P. Noymer, L. Glicksman, and A. Devendran, Drag on a permeable cylinder in steady flow at moderate Reynolds numbers, Chemical Engineering Science, vol.53, issue.16, pp.2859-2869, 1998.
DOI : 10.1016/S0009-2509(98)00117-1

S. Bhattacharyya, S. Dhinakaran, and A. Khalili, Fluid motion around and through a porous cylinder, Chemical Engineering Science, vol.61, issue.13, pp.61-4451, 2006.
DOI : 10.1016/j.ces.2006.02.012

C. Bruneau and I. Mortazavi, Passive control of the flow around a square cylinder using porous media, International Journal for Numerical Methods in Fluids, vol.46, issue.4, pp.46-415, 2004.
DOI : 10.1002/fld.756

C. Bruneau and I. Mortazavi, Numerical modelling and passive flow control using porous media, Computers & Fluids, vol.37, issue.5, pp.488-498, 2008.
DOI : 10.1016/j.compfluid.2007.07.001

URL : https://hal.archives-ouvertes.fr/hal-00282126

C. Brücker and C. Weidner, Influence of self-adaptive hairy flaps on the stall delay of an airfoil in ramp-up motion, Journal of Fluids and Structures, vol.47, pp.47-78, 2014.
DOI : 10.1016/j.jfluidstructs.2014.02.014

Z. Guo and C. Shu, Advances in Computational Fluid Dynamics -Lattice Boltzmann Method and its Applications in Engineering, 2013.

O. Dardis and J. Mccloskey, Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media, Physical Review E, vol.57, issue.4, pp.4834-4837, 1998.
DOI : 10.1103/PhysRevE.57.4834

M. Spaid and F. Phelan, Lattice Boltzmann methods for modeling microscale flow in fibrous porous media, Physics of Fluids, vol.9, issue.9, pp.2468-2474, 1997.
DOI : 10.1063/1.869392

X. Shan and G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, Journal of Statistical Physics, vol.47, issue.1-2, pp.379-393, 1995.
DOI : 10.1007/BF02179985

P. Nithiarasu, K. N. Seetharamu, and T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, vol.40, issue.16, pp.3955-3967, 1997.
DOI : 10.1016/S0017-9310(97)00008-2

Z. Guo and T. S. Zhao, Lattice Boltzmann model for incompressible flows through porous media, Physical Review E, vol.66, issue.3, p.36304, 2002.
DOI : 10.1103/PhysRevE.66.036304

L. Wang, L. Wang, Z. Guo, and J. Mi, Volume-averaged macroscopic equation for fluid flow in moving porous media, International Journal of Heat and Mass Transfer, vol.82, pp.357-368, 2015.
DOI : 10.1016/j.ijheatmasstransfer.2014.11.056

C. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.
DOI : 10.1016/0021-9991(77)90100-0

J. Wu and C. Shu, Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, Journal of Computational Physics, vol.228, issue.6, pp.1963-1979, 2009.
DOI : 10.1016/j.jcp.2008.11.019

D. Chen, K. Lin, and C. Lin, IMMERSED BOUNDARY METHOD BASED LATTICE BOLTZMANN METHOD TO SIMULATE 2D AND 3D COMPLEX GEOMETRY FLOWS, International Journal of Modern Physics C, vol.18, issue.04, pp.585-594, 2007.
DOI : 10.1142/S0129183107010826

S. Kang and Y. Hassan, A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries, International Journal for Numerical Methods in Fluids, vol.206, issue.9, pp.66-1132, 2011.
DOI : 10.1002/fld.2304

J. Favier, A. Revell, and A. Pinelli, A Lattice Boltzmann???Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects, Journal of Computational Physics, vol.261, pp.261-145, 2014.
DOI : 10.1016/j.jcp.2013.12.052

URL : https://hal.archives-ouvertes.fr/hal-00822044

Y. Kim and C. , 2???D Parachute Simulation by the Immersed Boundary Method, SIAM Journal on Scientific Computing, vol.28, issue.6, pp.2294-2312, 2006.
DOI : 10.1137/S1064827501389060

J. Stockie, Modelling and simulation of porous immersed boundaries, Computers & Structures, vol.87, issue.11-12, pp.701-709, 2009.
DOI : 10.1016/j.compstruc.2008.11.001

D. Natali, J. Pralits, A. Mazzino, and S. Bagheri, Stabilizing effect of porosity on a flapping filament, Journal of Fluids and Structures, vol.61, pp.61-361, 2016.
DOI : 10.1016/j.jfluidstructs.2015.11.016

Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E, vol.65, issue.4, p.46308, 2002.
DOI : 10.1103/PhysRevE.65.046308

E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-yusof, Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, vol.161, issue.1, pp.161-196, 2000.
DOI : 10.1006/jcph.2000.6484

Z. Feng and E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid???particles interaction problems, Journal of Computational Physics, vol.195, issue.2, pp.602-628, 2004.
DOI : 10.1016/j.jcp.2003.10.013

X. Niu, C. Shu, Y. Chew, and Y. Peng, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Physics Letters A, vol.354, issue.3, pp.173-182, 2006.
DOI : 10.1016/j.physleta.2006.01.060

A. Pinelli, I. Naqavi, U. Piomelli, and J. Favier, Immersed-boundary methods for general finite-difference and finite-volume Navier???Stokes solvers, Journal of Computational Physics, vol.229, issue.24, pp.229-9073, 2010.
DOI : 10.1016/j.jcp.2010.08.021

URL : https://hal.archives-ouvertes.fr/hal-00951516

A. Roma, C. Peskin, and M. Berger, An Adaptive Version of the Immersed Boundary Method, Journal of Computational Physics, vol.153, issue.2, pp.509-534, 1999.
DOI : 10.1006/jcph.1999.6293

Q. Zou and X. , On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics of Fluids, vol.9, issue.6, pp.1591-1598, 1997.
DOI : 10.1063/1.869307

Q. Lou, Z. Guo, and B. Shi, Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation, Physical Review E, vol.87, issue.6, p.63301, 2013.
DOI : 10.1103/PhysRevE.87.063301

P. Yu, Y. Zeng, T. Lee, X. Chen, and H. Low, Steady flow around and through a permeable circular cylinder, Computers & Fluids, vol.42, issue.1, pp.1-12, 2011.
DOI : 10.1016/j.compfluid.2010.09.040

G. Koopmann, The vortex wakes of vibrating cylinders at low Reynolds numbers, Journal of Fluid Mechanics, vol.12, issue.03, pp.501-512, 1967.
DOI : 10.1121/1.1918274

C. Williamson, Vortex Dynamics in the Cylinder Wake, Annual Review of Fluid Mechanics, vol.28, issue.1, pp.477-539, 1996.
DOI : 10.1146/annurev.fl.28.010196.002401

X. Lu and C. Dalton, CALCULATION OF THE TIMING OF VORTEX FORMATION FROM AN OSCILLATING CYLINDER, Journal of Fluids and Structures, vol.10, issue.5, pp.527-541, 1996.
DOI : 10.1006/jfls.1996.0035

M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics, vol.209, issue.2, pp.448-476, 2005.
DOI : 10.1016/j.jcp.2005.03.017

J. Yang and E. Balaras, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, Journal of Computational Physics, vol.215, issue.1, pp.12-40, 2006.
DOI : 10.1016/j.jcp.2005.10.035

M. Nobari and H. Naderan, A numerical study of flow past a cylinder with cross flow and inline oscillation, Computers & Fluids, vol.35, issue.4, pp.393-415, 2006.
DOI : 10.1016/j.compfluid.2005.02.004

A. Placzek, J. Sigrist, and A. Hamdouni, Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations, Computers & Fluids, vol.38, issue.1, pp.80-100, 2009.
DOI : 10.1016/j.compfluid.2008.01.007

URL : https://hal.archives-ouvertes.fr/hal-00534010

M. Lai and C. Peskin, An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity, Journal of Computational Physics, vol.160, issue.2, pp.705-719, 2000.
DOI : 10.1006/jcph.2000.6483

R. Mei, D. Yu, W. Shyy, and L. Luo, Force evaluation in the lattice Boltzmann method involving curved geometry, Physical Review E, vol.65, issue.4, p.41203, 2002.
DOI : 10.1103/PhysRevE.65.041203

L. Shen, E. Chan, and P. Lin, Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method, Computers & Fluids, vol.38, issue.3, pp.691-702, 2009.
DOI : 10.1016/j.compfluid.2008.07.002