this
motion is steady. When the wakes extend horizontally over distances large compared to
the lattice spacing, each bubble interacts with the wakes of a great number of neighbours,
including some that are not located on the same vertical axis, and the motion becomes
chaotic. Then, for a given flow regime, the volume fraction is in the first place related
to the distance between the bubbles, but also affects the Reynolds number in a non-
monotonic manner. At low volume fraction, when the Reynolds number increases with
volume fraction, steady vertical rise, steady oblique rise, and unsteady oblique rise occur
in that order at increasing volume fraction. At higher volume fraction, the situation
becomes more complex because the Reynolds number decreases with φ. It appears that
the dominant effect of increasing volume fraction is then not to bring the bubbles closer
to each other, but to reduce their velocity, so that steady oblique rise is first recovered,
and is replaced by steady vertical rise at the highest volume fractions.

5. Free arrays

We examine in this section the behaviour of freely evolving bubbly flows as represented
by the repetition of a unit cell containing several independent bubbles (“free arrays”).
This problem, studied previously by several groups (e.g., Bunner & Tryggvason (2002a);
Esmaeeli & Tryggvason (2005); Yin & Koch (2008)) but only at moderate and high
volume fractions, is revisited here following the insights gained in the previous section
for ordered arrays. Our main objective in this section is to investigate the dynamics of
free arrays at small and intermediate volume fractions, and to compare the observed
trends with those obtained for ordered suspensions.

Simulations of free arrays of bubbles have been undertaken for cases E1 and C
(table 1). The two fluids were initially at rest, Nb identical spherical bubbles were
introduced in a cubic periodic unit cell of size h (which results in a gas volume fraction
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φ = (πNbd
3
b)/(6h

3)), and gravity was switched on at time zero. It was found that the
transient evolution of the system can follow either of two routes: one with successive pair
coalescence events until an ordered array configuration is recovered, and the other one in
which the number of bubbles remains constant throughout the simulation. The former
was observed for case C, which corresponds to highly deformable bubbles of dimpled or
skirted ellipsoidal-cap shapes, even at relatively low volume fractions (the lowest volume
fraction considered in that case was φ = 0.8 %). In case E1 (weakly ellipsoidal bubbles),
by contrast, coalescence was never observed, provided that the bubbles interfaces are
initially sufficiently separated from each other and that the volume fraction remains below
approximately 5 % (we shall elaborate on this last point in section 5.2). Examination
of the suspension evolution revealed that bubbles never come into close contact in that
case, as previously observed by Esmaeeli & Tryggvason (1999) in a similar flow regime.
After a transient regime, the flow was found to become independent of the initial bubbles
positions and a well-defined statistically steady state was reached.

In the following we analyse the statistically stationary rise of free, non-coalescing,
deformable bubbles at moderate Reynolds number (case E1). About fifty simulations of
free arrays were run in total, corresponding to different initial conditions, numbers of
bubbles, and volume fractions. For each of these, the transient evolution of the system
was monitored through the time signals of the bubble drift velocity U (defined, as for
ordered arrays, by equation (2.3), and therefore equal to the average drift velocity
of the Nb bubbles) and of the interface surface area A (which is a measure of the
average deformation of the Nb bubbles). In all simulations, the instantaneous horizontal
components of U were found to be negligibly small, so we shall hereinafter simply use
U to denote the vertical component of the drift velocity vector. Each simulation was
continued until U and A became statistically stationary. Their time averages, denoted
by overbars in what follows, were then computed by averaging over a sufficient time
interval.

5.1. Convergence with the number of bubbles

The influence of the number of free bubbles in the unit cell is evaluated by varying Nb
from 2 to 27 while keeping the volume fraction (and all other parameters) constant. The
evolution of the bubbles drift velocity with the number of bubbles is shown in figure 19
for φ = 2.4 % (filled circles). The main effect of additional degrees of freedom is to slow
down the bubbles: the drift velocity drops by 15 % when the relative motion between two
bubbles is allowed, and is reduced further (up to ≈ 30 %) if the number of bubbles in
the unit cell is increased. For Nb > O(10), the drift velocity becomes nearly independent
of the number of bubbles. The rate of convergence and the maximal relative decrease
in drift velocity with the number of bubbles appear to be essentially independent of
the volume fraction, at least in the limited range considered here, as shown in figure 19
(open triangles and squares). The drift velocities obtained by Bunner & Tryggvason
(2002a) for a similar flow regime have been reported in the same figure (crosses). It is
worth mentioning that although the maximum number of bubbles shown in figure 19 is
Nb = 27, Bunner & Tryggvason (2002a) have performed simulations for 1 6 Nb 6 216
(see Figure 8a in their paper), and also concluded that the effect of the system size on
the drift velocity becomes negligible for Nb > O(10) in this flow regime. Overall the
agreement between the two data sets is excellent, including in the peculiar case Nb = 4.

It can indeed be noticed in figure 19 that convergence is not monotonic, and that
the rise is abnormally slow for Nb = 4. Visual inspection of the spatial distribution of
the bubbles reveals a significant preference for horizontal alignment in that case. This
bias is particularly pronounced for values of φ that are not very small and is therefore
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Figure 19. Influence of the number of bubbles on the average bubbles drift velocity for various
volume fractions. The drift velocity is normalized by that obtained in the ordered configuration
(Nb = 1). Symbols other than crosses: present DNS for case E1 (Ar = 29.9, Bo = 2.0).
Crosses: prior DNS of Bunner & Tryggvason (2002a) for a comparable flow regime (Ar = 29.7,
Bo = 0.98).

Figure 20. Influence of the number of free bubbles on their spatial distribution within a periodic
unit cell: typical instantaneous snapshots for Nb = 4 (left) and Nb = 8 (right), for case E1 at
φ = 3.8 %.

illustrated in figure 20 for φ = 3.8 %: while the bubbles are rather uniformly distributed
within the periodic cell for Nb = 8 (right), as is the case for other typical values of Nb,
they all remain in the same horizontal plane when Nb = 4 (left), so that in the latter
case the suspension actually consists of successive horizontal layers of bubbles. As shown
by Hallez & Legendre (2011), side-by-side alignment maximizes the drag force acting
on a pair of bubbles, resulting in lower drift velocities than with other types of spatial
distributions.

This particular behaviour for Nb = 4 demonstrates that an ordered microstructure is
not always unstable. Such arrangements in horizontal planes are indeed possible if the
number of free bubbles possesses an integer square root, due to periodicity and system
symmetries. For Nb = 9, the bubbles also tend to arrange within a single horizontal
plane, but this arrangement rapidly breaks up and is only observed intermittently. This
results in the small but noticeable anomalous reduction of the drift velocity visible for
Nb = 9 in figure 19. For Nb = 16, no horizontal layer of bubbles is formed during the
simulation, and no anomaly is detectable in figure 19. We conclude that the artificial
effects of symmetry and periodicity observed when Nb is an exact square rapidly vanish
as the number Nb of independent bubbles is increased.
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Figure 21. Influence of volume fraction on the bubbles drift velocity in ordered and freely
evolving suspensions, with comparable Ar (≈ 30) and various Bo. The drift velocity is
normalized by the terminal velocity of an isolated bubble for the same Archimedes and Bond
numbers (estimated from Loth (2008)). ◦ and - - - -: present DNS data, and their numerical
fit, for Nb = 1 (ordered arrays) and Bo = 2.0; •: present DNS for free arrays of 8 bubbles with
Bo = 2.0; : prior DNS of Bunner & Tryggvason (2002a) for free arrays of 27 bubbles with
Bo = 0.98; N: prior DNS of Bunner & Tryggvason (2003) for free arrays of 27 bubbles with
Bo = 4.9.

5.2. The effect of volume fraction on bubble drift velocity and deformation

The volume fraction has been varied from 0.2 to 3.8 % by reducing the size of the
unit cell while keeping all the other parameters constant, for a number of freely moving
bubbles set to Nb = 8. For volume fractions greater than 5 %, numerical coalescence
(that is, coalescence due to the spacing between bubble interfaces being less than the
grid spacing) occurs during the transient evolution of the flow, therefore no data could
be obtained for high volume fractions.

Data for fairly high volume fractions are however available from prior studies of Bunner
& Tryggvason (2002a) and Bunner & Tryggvason (2003) who performed simulations of
free arrays of bubbles using a front-tracking method that does not allow coalescence. In
their simulations, the Archimedes numbers are similar to ours (Ar ≈ 30) but the Bond
numbers (and hence the bubble shapes) are different: the bubbles are nearly spherical
(Bo = 0.98) in Bunner & Tryggvason (2002a), they are oblate ellipsoids (Bo = 5.0)
in Bunner & Tryggvason (2003), our present simulations are for Bo = 2.0. In order to
present their results together with ours, we first estimate the terminal velocity of the
corresponding isolated bubbles. We proceed for that purpose in the same manner as we
did for our own simulations, that is by using the correlation of Loth (2008) for single
ellipsoidal bubbles, which leads to Re0 = 33 for Bo = 0.98, and Re0 = 26 for Bo = 5.0.

The influence of volume fraction on the drift velocity normalized by the terminal
velocity of the same bubble in unbounded liquid is shown in figure 21. Squares and tri-
angles correspond to prior simulations of nearly spherical and oblate ellipsoidal bubbles,
respectively. Filled circles correspond to our present simulations of weakly ellipsoidal
bubbles. For comparison, the results we obtained for the corresponding ordered arrays
are shown in the same figure with open circles. Remarkably, the evolution of the drift
velocity with φ seems to be different in dilute and fairly dense suspensions of free bubbles,
as is the case when bubbles are perfectly ordered. We have checked that neither a linear
evolution with φ nor a law of the form U/U0 = k(1−φ)n (with k and n free parameters)
is compatible with the data presented in figure 21.

At moderate to fairly high volume fractions (say, 0.015 6 φ 6 0.25, that is, 0.25 6
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Figure 22. Influence of volume fraction on the bubbles sphericity in ordered (open circles) and
free (filled circles) arrays for case E1. The sphericity is defined as the ratio between the total
surface areas of a set of Nb volume-equivalent spheres and that of the bubbles.

φ1/3 6 0.63), the drift velocity of free bubbles decreases approximately linearly in φ1/3.
This scaling, which is also independent of the bubble oblateness (in the limit of the range
of shapes considered here), agrees with that obtained for ordered suspensions in the same
conditions.

The drift velocity dependence on volume fraction is radically different at vanishing
φ: although we cannot approach the dilute limit in the simulations, it is clear that a
simple extrapolation to φ = 0 from results at larger φ is not feasible. In the absence
of inertial effects and in this dilute limit, a linear reduction of the drift velocity with φ
would be expected, according to the analytical solution from Keh & Tseng (1992), derived
for random bubbly suspensions in the Stokes flow regime. At finite Reynolds numbers,
however, inertial effects are expected to dominate far from the bubbles. The results for
free arrays at low φ in figure 21 suggest strongly that bubbles in dilute suspensions rise
faster than their isolated counterpart, as in ordered arrays, due to cooperative wake
interactions. Such interactions would be much weaker than in ordered suspensions due
to the less likely occurrence of vertical alignments (since a spherical or slightly oblate
bubble lying in the wake of one of its neighbour experiences a transverse lift force directed
away from the wake so that two weakly ellipsoidal bubbles cannot remain in line), but
they might still play a role in the suspension dynamics. The uncertainty of the terminal
velocity of isolated bubbles prevents us from drawing definitive conclusions on this point,
as that would require simulations at even lower volume fractions, beyond the reach of
the computational capabilities at our disposal.

The effect of volume fraction on bubble deformation is now evaluated, both qualita-
tively from visualizations of the flow, and quantitatively through the measurement of their
interfacial surface area, larger surface areas being associated with a stronger departure
from the spherical shape. We show in figure 22 the volume fraction dependence of the
bubbles sphericity, defined as the ratio between the total surface areas of a set of Nb
volume-equivalent spheres and that of the bubbles. The trends obtained for ordered
and free arrays are qualitatively similar, ellipsoidal bubbles becoming more spherical
as volume fraction increases. A plausible explanation of the larger oblateness (smaller
sphericity) of freely moving bubbles is the weaker role of wake-induced nose elongation,
due to the less likely occurrence of vertically-aligned pairs, as explained above.

An explanation of the observed similarities between freely evolving suspensions and
ordered arrays at small to intermediate volume fractions may be sought in the fact that



Buoyancy-driven bubbly flows: ordered and free rise 33

in the former, the bubbles spatial distribution is nonrandom and possesses a certain
degree of order. The presence of order in suspensions is classically evaluated using the
structure factor or pair distribution function. Due to the level-set method, tracking
individual bubbles is not automatically done and would require a significant further
coding effort. For this reason the microstructure has not been evaluated quantitatively
in our simulations. Nevertheless flow visualizations have been used for a qualitative
evaluation of the bubble spatial distribution.

Visualizations of bubble motion reveal that free bubbles rise at comparable velocities
with very weak horizontal displacements and never get close to each other for the entire
range of volume fractions we considered. This may be seen in supplementary movies
1 and 2, which show top views of the unsteady bubble motion at the maximum (φ =
3.8 %) and minimum (φ = 0.24 %) considered volume fractions, respectively. Their
spatial distribution within the cell is fairly uniform, and their relative positions remain
more or less constant as they rise, in agreement with prior observations by Esmaeeli &
Tryggvason (1999), who also found, for similar flow conditions, that bubbles dispersion
in the horizontal direction is almost absent.

These observations are consistent with prior quantitative evaluations of the microstruc-
ture of dilute and moderately concentrated suspensions of (nearly) spherical bubbles at
Re = O(10). On the experimental side, Cartellier & Rivière (2001) evidenced that in the
range 10−4 < φ < 10−2, a test bubble experiences a deficit of neighbours in its immediate
vicinity and an excess of neighbours at the border of the deficit zone, or in other words,
that a certain degree of order is present in the suspension. The magnitude and extent of
the deficit zone decrease with increasing φ, but a clear nonrandom microstructure has
been shown by Cartellier et al. (2009) to persist at least up to φ = 0.08. On the numerical
side, Bunner & Tryggvason (2002a) and Yin & Koch (2008) identified analogous deficits
of bubbles at short distances and excesses of bubbles farther away from a test bubble for
0.02 6 φ 6 0.12 and φ = 0.05 in their respective simulations.

Although bubbles are free to sample the entire liquid, they stay with the same
neighbours for long times, which explains why suspensions of free bubbles share some
properties with perfectly ordered ones, at least up to moderately high volume fraction
and at moderate Reynolds number.

A related point, beyond the scope of the present study, is the properties of the bubble-
induced liquid agitation. Information about this can be found in Loisy (2016).

5.3. Comparison with experiments

Finally, we investigate the relation of our results and prior experimental data. A direct
comparison between direct numerical simulations and experiments is often impossible be-
cause the typical flow conditions differ strongly between these two approaches (moderate
vs. high Reynolds numbers, nearly spherical vs. wobbling bubbles, absence vs. presence
of surfactants, monodispersity vs. polydispersity, constant vs. varying bubble diameter
at varying φ, etc.). To the best of our knowledge, the only experiments carried out under
conditions comparable to those in the present work are those of Martinez-Mercado et al.
(2007), who measured the average velocity of nearly monodisperse air bubbles rising
in a mixture of water and glycerin (50 % mass fraction), for volume fractions ranging
from 0.4 to 6.5 %. Importantly, they found the bubble equivalent diameter to be almost
independent of the gas volume fraction, so that comparison with our numerical data is
relevant. According to the physical properties of the fluids and bubble equivalent diameter
(db = 1.20± 0.05 mm) reported in their paper, their experimental conditions correspond
to Ar = 26.3± 1.6 and Bo = 0.25± 0.02. In this regime, bubbles are nearly spherical (as
confirmed by the photographs in their paper), so the terminal Reynolds number of the
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Figure 23. Influence of volume fraction on the normalized drift velocity of freely rising bubbles:
comparison between simulations and experiments. •: present DNS (Nb = 8, Ar = 29.9,
Bo = 2.0, Re0 = 31); ×: experiments of Martinez-Mercado et al. (2007) (Ar = 26.3 ± 1.6,
Bo = 0.25± 0.02, Re0 = 29.7± 3.1). The terminal velocities U0 in unbounded liquid have been
estimated from the correlation of Loth (2008) for numerical simulations (ellipsoidal bubbles)
and from the correlation of Mei et al. (1994) for experiments (spherical bubbles).

equivalent isolated bubble can be estimated from the correlation of Mei et al. (1994) (as
we did for our simulations of spherical bubbles), which yields Re0 = 29.7 ± 3.1. These
experimental conditions are therefore comparable to our case E1 (Ar = 29.9, Bo = 2.0,
Re0 = 31) in terms of Archimedes and Reynolds numbers, but not in terms of Bond
numbers.

The evolution of the bubble drift velocity with volume fraction is shown in figure 23,
wherein experimental measurements are represented by crosses and the present numerical
results by circles. Numerical and experimental trends are very similar, both exhibiting two
different scaling laws at moderate and low volume fractions. In particular, experimental
data are compatible, like the numerical ones, with a linear dependence of the rise velocity
on φ1/3 in the case of moderately concentrated suspensions. This behaviour suggests that
ordered arrays are able to capture some properties of real bubbly suspensions. Besides,
we note that experimental velocities are systematically lower than that predicted from
our simulations. Although perfect agreement is not expected due to the differences in
the flow conditions, as discussed below, we speculate this may also be partly due to our
work being on perfectly homogeneous suspensions, whereas experiments may be affected
by the presence of walls and of weak gradients.

The main difference between our simulations and the above-mentioned experiments
is the value of the Bond number which directly alters the bubble shape (ellipsoidal in
the former, nearly spherical in the latter). It follows that a quantitative comparison
of bubble shapes between our numerical results and experimental measurements is not
possible. It is however worth mentioning that, in their experiment at high Reynolds
number (Re ≈ 400), Zenit et al. (2001) found the aspect ratio of ellipsoidal bubbles to
decrease with increasing volume fraction (from χ = 1.5 at φ ≈ 0 to χ = 1.2 at φ ≈ 0.05).
This trend is qualitatively similar to our numerical results presented in figure 10 for an
ordered array of ellipsoidal bubbles with comparable aspect ratios, and more generally,
is qualitatively similar to what we observe in our simulations of both ordered and free
arrays of ellipsoidal bubbles.

To further support the idea that ordered arrays may be relevant to bubbly flows of
practical interest, experimental data obtained by Garnier et al. (2002), Riboux et al.
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Figure 24. Prior experimental data for air bubbles rising in water: U (average drift velocity in

meters per second) replotted versus φ1/3 (with φ the gas volume fraction). In the legend, db0 is
the experimentally-determined bubble diameter at zero volume fraction.

(2010), and Colombet et al. (2015) for the air-water system at high Reynolds number
(Re � 100) are presented in figure 24 in the form U vs. φ1/3. Figure 24 bears a striking
resemblance with figure 23: at moderate to fairly high volume fractions (say 0.2 6 φ1/3 6
0.5, that is, 0.008 6 φ 6 0.13) the bubble velocity decreases linearly with φ1/3 whereas
in the dilute limit a different scaling law seems to hold. We have checked that neither a
linear evolution with φ nor a law of the form U ∝ (1− φ)n (with n a constant, possibly
different for each data set) is compatible with the data presented in figure 24. It is also
worth mentioning that some of these data sets are consistent with the notion that, in
dilute bubbly suspensions, the bubble drift velocity may be higher than that of a single
bubble (although again definitive conclusions can hardly be drawn on this point owing
to experimental uncertainty on the values of the isolated bubble velocity).

Overall our numerical results as well as prior experimental data suggest that some
properties of bubbly flows are sensitive to the presence of order, and that modelling
a bubbly suspension by a cubic lattice of bubbles to investigate such properties is not
irrelevant, except maybe at very high volume fractions, and as long as clusters are not
formed.

6. Conclusions

The effect of volume fraction φ on the rise velocity and deformation of bubbles was
first investigated when these are arranged in a cubic array. A non-monotonic behaviour
of the rise velocity U at increasing volume fraction was obtained in the whole range of
parameters considered from the DNS; this was supported by an analysis in the limit
of weakly inertial suspensions of spherical bubbles. For low values of φ, “cooperative”
wake interactions dominate and lead to an increase of U at increasing volume fraction,
whereas the opposite behaviour occurs in the limit of large φ because of the predominance
of “hindering” viscous interactions. These findings were supported further by comparison
with the drag on a bubble behind another bubble when no other bubbles are present. A
semiempirical law for the volume fraction dependence of the rise velocity, consistent with
our numerical results even in the case of highly deformed bubbles, was also proposed.
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The investigation of bubble shapes showed that ellipsoidal and skirted bubbles tend to
become spherical at increasing volume fraction, and that the fore-and-aft asymmetry of
isolated ellipsoidal bubbles is reversed for non-vanishing values of φ. An oblique motion
of the bubbles was observed for certain parameter values, and supported by the above-
mentioned analysis. In this regime, the lift coefficient can be approximated by that of
bubble pairs that are aligned vertically. The behaviour in this regime can be steady,
oscillatory or chaotic, the latter arising if the horizontal extension of the bubbles wakes
is large enough to allow interaction of bubbles with the wakes of neighbours which are
not vertically aligned with them. A scenario explaining the transitions between these
three regimes has been proposed.

The free rise of weakly deformed bubbles at moderate Reynolds number was then
investigated for small and intermediate volume fractions. Simulations of free arrays of
bubbles revealed that these share some common properties with ordered ones. Most
notably, the drift velocity of free bubbles decreases linearly in φ1/3 at moderately high φ
whereas a different scaling law holds in the limit of low φ, as in ordered suspensions. This
change of behaviour is compatible with available experimental data, and is believed to be
responsible for the confusion in the literature regarding the form of empirical correlations
in the context of corresponding asymptotic expressions. In addition, deformable bubbles
were observed to become spherical as the volume fraction is increased, as in ordered
arrays. We attribute the similarities between ordered and freely evolving suspensions to
the fact that free bubbles were observed to keep the same neighbours for a long time, in
agreement with prior work indicating that a certain degree of order is present in bubbly
flows at comparable Reynolds number and volume fractions.

The present work is restricted to bubbles rising at a Reynolds number that is not more
than 40. Beyond this, the dynamics of bubbly suspensions will be enrichened by the pos-
sibility of a single bubble already exhibiting path instability (e.g., Ern et al. (2012)). Such
a study would require substantially larger computational resources, as comparatively thin
boundary layers must be resolved. In addition, the present conclusions apply to perfectly
homogeneous systems, perfectly monodisperse suspensions, and perfectly clean bubbles.
Weak shear, polydispersity, and interface contamination may all have significant effects
in real bubbly flows. The work presented herein forms the basis of an investigation of
passive scalar transport in bubbly flows and of turbulent bubbly flows.

The authors acknowledge stimulating discussions with F. Risso. This work benefited
from the financial support of the French research agency (grant ANR-12-BS09-0011), and
was performed using the HPC resources provided by GENCI-CINES and GENCI-IDRIS
(grant x20162b6893), PSMN (École Normale Supérieure de Lyon), P2CHPD (Université
Claude Bernard Lyon 1) and PMCS2I (École Centrale de Lyon).

Appendix A. Discretization schemes and additional validation tests

Details on the numerical methods used in our study, together with the results of some
benchmark and sensitivity tests of our code, are provided hereinafter.

A.1. Algorithm and discretization schemes

Spatial discretization relies on a finite difference/finite volume approach on a fixed,
staggered, Cartesian grid. Scalar variables (level-set, pressure) are located at cell centers,
which discrete coordinates are denoted with subscripts (i, j, k), and the three components
of velocity are stored on cell-face centers (i+ 1/2, j, k), (i, j + 1/2, k) and (i, j, k + 1/2),
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which allows a stronger coupling between velocity and pressure than with co-colocated
grids.

The governing equations are integrated in a coupled manner using a time-staggered
discretization: the velocity components are computed at integer time steps while the
pressure and the level-set function are computed at half-integer time steps. In what
follows, ∆t is the time step, and the superscripts n and ∗ are used to denote the current
time iteration and some intermediate iteration, respectively. After initial conditions have
been defined for the level-set, velocity, and pressure fields, the time integration algorithm
proceeds iteratively through the following steps.

At the beginning of timestep tn, ψn−1/2, un, un−1, and un−2 are known.

Step 1: Advection of the level-set function. ψ is advanced from ψn−1/2 to ψn+1/2

according to equation (3.6) using the three-stage third-order TVD Runge-Kutta scheme
(Gottlieb & Shu 1998):

ψ∗ = ψn−1/2 +∆t
[
−L (un, ψn−1/2) + A (un, ψn−1/2)ψn−1/2

]
, (A 1)

ψ∗∗ =
3

4
ψn−1/2 +

1

4
ψ∗ +

1

4
∆t
[
−L (un, ψ∗) + A (un, ψ∗)ψ∗

]
, (A 2)

ψn+1/2 =
1

3
ψn−1/2 +

2

3
ψ∗∗ +

2

3
∆t
[
−L (un, ψ∗∗) + A (un, ψ∗∗)ψ∗∗

]
, (A 3)

where L (u, ψ) and A (u, ψ) are finite difference approximations of the advection term
u ·∇ψ and of the source term A(u, ψ), respectively. In L (u, ψ), u is interpolated at
the cell center with a second-order scheme and ∇ψ is computed using a fifth-order
WENO scheme (Jiang & Shu 1996), as recommended by Salih & Ghosh Moulic (2009).
In A (u, ψ), ∇iψ is calculated through a fourth-order centered scheme and ∇iuj through
a second-order centered scheme.

Step 2: Reinitialization of the level-set function. As already mentioned in
section 3, the iterative approach introduced by Sussman et al. (1994) is used to reinitialize
ψ. This consists in solving for an artificial time τ

∂d

∂τ
= sgn(ψ)(1− |∇d|), with d(x, τ = 0) = ψ(x) (A 4)

where sgn is the sign function. An interesting feature of equation (A 4) is that the
reinitialization of the level-set function starts near the interface and propagates outward:
when this equation is solved up to pseudo-time T , d(x, τ = T ) is the signed distance
function for all the points within distance T from the interface. Since it is important
for ψ to be a signed distance function only inside the interfacial region of thickness 2ε,
the reinitialization is not carried out to steady-state but only up to a given pseudo-time
which must be at least equal to ε. Our algorithm is based on the second-order TVD
Runge-Kutta scheme (Gottlieb & Shu 1998) for the time integration of equation (A 4),
which is carried out until τ = M∆τ , where ∆τ is the artificial timestep, and M is a fixed
number of iterations.

(i) Initially

d0 = ψn+1/2. (A 5)
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(ii) Then for m = 0 to m = M :

d∗ = dm +∆τR(dm), (A 6)

dm+1 =
1

2
dm +

1

2
d∗ +

1

2
∆τR(d∗). (A 7)

(iii) Finally

ψn+1/2 = dM . (A 8)

In practice we use the standard value ∆τ = 0.5∆x, and set M = 5. In the above
algorithm, R(d) represents the discretization of the spatial term sgn(ψ)(1−|∇d|) devised
by Russo & Smereka (2000), which reads in three dimensions

R(d) =

−
1

∆x
(sgn(d0i,j,k)|di,j,k| −Di,j,k) if (i, j, k) ∈ Σ∆x,

−sgn(d0i,j,k)G(di,j,k) otherwise.
(A 9)

Σ∆x is the set of points located within one grid point from the zero-level of d0, where
Di,j,k is computed by

Di,j,k = ∆x
d0i,j,k
∆d0i,j,k

(A 10)

with

∆d0i,j,k = max{∆x, 0.5
√

(d0i+1,j,k − d0i−1,j,k)2 + (d0i,j+1,k − d0i,j−1,k)2 + (d0i,j,k+1 − d0i,j,k−1)2,∣∣d0i+1,j,k − d0i,j,k
∣∣, ∣∣d0i,j,k − d0i−1,j,k∣∣, ∣∣d0i,j+1,k − d0i,j,k

∣∣,∣∣d0i,j,k − d0i,j−1,k∣∣, ∣∣d0i,j,k+1 − d0i,j,k
∣∣, ∣∣d0i,j,k − d0i,j,k−1∣∣}, (A 11)

and G(di,j,k) is an upwind discretization of |∇d| − 1 computed with a finite-difference
second-order ENO scheme (Harten et al. 1987).

Step 3: Correction of the level-set function. To enforce volume conservation, the
iso-contours of ψn+1/2 are shifted. ψn+1/2 is then replaced by

ψn+1/2 +∆ψ, with ∆ψ =
V
n+1/2
d − V 0

d

2S
n+1/2
i

, (A 12)

where Vd is the volume of the disperse phase calculated from (Ω is the computational
domain):

Vd =

∫
Ω

(1−Hε(ψ)) dx, (A 13)

and Si is the surface area of the interfaces between the two phases, obtained from:

Si =

∫
Ω

δε(ψ) dx, (A 14)

where

δε(ψ) =


1

2ε

[
1 + cos

(
πψ

ε

)]
if |ψ| 6 ε

0 otherwise
(A 15)

is the smoothed version of the delta function, defined as the derivative of Hε with respect
to ψ. The basis for this correction is discussed further in section A.2.
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Step 4: Predictor step for the velocity field. A provisional mid-step velocity u∗ is
computed from un by omitting the pressure gradient term in the momentum conservation
equation and by using a mixed Crank-Nicolson/Adams-Bashforth time-stepping scheme:

u∗ − un

∆t
= −C n+1/2 +

1

ρn+1/2
V n+1/2 +

(
1− 〈ρ〉

ρn+1/2

)
g − 1

ρn+1/2
Fn+1/2, (A 16)

where C , V and F are spatial discretizations of the advection, viscosity and surface
tension terms respectively. The advection term is extrapolated at tn+1/2 using a third-
order Adams-Bashforth scheme:

C n+1/2 =
23

12
C (un)− 16

12
C (un−1) +

5

12
C (un−2), (A 17)

where C is the discretization of u ·∇u based on a finite-difference fifth-order WENO
scheme for ∇u with a second-order interpolation of u when needed. The contribution V
is the discretized version of ∇·µ(∇u+∇uT ), its component in the p-direction expands
in

V n+1/2
p =

3∑
q=1

{
Dq

[
µn+1/2(Dqup)

n+1/2
]

+Dq

[
µn+1/2(Dpuq)

n+1/2
]}
, (A 18)

where D are discrete spatial derivatives calculated using second-order central-difference
and interpolation schemes. The temporal discretization of the p-component of the viscous
contribution employs a semi-implicit Crank-Nicolson scheme for the four terms involving
the derivatives of up, and an explicit third-order Adams-Bashforth scheme for the two
terms involving the derivatives of uq 6=p. This writes

Dq

[
µn+1/2(Dqup)

n+1/2
]

= Dq

(µn+1/2

2
Dqu

n
p

)
+Dq

(µn+1/2

2
Dqu

∗
p

)
, (A 19)

and

Dq

[
µn+1/2(Dpuq)

n+1/2
]

=


Dq

(µn+1/2

2
Dpu

n
q

)
+Dq

(µn+1/2

2
Dpu

∗
q

)
if p = q,

Dq

[
µn+1/2

(23

12
Dpu

n
q −

16

12
Dpu

n−1
q +

5

12
Dpu

n−2
q

)]
if p 6= q.

(A 20)
The surface tension term is computed at tn+1/2 directly from ψn+1/2, i.e.,

Fn+1/2 = F (ψn+1/2) (A 21)

where F is the space discretization of γκ∇Hε: κ is obtained from a second-order centered
finite-volume discretization of equation (3.3), and ∇Hε is computed using a second-
order central differencing scheme. Note that the formulation of the singularity as ∇Hε

is preferred over the usual form δε(ψ)∇ψ because it effectively reduces the amplitude
of so-called spurious currents (Meland et al. 2007), some parasitic currents arising from
an inconsistent discretization of the surface tension force and the pressure gradient. The
resulting linear system is solved iteratively for u∗ using a hybrid Jacobi/Gauss-Seidel
algorithm.

Step 5: Density-weighted Poisson equation for pressure. The pseudo-pressure
p̃n+1/2 is obtained from

Dq

( 1

ρn+1/2
Dqp̃

n+1/2
)

=
1

∆t
Dqu

∗
q (A 22)

where D is the second-order central-difference discretization of the spatial derivatives.
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Figure 25. Effects of resolution and of volume conservation enforcement on the rise of an ordered
array of strongly deformed bubbles (case C at φ = 1.6 % with ρd/ρc = 0.1 and µd/µc = 0.1).

This system is solved by an over-relaxed Gauss-Seidel method.

Step 6: Corrector step for the velocity field. The intermediate velocity u∗ is
corrected by the pressure gradient term to obtain un+1:

un+1 = u∗ − ∆t

ρn+1/2
Dp̃n+1/2. (A 23)

The algorithm then proceeds to timestep tn+1.

A.2. Validation and sensitivity tests

The results of some benchmark tests performed with our code were already presented
in section 3. We focus here on the fact that, in our simulations, volume conservation is
enforced at each timestep by equation (A 12). This trick allows us to run simulations for a
virtually infinite amount of time. However, as it expands the interface position uniformly
(whereas volume losses may be localized), the numerical solution accuracy might be
deteriorated. The excellent agreement we obtained for ellipsoidal bubbles with the results
of Esmaeeli & Tryggvason (1999) (see figure 1), who do not use such a correction, is
therefore reassuring in this respect. Since it would be nonetheless desirable to evaluate
the performance of our code without enforcing volume conservation, we disabled this fix
and repeated the simulations of an ordered array of skirted bubbles (case C in table 1),
a shape much more challenging to capture.

Simulations were carried out for φ = 1.6 %, ρd/ρc = 0.1 and µd/µc = 0.1. The time
evolution of the bubbles drift velocity is shown in figure 25 for resolutions from 10 to 60
grid cells per bubble diameter, with and without volume conservation enforcement. The
bubbles’ shapes obtained at tmid = 10

√
db/g and tend = 60

√
db/g are reported in table 2

together with measurements of the volume variation (when the volume fix is not used)
and of the volume correction (when the volume fix is used). When volume conservation is
not imposed, the bubbles shrink inexorably, thus preventing the system from reaching a
steady-state. As expected, the rate of mass gain decreases as the grid refines: at tend, the
bubbles have almost completely disappeared with the coarsest grid (10 cells per bubble
diameter), while the bubbles volume has reduced by 21 % with the finest grid (60 cells
per diameter). But even with (reasonably) high resolutions, volume conservation remains
problematic for long-time simulations. The volume correction we use to fix this issue is
satisfactory, since it conserves the bubbles volume without affecting their dynamics: at
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resolution volume fix enabled volume fix disabled

db/∆x ψmid = 0 ψend = 0 max |∆ψ|/∆x2.8 ψmid = 0 ψend = 0 (V end
d − V 0

d )/V 0
d

60 0.054 −0.21

40 0.049 −0.36

20 0.041 −0.67

10 0.055 −0.98

Table 2. Sensitivity analysis of the effects of resolution and of volume conservation enforcement
on the shape of strongly deformed bubbles (case C at φ = 1.6 % with ρd/ρc = 0.1 and

µd/µc = 0.1, ordered array). Bubble shape (2D cut-off in a symmetry plane) at tmid = 10
√
db/g

and tend = 60
√
db/g, maximum magnitude of the level-set correction, and volume relative

variation between t0 and tend (∆x is the grid spacing, ∆ψ is the level-set correction, Vd is the
disperse phase volume).

short times (before volume loss becomes large), simulations with and without volume fix
yield the same results. The error made when modifying the location of the interface by
an amount ∆ψ remains much smaller than the O(∆x) global error in this region due to
the finite thickness of the interface (max |∆ψ| ≈ 0.05∆x2.8, see table 2).

For completeness, we mention that in the simulations of ellipsoidal bubbles presented
in figure 1a, the level-set correction is also found to be negligible (max |∆ψ| ≈ 0.1∆x3.2),
and that the volume loss in the absence of correction is very small (between t = 0 and
t = 30

√
db/g, 2.4 % and 0.1 % of the bubble volume are lost for resolutions of 20 and 40

grid cells per bubble diameter, respectively). Finally, we add that the magnitudes of the
level-set correction in the simulations of ordered and free arrays are comparable.

Appendix B. The first effect of inertia in ordered arrays of bubbles
and drops

In this section we derive the first effect of inertia on the steady drift velocity of
an ordered suspension of spherical fluid particulates (bubbles or drops). The Reynolds
number of the particulates is assumed to be small so that the Navier-Stokes equations can
be linearized. Since all the particulates move with the same velocity, this configuration
is equivalent to that of a cubic array of fixed particulates immersed in a viscous fluid
moving with an average mixture velocity 〈u〉 = −U , and the problem becomes that
of determining the hydrodynamic force, denoted f , exerted by the ambient fluid on a
representative particulate of the array. It is customary to non-dimensionalize f with the
magnitude of the Stokes-flow drag exerted on a single particulate in unbounded fluid to
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define a normalized force F :

F =
f

f0,Stokes
, (B 1)

where f = |f | and f0,Stokes is the drag force exerted on an isolated spherical fluid
particulate in Stokes flow (Hadamard 1911; Rybczynski 1911):

f0,Stokes = −2πµ∗µcdbU with µ∗ =
µc + 3/2µd
µc + µd

. (B 2)

Deviations of F from unity are induced both by hydrodynamic interactions and by the
external fluid inertia.

Hill et al. (2001) obtained, under the assumption of φ � 1, the first correction to
F due to a small but non-zero Reynolds number for a cubic array of rigid spheres by
matching the far-field fundamental periodic solution of the Oseen equations to the near-
field solution of the Stokes equations past an isolated rigid sphere. Their derivation can
be extended to cubic arrays of bubbles and drops by replacing the inner solution for
a rigid sphere by that for a fluid sphere, which yields the following linear system from
which f is determined:

f − 2.8373

3
µ∗
db
h
f − 2πµ∗

db
h
f · S = f0,Stokes, (B 3)

where f0,Stokes is given by equation (B 2) and h is the lattice spacing. We have here
introduced S, the dimensionless symmetric tensor given by

S =
∑
k∗ 6=0

Re2
h(U∗ · k∗)2(I − k∗k∗/k∗2)

(2π)4k∗6
[
1 +

Re2
h

(2π)2k∗4
(U∗ · k∗)2

] , (B 4)

with U∗ = U/U , Reh = ρcUh/µc, and k∗ = kh where

k = n1b1 + n2b2 + n3b3 n1, n2, n3 = 0,±1,±2, . . . (B 5)

are the vectors in the reciprocal lattice defined by the primitive vectors bi. Therefore, at
finite Reynolds numbers, the force exerted on a particulate and the drift velocity have,
in general, different directions. Note that in the limit of Reh → ∞ (that is, φ → 0),
one recovers the result of Brenner & Cox (1963) for the first inertial contribution to the
normalized drag on a single fluid particulate translating in an unbounded fluid

1

F
= 1− 1

8
µ∗Re for φ→ 0. (B 6)

We first consider the specific situation where the drift velocity is aligned with a primary
axis of the cubic array. In that case the off-diagonal components of S are zero and the
total force f is parallel to the drift velocity U . In the limit Reh → 0, the solution of
equation (B 3) reads

1

F
= 1− 1.1734µ∗φ1/3 − 0.0050µ∗Re2φ−1/3 + O(Re4

h) for φ1/3 � O(Re). (B 7)

For intermediate values of Reh, the longitudinal component of S, denoted S‖ = U∗·S·U∗,
is needed and can be computed numerically. In practice, the simple expression

S‖ ≈
Reh

16π +
(2π)4

1.53Reh

(B 8)
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provides a reasonable estimate of S‖ for any Reh and F can be approximated at any
φ� 1 by

1

F
≈ 1− 1

8
µ∗Re − 1.1734µ∗φ1/3 +

25

8
µ∗

Reφ1/3

Re + 25φ1/3
. (B 9)

At steady state, the total force exerted by the fluid on the particulate is balanced with
the buoyancy force so the solution of the sedimentation problem relates to F through
the identity

U

U0,Stokes
=

1

F
. (B 10)

We now look for the existence of non-vertical solutions for the drift velocity in the case
where the system is buoyancy-driven. The problem is then reversed: the hydrodynamic
force acting on the bubble is prescribed (it opposes buoyancy) and one wants to determine
the drift velocity of the bubbles. We further assume that gravity is aligned with an axis
of the lattice and writes g = −ge3. The buoyancy force is then

fbuoy =
1

6
πd3b(ρc − ρd)ge3 =

1

6
π
µ2
c

ρc
Ar2e3. (B 11)

Replacing f = −fbuoy in equation (B 3) yields the following nonlinear system of dimen-
sionless equations

U∗1 =
1

96π3
Ar2Rehs13 (B 12a)

U∗3 =
Ar2

12Reh

( 1

µ∗
h

db
− 2.8373

3
− 2π

Re2
h

(2π)4
s33

)
(B 12b)

U∗1 + U∗2 + U∗3 = 1 (B 12c)

where sij = (2π)4Sij/Re2
h and from which U = Uiei can be determined.
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