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Abstract

We consider a setting where a real-valued variable of cause X affects a real-valued variable
of effect Y in the presence of a context variable W . The objective is to assess to what
extent (X,W ) influences Y while making as few assumptions as possible on the unknown
distribution of O = (W,X, Y ). Based on a user-supplied marginal structural model, our
new variable importance measure is non-parametric and context-adjusted. It generalizes the
variable importance measure introduced by Chambaz et al. [4]. We show how to infer it
by targeted minimum loss estimation (TMLE), conduct a simulation study and present an
illustration of its use.

1 Introduction

The setting. Consider the situation where a real-valued variable of cause, X ∈ R, affects a
[0, 1]-valued variable of effect, Y , in the presence of a variable of context W ∈ W. The objective
is to assess to what extent (X,W ) influences Y while making as few assumptions as possible on
the unknown distribution P0 of O = (W,X, Y ). This requires both the definition of a tailored
statistical parameter and the elaboration of a semi-parametric inferential procedure to construct
confidence intervals of a given asymptotic level based on independent copies of O drawn from P0.

Marginal structural models (MSMs) are very useful tools in this regard. Let {msmβ : β ∈ B}
be such a class of functions mapping R ×W to R. It is associated with a parameter defined as a
minimizer in β of the real-valued criterion

EP0

(
[Y − EP0(Y |X = x0,W )−msmβ(X,W )]2

)
,

where x0 is a reference value for X for which there exists 0 < c < 1/2 such that P0(X 6= x0|W ) ∈
[c, 1 − c] P0-almost surely. For instance, choosing a MSM with B = R and msmβ given by
msmβ(X,W ) = β(X − x0) yields the non-parametric variable importance measure studied in [2,
4]. This statistical parameter measures the effect of X on Y accounting for W (the conditional
expectation in the definition of the parameter is conditional on X and W ) but averaging out W
eventually (msmβ(X,W ) does not depend on W ). For technical reasons, we focus on MSMs of the
form

{(X,W ) 7→ (X − x0)fβ(W ) : β ∈ B}, (1)

where fβ is linear in β. The statistical parameter of interest is formally defined as

ψ0 = arg min
β∈B

EP0

(
[Y − EP0(Y |X = x0,W )− (X − x0)fβ(W )]2

)
, (2)

assuming that the minimizer exists and is unique. We interpret (X − x0)fψ0(W ) as the best
approximation of the form (X − x0)fβ(W ) to (EP0(Y |X,W )− EP0(Y |X = x0,W )). It quantifies
the influence of X on Y , using x0 as a reference value, while accounting for the covariates W on a
linear scale.

Relevant literature. Our main sources of inspiration are [2, 4]. These articles were motivated
by an application to the analysis of the effect of DNA copy number variations on gene expression
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accounting for DNA methylation. Similar to the parameter defined and studied in [2, 4], our
parameter of interest (2) belongs to the family of variable importance measure which was introduced
in [12].

Contrary to [1, 5, 6, 11, 15], [2, 4] do not assume that the real-valued variable of cause X is
discrete (or do not discretize it), but rather exploit the fact that X has a reference value x0 and
features a continuum of other values. We also avoid discretizing X and make the same assumption
on its conditional distribution given W . Contrary to [8, 9], [2, 4] do not assume a semiparametric
model but rather exploit one [see 4, end of Section 1 for a discussion]. Following [2, 4], we do too
exploit MSM (1) but do not assume that EP0(Y |X,W )− EP0(Y |X = x0,W ) belongs to it.

Our main contribution is that our ψ0 (2) points to an element of MSM (1) such that EP0(Y |X,W )−
EP0

(Y |X = x0,W ) is best approximated by (X − x0)fψ0
(W ). In words, W is not averaged out

completely like in [2, 4]. Instead, the effect of X on Y is quantified as (X − x0) times a function
of the linear expression fψ0

(W ) of W . We later give a causal interpretation to ψ0. Since the
functional Ψ defined ad hoc (3) so that ψ0 be the value of Ψ at P0 is pathwise differentiable, we
can carry out the inference of ψ0 by targeted minimum loss estimation (TMLE) [2, 4, 13, 14].

Organization. Section 2 defines and studies the functional Ψ (3) mentioned in the previous
paragraph. Section 3 describes the inference procedure tailored to the construction of confidence
intervals of a given asymptotic level for ψ0. Section 4 presents the results of a simulation study.
Section 5 gives an illustration based on real data on climate change. Relevant materials and proofs
are gathered in the appendix.

2 Studying the parameter of interest

Without loss of generality, we assume from now on that x0 = 0.

Differentiability and robustness. We denote ḟ = ∂
∂β fβ the gradient of fβ which, by

choice, does not depend on β. Denote d the dimension of the space where ḟ(W ) lives. For
every possible data-generating distribution P of O, we denote θ(P )(X,W ) = EP (Y |X,W ) and
g(P )(W ) = P (X 6= 0|W ). Assume that P is chosen such that

1. µ(P )(W ) = EP (Xḟ(W )|W ) and Σ(P ) = EP [X2ḟ(W )>ḟ(W )] are well-defined features of P ;

2. Σ(P ) is invertible;

3. there exists c ∈]0, 1/2[ such that g(P )(W ) ∈ [c, 1− c] P -almost surely.

Conditions 1, 2, 3 concern the joint distribution of (X, ḟ(W )). The two first ones are met if Xḟ(W )
is a bounded random variable and if there is no deterministic linear combination of the components
of Xḟ(W ) which equals 0 P -almost surely. For such a P , the equation

Ψ(P ) = arg min
β∈B

EP

(
[θ(P )(X,W )− θ(P )(0,W )−Xfβ(W )]

2
)

(3)

uniquely characterizes a parameter of P such that Ψ(P0) = ψ0, if P0 meets the constraints, which
we assume from now on to be true. It is easily seen that Ψ(P ) rewrites

Ψ(P ) = Σ(P )−1[EP (Xḟ(W )(θ(P )(X,W )− θ(P )(0,W )))]. (4)

The functional Ψ is pathwise differentiable at P , with an efficient influence curve given by
D?(P ) = D?

1(P ) +D?
2(P ) where D?

1(P ) and D?
2(P ) are two L2

0(P )-orthogonal components charac-
terized by

D?
1(P )(O) = Σ(P )−1 [(θ(P )(X,W )− θ(P )(0,W )−Xfβ(W ))]Xḟ(W ), and

D?
2(P )(O) = Σ(P )−1

[
(Y − θ(P )(X,W ))

(
Xḟ(W )−

1{X=0}

g(P )(0|W )
µ(P )(W )

)]
.
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This means that, for any bounded s ∈ L2
0(P ) taking values in Rd and ε ∈ Rd with ‖ε‖∞ < ‖s‖−1∞ ,

if we characterize a data-generating distribution Pε of O by setting

dPε
dP

(O) = 1 + ε>s(O),

then for ε small enough, Pε meets Conditions 1, 2, 3, hence Ψ(Pε) is well-defined, and moreover
ε 7→ Ψ(Pε) is differentiable at ε = 0 with a derivative satisfying

lim
ε→0

Ψ(Pε)−Ψ(P )

ε
= EP [s(O)>D?(P )(O)].

The efficient influence curve D?(P ), of Ψ at P , enjoys a remarkable “double-robustness” prop-
erty: if P, P ′ are two data-generating distributions of O satisfying Conditions 1, 2, 3 and such that
EP (D?(P ′)(O)) = 0, then Ψ(P ) = Ψ(P ′) whenever θ(P ′)(0, ·) = θ(P )(0, ·) or (µ(P ) = µ(P ′) and
g(P ′) = g(P )).

The validity of all the statements we make in this section can be checked easily by adapting,
mutatis mutandis, the proofs of similar statements in [4].

Causal interpretation. We now present a causal interpretation to Ψ(P ), which partly relies
on untestable assumptions. Assume, in this section only, that there exists a collection (Yx)x∈R of
random variables such that (i) (Yx)x∈R ⊥ X|W (randomization assumption), and (ii) Y = YX
(consistency assumption). The above holds for instance in the following structural equation
model: there exists three deterministic functions fW , fX , fY and three independent random vari-
ables UW , UX , UY such that W = fW (UW ), X = fX(W,UX) and Y = fY (W,X,UY ). In addition,
assume that the conditional laws of X given W are all dominated by a common measure µ. Then,
there exists a collection of conditional densities φ(·|W ) of X given W , all with respect to µ.

Let us denote by P the law of the full data (W,X, (Yx)x∈R). It obviously holds that EP (Y |X =
x,W ) = EP(Yx|X = x,W ) = EP(Yx|W ), by independence of Yx and X. Furthermore, for each
β ∈ B,

EP {(EP (Y |X,W )− EP (Y |X = 0,W )−Xfβ(W ))2}

=

∫
EP
[
(EP(Yx − Y0 − xfβ(W )|W ))2φ(x|W )

]
µ(dx). (5)

Thus, Ψ(P ) can be interpreted as the coefficient associated with the regression of Yx on Y0 +
fβ(x,W ) based on a weighted L2-loss function.

3 Inference

We infer ψ0 by TMLE. The first step consists in constructing initial estimators of some relevant
features of P0. The second step consists in iteratively updating them until convergence.

Initialization. The initialization consists in estimating the following features of P0: marginal
distribution of W , µ(P0), g(P0), θ(P0), Σ(P0) and, for each of them, a companion feature required
to update them at the next step [see 4, Lemma 1]. We denote P 0

n a data-generating distribution
chosen such that (i) each estimator ηn of a feature η(P0) among the above features of interest
can be rewritten ηn = η(P 0

n), and (ii) we can sample (W,X) from P 0
n . As soon as we have built

estimators of the marginal distribution of W , µ(P0), g(P0), θ(P0) and Σ(P0), we can also estimate
ψ0 and D?(P0). The estimation of ψ0 is performed by Monte-Carlo simulation: we simulate B
independent random variables (W (0,b), X(0.b)) from the marginal joint distribution of (W,X) under
P 0
n , then compute

ψ0
n = B−1

B∑
b=1

Σ(P 0
n)−1

[
X(0,b)ḟ(W (0,b))

(
θ(P 0

n)(X(0,b),W (0,b))− θ(P 0
n)(0,W (0,b)

)]
.

Iterative updating. Say we have built (k − 1) updates P 1
n , . . . , P

k−1
n of P 0

n . The kth update
goes as follows. Set 0 < ρ < 1 a constant close to 1, for instance ρ = 0.99 and, for each ε ∈ Rd,
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MSM fβ(W1,W2) = β1W1 + β2W2 f ′β(W1,W2) = β1W1 + β2W
2
1

n ψ0,1 = 0.56 ψ0,2 = 0 ψ0,1 = 1.53 ψ0,2 = −1.42

1000 94.6% 95.0% 95.9% 94.5%
2000 93.9% 93.9% 95.6% 93.7%

Table 1: Summary of the results of the simulation study. The values of the true parameters ψ0

and ψ′0 are reported in the second row. The third and fourth row give the empirical coverage of
the regions of confidence for each coordinate of β and each sample size n.

‖ε‖∞ ≤ ρ‖D?(P k−1n )‖∞, introduce P k−1n (ε) given by

dP k−1n (ε)

dP k−1n

(O) = 1 + ε>D?(P k−1n )(O)

where D?(P k−1n )(O) is the current estimator of the efficient influence curve. This defines a d-
dimensional parametric model through P k−1n fluctuating it in the direction of D?(P k−1n ). We let
εk−1n be the maximum likelihood estimator of ε in this model and characterize the kth update as
P kn = P k−1n (εk−1n ). This yields updated estimators of the features of interest in the spirit of [4,
Lemma 1]. The corresponding kth update of ψ0

n is obtained by simulating B independent random
variables (W (k,b), X(k,b)) from the marginal joint distribution of (W,X) under P kn then computing

ψkn = B−1
B∑
b=1

Σ(P kn )−1
[
X(k,b)ḟ(W (k,b))

(
θ(P kn )(X(k,b),W (k,b))− θ(P kn )(0,W (k,b)

)]
. (6)

Central limit theorem. Suppose that performing kn iterations of the updating proce-
dure guarantees that ‖PnD?(P knn )‖∞ = oP (1/

√
n). Suppose moreover that there exists a func-

tion f1 with P0f1 = 0 such that ‖P0(D?(P knn ) − f1)(D?(P knn ) − f1)>‖∞ = oP (1), and that
‖Ψ(P knn ) − ψ0 − P0D

?(P knn )‖∞ = oP (1/
√
n). In addition, suppose that Sn estimates consis-

tently EP0
[f1(O)f1(O)>]. Then ψ∗n = Ψ(P knn ) satisfies

√
n(ψ?n −ψ0) = (Pn −P0)f1 + oP (1), hence√

nS
−1/2
n (ψ?n−ψ0) converges in law to the d-multivariate Gaussian law with zero mean and identity

covariance matrix. We refer the reader to [4, appendix] for the proof of a similar result.

4 Simulation study

Simulation scheme and implementation of procedure. We essentially rely on the same
synthetic data-generating distribution P s as in [4, Section 6.4]. A random variable drawn from
P s takes the form (W1, X, Y ) with W1 ∈ [0, 1]. We enrich it by augmenting the baseline covariate
with W2 drawn from the standard normal distribution independently of (W1, X, Y ). We write
O = (W = (W1,W2), X, Y ) the resulting complete observation.

We adapt the R package [3]. This is possible because we imposed that fβ(W ) be linear in β.

Results of the simulation study. We actually consider two choices of MSM: one based on
fβ(W ) = β1W1 + β2W2, the other based on f ′β(W ) = β1W1 + β2W

2
1 . The evaluation of the values

of the corresponding true parameters ψ0 and ψ′0 (see the second row of Table 1) was performed
by Monte-Carlo based on (4). For each choice of MSM, independently, we repeated B = 1000
times independently the simulation of a data set of sample size n = 1000 and the simulation of
another data set of sample size n = 2000. We applied the TMLE procedure described in Section 3
to each data set, with the same choice of the fine-tune parameters as in [4] and with the option
flavor="learning".

The results are summarized in Table 1. The empirical coverage is satisfying.

5 Illustration

It is commly agreed today that human activity has a significant impact on climate. Among others,
IPCC (Intergovernmental Panel on Climate Change) has been conducting an exhaustive study on
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Figure 1: Left: Histogram of the variable X. Right: Confidence region of asymptotic level 95%
for parameter (ψ0,2, ψ0,3).

the topic for decades. In particular, the effect of CO2 emissions on climate change is now well
understood [7, 10]. However, one of the major remaining challenge is to understand which factors
are driving climate change. We illustrate the interest of our parameter and its inference in this
setting.

We exploit a publicly available data set of the World Bank1. We extract from it our data set.
It consists of n = 126 observed data-structures O1, . . . , Oi = (Wi, Xi, Yi), . . . , On where, for the
ith country,

• Wi gathers its under-five mortality rate, population growth, urban population growth, CO2

emissions per unit of Gross Domestic Product (GDP), energy use per unit of GDP, energy
use per capita for the year 1998;

• Xi is a thresholded version of total amount of CO2 emissions per capita for the year 1998;

• Yi is the 10%-quantile of the projected annual temperature change for the period 2045–2065.

Under-five mortality rate is a reliable indicator of poverty. Population growth and urban population
growth are relevant indicators of economical development. CO2 emissions per unit of GDP is an
indicator of industrialization and reliance on fossil fuel. Finally, energy use per unit of GDP and
per capita reveal patterns of energy comsumption by the industry and by the country’s inhabitants.

All theXi are non-negative. The empirical distribution is represented in the left plot of Figure 1.
We set to x0 = 0 exactly all theXis smaller than 0.99, the 25%-quantile of the empirical distribution
of X.

We assume that O1, . . . , On are independently drawn from a common distribution P0. We infer
ψ0 = Ψ(P0) given by (4) for the MSM {(X,W ) 7→ Xfβ(W ) : β ∈ R6} with fβ(W ) = β>W .

Using the asymptotic normality of the TMLE ψ∗n, we carry out Student tests of “ψ0,k = 0”
against “ψ0,k 6= 0” for k = 1, . . . , 6. We reject the null for its alternative at level 5% only for
k = 2, 3, i.e., for population growth and urban population growth, with p-values respectively
equal to 3.69 × 10−10 and 2.01 × 10−8. The corresponding estimates are ψ∗n,2 = 9.30 ± 1.33 and
ψ∗n,3 = −8.34± 1.35, see also the right plot in Figure 1. In other words, we estimate fψ0(W ) with
fψ∗

n
(W ) ≈ 9.30×W2 − 8.34×W3.

1http://data.worldbank.org/data-catalog/climate-change
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We conclude that there is a significant effect of population growth and urban population growth
on the relationship between climate change and CO2 emissions per capita. This does not come as
a surprise. The greater the population, especially in urban areas, the more energy (very possibly
fossil energy with high level of CO2 emissions) is produced, hence contributing intensively to the
overall climate change. Urban population growth is a considerable factor as well, since it is directly
linked to the above point.

Remark. We have carried out the same study with (W,X) corresponding to the years 1990
to 1997. The results of inference and subsequent conclusions were very similar to those presented
here (results not shown).
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A Appendix: proof of (5)

The following series of equalities proves (5), where the third one is a consequence of Fubini’s
theorem:

EP {(EP (Y |X,W )− EP (Y |X = 0,W )−Xfβ(W ))2}
=EP

{
EP
(
(EP (Y |X,W )− EP (Y |X = 0,W )−Xfβ(W ))2|W

)}
=EP

{∫
(EP(Yx|W )− EP(Y0|W )− xfβ(W ))2φ(x|W )µ(dx)

}
=

∫
EP
[
(EP(Yx|W )− EP(Y0|W )− xfβ(W ))2φ(x|W )

]
µ(dx)

=

∫
EP
[
(EP(Yx − Y0 − xfβ(W )|W ))2φ(x|W )

]
µ(dx).
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