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Blind hyperspectral unmixing using an Extended
Linear Mixing Model to address spectral variability
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Jocelyn Chanussot, Fellow, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—Spectral Unmixing is one of the main research
topics in hyperspectral imaging. It can be formulated as a
source separation problem whose goal is to recover the spectral
signatures of the materials present in the observed scene (called
endmembers) as well as their relative proportions (called frac-
tional abundances), and this for every pixel in the image. A Linear
Mixture Model is often used for its simplicity and ease of use but
it implicitly assumes that a single spectrum can be completely
representative of a material. However, in many scenarios, this
assumption does not hold since many factors, such as illumination
conditions and intrinsic variability of the endmembers, induce
modifications on the spectral signatures of the materials. In
this paper, we propose an algorithm to unmix hyperspectral
data using a recently proposed Extended Linear Mixing Model.
The proposed approach allows a pixelwise spatially coherent
local variation of the endmembers, leading to scaled versions of
reference endmembers. We also show that the classic nonnegative
least squares, as well as other approaches to tackle spectral
variability can be interpreted in the framework of this model.
The results of the proposed algorithm on two different synthetic
datasets, including one simulating the effect of topography on
the measured reflectance through physical modelling, and on
two real datasets, show that the proposed technique outperforms
other methods aimed at addressing spectral variability, and can
provide an accurate estimation of endmember variability along
the scene thanks to the scaling factors estimation.

Index Terms—Hyperspectral imaging, remote sensing, blind
source separation, spectral unmixing, spectral variability, spatial
regularization, Alternating Direction Method of Multipliers.

I. INTRODUCTION

HYPERSPECTRAL imaging allows the acquisition of
multivariate images containing information in hundreds

of narrow and contiguous spectral bands, whose corresponding
wavelengths typically range from the visible domain to the
near infrared. In this type of data, each pixel of the image
is a complete radiance or reflectance spectrum, augmenting
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considerably the spectral information contained in a pixel, with
respect to RGB or multispectral images, for instance. This
spectral information enables different types of applications [1],
such as segmentation [2], classification [3], target detection
[4]... However, the acquisition of data in many wavelengths
comes with a lower spatial resolution than color or even
multispectral images. Super-resolution algorithms (e.g. [5])
may improve the spatial resolution to a certain extent, but
in any case, a single pixel cannot in general account for the
interaction of light with only one material, present exclusively
in the field of view of the sensor during the acquisition. These
so-called mixed pixels make hyperspectral data interpretation
much harder.

In this context, the analysis of such data can be seen
as a blind (or semiblind) source separation problem (BSS),
termed Spectral Unmixing (SU) [6]. Indeed, the amount of
light arriving at the sensor can be seen as a mixture of the
contributions coming from the interaction of light with all the
materials in the sensor’s field of view. Spectral Unmixing then
aims at recovering, for each pixel, the materials composing it,
as well as the proportions of each of them in the pixel. The
former quantities are called the endmembers, while the latter
are called fractional abundances. Because of its importance
for data interpretability and analysis, SU has become one
of the prime topics of hyperspectral data analysis. In most
applications, a Linear Mixing Model (LMM) is assumed,
considering that the contributions of each endmember sum up
in a linear way [7]. Though the LMM has been used in the
majority of works for a long time, in real situations several
factors reveal some of its shortcomings. The main two factors
hampering its efficiency have been identified as nonlinearities
and spectral variability. In many real scenarios, the LMM is not
a sufficiently good approximation of the real mixing process
since many physical processes such as multiple scattering
and intimate mixing contribute to the measured radiance or
reflectance in a nonlinear fashion. Spectral variability is also an
important fact that the LMM does not take into account: each
endmember is implicitly assumed to be perfectly represented
by a single spectral signature. This strong assumption often
does not hold for real datasets since the measured radiance or
reflectance of a material can significantly change depending
for example on the geometry and topography of the scene, or
because of atmospheric effects or even because of the intrinsic
variability of the material, due to the variation of a hidden
parameter (e.g. concentration of chlorophyll in vegetation).

Although nonlinear unmixing has recently received much
attention in the community –providing new nonlinear mixing
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models and the corresponding SU algorithms [8], [9]–, spectral
variability has been given less attention in comparison. Still,
recent overviews of the spectral variability issue exist and
summarize some of the methods taking it into consideration
during the unmixing process [10], [11]. In each of these works
a classification of the techniques used is proposed, the most
general being the separation into two classes of methods,
depending on whether variable endmembers are considered
as sets or as probability distributions. The latter category
models variability as a realization of some multivariate random
variable, following a given mixture model, e.g. the Normal
Compositional Model [12] or the Beta Compositional Model
[13]. The unmixing process is then performed in a Bayesian
estimation framework. This paper will focus on approaches in
which each endmember variant is a part of a set comprising
several instances of the same endmember. These endmember
sets can be either known or unknown in advance. In the latter
case, they have to be extracted from the data, resorting for
instance to one of the many existing Endmember Extraction
Algorithms (EEA) [7], [14], e.g. the Vertex Component Anal-
ysis (VCA) [15], the N-FINDR [16], or the Minimum Volume
Simplex Analysis (MVSA) [17]. Whether the endmembers are
assumed known or not, SU remains a (semi-)blind [18] or
(un/semi-)supervised [19] source separation problem.

In the following, we introduce a new algorithm to perform
SU taking into account the spatial information as well as
spectral variability. We recently proposed the Extended Lin-
ear Mixing Model (ELMM) [20], which aims at addressing
endmember variability while preserving the LMM framework.
This model allows a pixelwise variation of the endmembers
according to scaling factors. Another model addressing spec-
tral variability was more recently proposed in [21], in which
the variability is explained by an additive perturbation of the
endmembers.

The remainder of this paper is organized as follows: Section
II presents some of the mixing models and techniques related
to the proposed approach, which is presented in Section III.
Results on two synthetic datasets are presented in Section IV,
results on two real datasets with different spatial and spectral
resolutions and corresponding to different contexts are shown
in Section V and some concluding remarks are gathered in
Section VI.

II. SPECTRAL VARIABILITY

Let us denote a hyperspectral image as X ∈ RL×N and
A ∈ RP×N the abundance matrix containing the abundance
vectors for each pixel ak (k = 1, · · · , N ) in its columns. L is
the number of spectral bands, N the number of pixels in the
image, and P is the number of endmembers considered. The
different endmember matrices we will use will be denoted as
S ∈ RL×P , possibly indexed by k if allowed to vary spatially
in the image. E ∈ RL×N is an additive noise.

With these notations, the LMM writes, for the pixel xk ∈
RL:

xk =

P∑
p=1

apksp + ek = Sak + ek, (1)

with the abundance non-negativity constraint (ANC) apk ≥ 0
since none of the physical quantities involved are supposed to

be negative, and possibly the abundance sum-to-one constraint
(ASC)

∑P
p=1 apk = 1,∀k, which means that each pixel

has to be completely explained by the contributions of the
endmembers. With the LMM and the two constraints, the data
are assumed to lie inside a (P − 1)-simplex whose vertices
correspond to the endmembers. If the ASC is relaxed, the
underlying model assumes the data lie inside a convex cone
spanned by the endmembers.
The LMM can be written for all pixels in a matrix compact
form as:

X = SA + E. (2)

In this section, some existing approaches to perform SU
by taking into account spectral variability are presented. In
particular, we introduce the Extended Linear Mixing Model.
A. Spectral Bundles

Spectral bundles [22] are a simple way to address endmem-
ber variability by building a candidate endmember dictionary.
One possibility to do so is to run several times any EEA on
randomly chosen subsets of the image. Each time the EEA is
run, new instances of each endmember should be extracted. If
the EEA uses the so-called pure pixel assumption, there has
to be at least one pure pixel in each of these reduced datasets.
If this assumption is too strong, it may be preferable to
resort to a non pure pixel-based EEA, such as those reviewed
in [14]. As the extracted sources suffer from the so-called
permutation problem, i.e. the endmembers are not aligned from
one subset to the other, a clustering step is required to group
the candidate endmembers into classes. Then the abundances
can be extracted in several ways, two of which are detailed in
the following.

The sparse unmixing approach was first designed to see SU
as a semi-supervised source separation problem in which a
large dictionary of spectral signatures is known beforehand
[23], but it can also be used if the dictionary is learnt from
the data, as in the spectral bundles approach. By performing a
sparse regression of the data on the dictionary, for instance
using the SUnSAL algorithm [23], only a few signatures
will be active in each pixel. To get global abundance maps,
one only has to sum the contributions of every candidate in
each endmember class. Another option to recover abundances
once the spectral bundles have been extracted is to use the
Fisher Discriminant Nullspace (FDN) approach [24]. This
technique searches for a projection of the dataset onto a
low-dimensional subspace such that intraclass variability of
the endmember bundles is minimized and their interclass
variability is maximized. In such a subspace, the data clouds
formed by the candidate endmembers in each class are re-
duced to a mimimum volume. Finally, one only has to apply
the traditional (Fully) Constrained Least Squares Unmixing
((F)CLSU) [25] to enforce the ANC (and possibly the ASC).
In that case, a simple choice of the endmembers is to pick the
centroids of each endmember bundle.
B. Extended Linear Mixing Model

Ideally, the endmembers should be allowed to vary in every
pixel of the image, while the mixing process would remain
linear. In [20], we proposed an Extended Linear Mixing Model
(ELMM) to allow a pixelwise variation of each endmember:
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xk =

P∑
p=1

apk fpk(sp) + ek, (3)

with some mappings fpk : RL → RL. As shown in [20],
the spectral bundles approach can also be seen as a special
case of (3), where the function fpk is implicitly modeled by
some outcomes of this spectral variability function forming the
endmember dictionary. Following our seminal idea and paper
[20], authors in [21] proposed to model spectral variability
with an additive perturbation of some reference endmembers.
This clearly fits in the general framework we describe here.

If we assume fpk(s0p) = ψpks0p, i.e. that spectral variabil-
ity consists in scalings of some reference endmembers s0p,
then Eq. (3) rewrites:

xk =

P∑
p=1

apkψpks0p+ek = S0ψkak+ek = S0(ψk◦ak)+ek,

(4)
where ψk ∈ RP×P is a diagonal matrix with values ψpk ≥ 0
on the diagonal, ψk = diag(ψk), and S0 is the reference
endmember matrix, whose columns are the s0p. The symbol
◦ denotes the Schur-Hadamard (termwise) product. This can
be written more compactly for all pixels in a matrix form:

X = S0(Ψ ◦A) + E, (5)

where Ψ is a RP×N matrix gathering all the scaling factors
for all pixels and all materials (its kth column is ψk).

The model of Eqs. (4) and (5) will be simply denoted
hereafter as ELMM. With these definitions, an observed pixel
is a linear combination of scaled versions of each endmember
depending on the spatial dimension in the image. This special
case of the model has appeared in the community in [15],
[26] to explain variability due to the geometry of the scene
(the spatial variation of the incidence, emergence and azimuth
angles with the topography of the scene, see [27]) and can
be considered as a good first approximation to reality. The
use of the spectral angle as a metric to compare spectra also
has the same rationale: it is insensitive to scalings and hence
measures the dissimilarity in the shapes of the spectra, not
their magnitude [28]. In the literature, to model shadow and
brightness effects, a constant “shade” endmember is often
considered, and its abundances are considered in the same
way as for other materials [28]. However, using this trick boils
down to scaling each pixel with the abundance of this shadow
endmember, and then interpreting the remaining abundances
for the other materials. In such a case, the ASC is not
physically meaningful anymore since this endmember is not
an actual material.
In order to further motivate the model advocated by Eq. (5),
we manually selected two pure pixels of the same material in
the image of the first real dataset used in the experiments of
section V, and shown in Fig. 12. These pixels are part of the
red rooftop on the northwestern part of the football field. The
two pixels are part of two distinct facets of this pyramidal
roof, which are very differently lit, since their orientation
w.r.t. the sun is different. The spectral signatures are shown
in Fig. 1. We performed a least squares regression in order to
approximate the blue spectrum x1 by a scaled version of the
red spectrum x2:
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Fig. 1. Two pixels on different facets of the same red roof in the image of
Fig 12 (red and blue). The result of the linear regression of the red spectrum
on the blue one, using only a scaling factor (dashed green).

ψ̂ = arg min
ψ

||x1 − ψx2||22 (6)

The result of this regression (i.e. ψ̂x2) is shown in green
in Fig. 1. We can see that the fit is almost perfect, meaning
that the variability between these two pure pixels can be
approximated very well by a scaling factor, which is confirmed
by the very high Pearson correlation coefficient between the
original blue spectrum and its green regression (r = 0.9994).

The model of Eq. (5) has a simple geometric interpretation,
as can be seen in Fig.2 (in a case where there are three
endmembers). The data points are assumed to lie in a cone
spanned by the reference endmembers. The scaling factors,
combined with the ASC and ANC, constrain each pixel to
lie in a simplex whose vertices are variants of the reference
endmembers, situated on straight lines joining the origin and
each of the reference endmembers, thus defining the simplex
orientation in the cone.

More accurate radiative transfer-based models such as the
Hapke model [29] are also used to account specifically for
the variability due to topography and to the photometry of the
materials, but due to their complexity, they are cumbersome
to use in a SU context. In addition, [20] shows that the
nonnegative or partially Constrained Least Squares Unmixing
(CLSU) algorithm can be seen as addressing a special case of
Eqs. (4) and (5) when the scaling factor is identical for each
endmember and the ASC is assumed. Thus, one can recover
the scaling factor (and hence the abundances) in a pixel by

P∑
p=1

φ̂pk =

P∑
p=1

apkψk = ψk

P∑
p=1

apk = ψk, (7)

where φ̂pk is the quantity estimated by CLSU in pixel k for
endmember p. This scaled version of CLSU will be denoted by
S-CLSU hereafter. To our knowledge, there exists no algorithm
in the literature specifically designed to unmix hyperspectral
data according to model of Eqs. (4) and (5).

III. PROPOSED APPROACH

We define a criterion (energy to minimize) to perform
spectral unmixing using the ELMM (we denote by Ψ the
scaling factors rearranged in a RP×N matrix and by S = {Sk}
the collection of pixel-dependent endmember matrices):

J (A,S,Ψ) =
1

2

N∑
k=1

(
||xk − Skak||22 + λS ||Sk − S0ψk||2F

)
+R(A) +R(Ψ). (8)
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Fig. 2. Geometric interpretation of the ELMM in the case of three endmem-
bers. In red are two data points, in blue are the reference endmembers and in
green are the scaled versions for the two considered pixels.

Note that all quantities have to be positive and the abun-
dances are subject to the ASC. The first two terms are the
modelling terms, the ones which enforce the ELMM, more or
less strictly depending on the value of λS . R(A) and R(Ψ)
are regularization terms applied to the abundances and the
scaling factors, respectively. Their role is to incorporate the
constraints on the variables and to enforce spatial smoothness.
We chose the following regularization terms:
R(A) = λASR(A) + IRP×N

+
(A) + µ>(A>1P − 1N )

= λA(||Hh(A)||2,1 + ||Hv(A)||2,1) + IRP×N
+

(A)

+ µ>(A>1P − 1N ), (9)

R(Ψ) =
λΨ

2
(||Hh(Ψ)||2F + ||Hv(Ψ)||2F , (10)

where λA, λΨ are regularization parameters used to weigh
the different terms in the optimization problem. µ ∈ RN is a
column vector of Lagrange mutlipliers for the ASC. Hh,Hv :
RP×N → RP×N are linear operators of horizontal and vertical
gradients between adjacent pixels (acting separately on each
material). IRP×N is the indicator function of the nonnegative
orthant, and 1(·) is a column vector of ones whose length is
given in its index. SR stands for spatial regularization. We
are simply using first order neighborhoods for the gradient
computations. The spatial regularization on the abundances is
the L1 norm of the channel-by-channel spatial regularizations,
meaning each abundance map is smoothed independently.
Using the definition of [30], it is a L2,1 mixed norm. Note
that replacing this L2,1 norm by a L1,1 norm would result in
a Total Variation (TV) penalization, similar to the one in [31].
In addition, only one line of code has to be changed to switch
from the chosen regularization to a TV. This constraint on
the abundances can be justified by the fact that the fractional
abundances often exhibit spatially correlated patterns.

The ASC and ANC are also enforced by the last two terms.
The Lagrange multipliers µ also have to be optimized so that
the ASC is enforced. Note that if we choose not to include the

regularization on the abundances, they should still be subject
to the ASC and ANC. For the scaling factors, we chose to
simply use a spatial smoothness term, because the effects of
certain causes of variability, such as the one due to topography
and atmospheric effects, are likely to be spatially coherent. In
Eq. (8), a reference endmember matrix S0 is required, and
can be extracted by any EEA. Since we are estimating the
actual abundances and not a product of the abundances and
the scaling factors, the ASC is physically meaningful (except
if nonlinearities are not negligible, but this is out of the scope
of the present paper), and also acts as a calibration of the
scaling factors [32]1. Note that compared to Eqs. (4) and (5),
a small perturbation on the model is allowed, depending on
the value of λS . This regularization is also very useful to solve
the ambiguity between the scaling factors and the abundances.
As a matter of fact the introduction of the variables Sk allows
to decouple the abundances and scaling factors. The update of
either of these variables is no longer inversely proportional to
the other (as it would be the case if we wanted so estimate
the parameters by a least squares fit on Eq. (5)).

Since the problem we wish to solve is not convex w.r.t. all
variables simultaneously, but convex w.r.t. each of them, we
propose to find a stationary point by iteratively optimizing
the criterion in an Alternating Nonnegative Least Squares
(ANLS) way, following the outline given in Algorithm 1. The
iterations terminate when the relative variations (measured
using Frobenius norms) between consecutive iterates of A,
S = {Sk} and Ψ are below three tolerances εA, εS and εΨ,
respectively.

Data: X, S0

Result: Ŝ, Ψ̂, Â
Initialize S, Ψ, A and choose λS , λΨ and λA ≥ 0 ;
while ANLS termination criterion is not satisfied do

S← arg min
S≥0

J (A,S,Ψ) ;

Ψ← arg min
Ψ≥0

J (A,S,Ψ) ;

A← arg min
A≥0

J (A,S,Ψ) ;

end
Algorithm 1: ANLS scheme to find a local minimum of (8).

A. Optimization w.r.t. S

Rewriting the terms of Eq. (8) depending on S, we have to
solve:

Ŝ = arg min
S≥0

1

2

N∑
k=1

(
||xk − Skak||2F + λS ||Sk − S0ψk||2F

)
.

(11)
This problem is completely separable over the N pixels, so
its closed form solution may be computed separately for each
of them:

Ŝk ← (xka
>
k + λSS0ψk)(aka

>
k + λSIP )−1, (12)

1In Eq. (5), there is a scaling ambiguity on the abundances and scaling
factors which could be more important without the ASC: in the product of an
abundance coefficient in one pixel for one endmember and the corresponding
scaling factor is the same if one of the two quantities is multiplied and the
other divided by the same constant.
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where IP is the P×P identity matrix. The solution Ŝk is then
projected onto the nonnegative orthant RL×P+ by thresholding
the negative entries to 0.

B. Optimization w.r.t. A

The optimization problem w.r.t. A is:

Â = arg min
A

1

2

N∑
k=1

||xk − Skak||22

+ λA(||Hh(A)||2,1 + ||Hv(A)||2,1)

+ IRP×N
+

(A) + µ>(A>1P − 1N ). (13)

This problem is neither separable w.r.t. the pixels nor to the
different endmembers, and it is not differentiable due to the
presence of the L2,1 norm. This suggests the use of the popular
Alternating Direction Method of Multipliers (ADMM) [33].
This technique will allow us to decompose the hard problem
of Eq. (13) into iterations of a sequence of easier subproblems
with closed form solutions. In addition, by an appropriate
choice of split variables (namely the definition of B2, see
below), it will allow us to decouple the optimization in the
spectral domain (related to the term in which the endmembers
appear) to the optimization in the spatial domain (related to the
terms in which the gradient operators appear), in a way similar
to [31]. Note that by removing the regularization term R(A)
of Eq.(9), but keeping the ANC and the ASC, the problem
becomes the simple FCLSU and can be solved separately in
each pixel using for instance the algorithm of [25].

1) Problem formulation: We introduce the splitting vari-
ables Bi,i=1,··· ,6, and express the problem of Eq. (13) as:

Â = arg min
A

1

2

N∑
k=1

||xk − b1k||22

+ λA(||B3||2,1 + ||B4||2,1)

+ IRP×N
+

(B5) + µ>(A>1P − 1N )

s.t.

B1 =
[

S1a1 · · · SNaN
]

= S(A)

B2 = A

B3 = Hh(B2)

B4 = Hv(B2)

B5 = A (14)

where bik denotes the kth column of Bi, and S is the
linear operator associated to the definition of B1. Now the
optimization problem in Eq. (14) can be expressed in the
framework of the ADMM. To do so, we have to rewrite the
problem of Eq.(14) in the following form:

{û, v̂} = arg min
u,v

g(v) s.t. Γu + Λv = 0, (15)

where u and v are vector variables such that:

u = a = vec(A) and v =


b1

b2

b3

b4

b5

 , (16)

where a = vec(A) is the vectorized version of A. The
function g is a closed proper convex function defined as:

g(v) =
1

2
||x− b1||22 + λA(||vec−1(b3)||2,1

+ ||vec−1(b4)||2,1) + IRPN
+

(b5) + µ>(Ka− 1N ).

(17)
Here x = vec(X) is the vectorized version of X (by

concatenating its columns), and analogously bi = vec(Bi).
K is the N × PN matrix of the linear operator summing the
entries of a corresponding to the same pixel and putting each
of these sums in one entry of a vector. Finally, we have the
following definitions for Γ and Λ:

Γ =
[
Σ> IPN 0 0 IPN

]>
,

Λ =


−ILN 0 0 0 0

0 −IPN 0 0 0
0 Hh −IPN 0 0
0 Hv 0 −IPN 0
0 0 0 0 −IPN

 , (18)

using the fact that in the vector spaces of vectorized
matrices of the appropriate sizes, the linear operators Hh,Hv :
RP×N 7→ RP×N and S : RP×N 7→ RL×N can be described
by their matrices (in the canonical bases of the corresponding
vector spaces) Hh, Hv ∈ RPN×PN and Σ ∈ RLN×PN ,
respectively. Here I(·) denotes the identity matrix whose size
is given in its index.

In this framework, the problem we want to solve falls into
the category of those which the ADMM can tackle. We have
introduced two equivalent representations of the variables we
manipulate: in a matrix form and in a vector form. The matrix
form is more compact and often convenient to use, but the
vector form is the only one allowing us to express linear
operators as matrices. The two are completely equivalent (up
to an isomorphism) and during the optimization process, we
will use either of them depending on which one is the most
convenient in the context.

2) ADMM framework: The ADMM technique consists in
expressing the constrained problem defined in Eq. (15) in an
unconstrained way using an Augmented Lagrangian (AL), and
then minimizing it iteratively and alternatively for each of
the variables introduced, including the Lagrange Multipliers
appearing in the AL (the so-called dual update). ρ is the
barrier parameter weighting the AL terms, and the (scaled)
Lagrange mutlipliers are denoted by d in a vector form,
possibly indexed with the pixels (and possibly with the index
of the appropriate split variable), or D in a matrix form. The
procedure is summed up in Algorithm 2.

Data: X, S
Result: Â = vec−1(u)
Choose ρ ≥ 0 and initialize u,µ,v and d ;
while ADMM termination criterion is not satisfied do

u,µ← arg min
u

L(u,µ,v,d) ;

v← arg min
v

L(u,µ,v,d) ;

d← d− Γu−Λv ;
end
Algorithm 2: ADMM process to solve problem (15).

The augmented Lagrangian for our problem, to be mini-
mized w.r.t. u, µ, v and d is:
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L(u,µ,v,d) = f(u) + g(v) +
ρ

2
(||Γu + Λv − d||22 − ||d||22)

=
1

2
||x− b1||22 + λA(||vec−1(b2)||2,1 + ||vec−1(b3)||2,1)

+IRPN
+

(b4) + µ>(Ku− 1N ) +
ρ

2
||Σu− b1 − d1||22

+
ρ

2
||u− b2 − d2||22 +

ρ

2
||Hhb2 − b3 − d3||22

+
ρ

2
||Hvb2 − b4 − d4||22 +

ρ

2
||u− b5 − d5||22 −

ρ

2
||d||22.

(19)

The full optimization procedure for the ADMM is described
in detail in a supplementary material file provided by the
authors.

C. Optimization w.r.t. Ψ

Rewriting the terms of the criterion (8) depending only on
Ψ, we get:

Ψ̂ = arg min
Ψ

λS
2

N∑
k=1

||Sk − S0ψk||2F

+
λΨ

2
(||Hh(Ψ)||2F + ||Hv(Ψ)||2F ). (20)

We can see S = {Sk} as an L × N × P cube, with P
L × N slices corresponding to the source matrices in every
pixel. Using this description, we can rewrite Eq. (20) in a way
that is separable w.r.t. the different materials:

Ψ̂ = arg min
Ψ

λS
2

P∑
p=1

(
||Sp − sp0(ψp)

>||2F

+
λΨ

2
(||Hh(ψp)||22 + ||Hv(ψp)||22)

)
, (21)

where Sp is a L×N slice of the cube, sp0 is a column of S0

(representing one reference endmember). ψp is the pth column
of Ψ (a N ×1 vector containing the scaling factors for all the
pixels for one material). The update for ψp is:

ψp ← ((λSsp0
>

sp0)IN +λψ(H>hHh+H>v Hv))
−1(λSSp>sp0).

(22)

The N ×N matrix inversion is intractable as such in most
cases, but as the matrix is circulant the update can be very
efficiently computed in the Fourier domain (assuming periodic
boundaries for each ψp image) by:

ψp ← F−1

(
F(λSSp>sp0)

(λSsp0
>

sp0)1m×n + λΨ(|F(hh)|2 + |F(hb)|2)

)
,

(23)

where F and F−1 denote the Discrete 2D Fourier Trans-
form and its inverse, m and n are the spatial dimensions
of the image, such that m × n = N , and hh and hv
are convolution masks for the gradient operators (see the
supplementary material for more details).

IV. EXPERIMENTS ON SYNTHETIC DATA

In this section, we present the experiments performed on
two types of synthetic datasets to validate the proposed ap-
proach. In both cases, we will compare the proposed approach
with the classical FCLSU and CLSU, but also with the bundles
approach used with SUnSAL, and the FDN algorithm. Finally,
we will also compare the proposed approach with S-CLSU,
which follows a particular case of the ELMM. Since the
ELMM algorithm makes use of spatial regularization, for a
fairer comparison, we also include the results for modified
versions of the competing algorithms, in which a TV on the
abundances is enforced, using the SUnSAL-TV code of [31].
We only added a termination criterion similar to the one used
for the proposed approach, that is when the relative variation
(in norm) of the abundance matrix between two consecutive
iterations goes below εA = 10−3. Finally, we also compare the
results of the proposed approach with the ones of the Perturbed
Linear Mixing Model (PLMM) algorithm [21], which is an
algorithm specifically designed to tackle the spectral variability
issue. It models spectral variability in each pixel as an additive
perturbation of reference endmembers, and hence is able to
estimate the variability for each material and each pixel by
computing the norm of the perturbation term.

The proposed approach with both regularizations enforced
is denoted by ELMM-Aψ. For the ELMM algorithm, the three
tolerances εA = εS = εΨ were set to 10−3. When no spatial
regularization is performed on the abundances or the scaling
factors, we simply refer to the algorithm as ELMM. The
running times of the different algorithms were measured on a
computer using an Intel R© CoreTM i7-4770 CPU @ 3.40GHz
(except for the PLMM).

A. First scenario

1) Data: The first dataset on which we tested the proposed
approach was designed to follow the ELMM with some
perturbations. The idea is to build a dataset which is halfway
between a toy example and a realisitic simulation, in order
to compare easily the different algorithms and to explain
the properties and particularities of the proposed method. We
randomly chose five reference endmembers corresponding to
the signatures of minerals from the United States Geological
Survey (USGS) spectral library, comprising 224 spectral bands
in the visible and near-IR. They are shown in Fig. 3. The
200× 200 abundance maps used were generated using Gaus-
sian Fields, and were designed to comply with the ASC. Note
that these abundance maps comprise only one pure pixel for
each material, and around 5% of the pixels have an abundance
coefficient superior to 0.9 for one material. We also generated
spectral variability maps for each endmember using mixtures
of Gaussians. The true abundances are shown in Fig. 4 and
the true scaling factors are shown in Fig. 5. Then, the dataset
was generated as follows: the pixel-dependent endmember
instances were generated by multiplying the references by the
corresponding spectral variability scaling factors (the achiev-
able values are chosen so that no reflectance value becomes
higher than 1, and so that the scaling factors range from 0.75
to 1.25), and a 25dB white Gaussian noise was added to these
endmembers. Then for each pixel, the mixture was performed
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Fig. 3. A false color representation of the first synthetic dataset (left) and the
endmembers used for the simulation.

using the LMM, and finally we added a 25dB white Gaussian
noise to the generated pixels. The process then yielded a
200× 200× 224 simulated hyperspectral image. A false color
representation of the data can be seen in Fig. 3.

2) Experimental setup: For each algorithm, the used EEA
was the Vertex Component Analysis (VCA), and the same
set of 5 endmembers was used for all the algorithms which
do not require a bundle. For the bundles, we extracted 5
endmembers instances on 50 randomly chosen susbets (with-
out replacement) of the image whose number of pixels was
2% of this of the whole image. The clustering into bundles
was performed with the k-means algorithm, with the spectral
angle as a similarity measure (it is insensitive to scalings and
hence adapted to the problem). The different regularization
parameters used for the tested algorithms were set empirically
so as to get the best performance possible, and are gathered
in the supplementary material file.

The initialization of the proposed algorithm is important
since the optimization problem we tackle is not convex. We
chose to initialize the algorithm using the abundances of S-
CLSU, every scaling factor set to one, and the five reference
endmembers as well as the initial sources in each pixel were
the ones extracted using VCA.

In order to assess the performance of the algorithms, we de-
fine the abundance overall Root Mean Square Error (aRMSE)
as:

aRMSE =
1

N

N∑
k=1

√√√√ 1

P

P∑
p=1

(apktrue − âpk)
2
, (24)

and the overall source RMSE (sRMSE) as:

sRMSE =
1

N

N∑
k=1

√
1

LP
||Sktrue

− Ŝk||2F . (25)

This metric allows us to measure indirectly how well the
spectral variability is recovered by comparing the true sources
to the ones extracted by S-CLSU and the proposed approach.
A direct comparison using the scaling factors would have been
harder to perform since the extracted reference endmembers
can differ from the ones actually used to generate the data,
and because of the additive perturbation added to the scaled
signatures. Finally, we also define two measures to assess the
quality of the reconstruction of the data from the estimated
parameters and the mixing model used by an algorithm:

xRMSE =
1

N

N∑
k=1

√√√√ 1

L

L∑
l=1

(xlktrue − x̂lk)
2
, (26)

This is the usual average RMSE on the data reconstruction.
We finally define the average Spectral Angle Mapper (SAM)

between the actual and reconstructed data:

xSAM =
1

N

N∑
k=1

arccos
(

xktrue · x̂k
||xktrue

|| ||x̂k||

)
, (27)

where · is the dot product.
3) Results: The quantitative results of this experiment are

shown in Table I. A visual representation of the extracted
abundances for most algorithms is shown in Fig. 4, while
the scaling factors extracted by S-CLSU and the proposed
approach, as well as the variability estimation from the PLMM
are shown in Fig. 5.

From the results, we can see that as expected, FCLSU
performs rather poorly in a scenario where spectral variabil-
ity comes into play. Sinces the endmember signatures are
constant throughout the image, a scaled endmember can be
easily mistaken for another, for instance with the endmembers
depicted in cyan and red in Fig. 3. The bundles approach
is able to obtain better results, provided the bundles are
balanced and representative of the spectral variability present
in the scene. This is not always guaranteed and can lead to
erroneous estimations. In these experiments, we show the best
result for this approach out of 15 runs. The bundles allow
several instances of each endmember to be considered. The
sparsity enforced by SUnSAL helps reducing the number of
active endmembers per pixel but there can still remain several
endmembers of the same endmember class contributing to
one pixel value. The FDN approach is allowed to reduce the
dimensionality of the dataset such that the impact of spectral
variability is lowered.

The results from the PLMM are in this case comparable
to those of the algorithms which use bundles. The main
advantage of this algorithm is that it is able to estimate spectral
variability maps by computing the power of the additive pertur-
bation term in each pixel, although in this case the abundances
are relatively close to the ones of FCLSU . We can see that
globally, the algorithm is able to roughly identify the regions
where most of the spectral variability occurs (corresponding
to red or dark blue pixels in the true scaling factors maps
when the true scaling factor is significantly above or below 1,
respectively). The main drawback is that the algorithm is not
able to extrapolate the information in high abundance pixels
to neighboring lower abundance pixels, on which spectral
variability is harder to estimate without considering spatial
information.

The CLSU algorithm performs better than FCLSU and all
the previously mentioned approaches, since dropping the ASC
allows to look for the abundances in a cone and not in a sim-
plex. However, the quantity estimated in each pixel by CLSU
actually absorbs spectral variability into the abundances. S-
CLSU performs much better. It is a very simple approach
to adress spectral variability which is well suited in simple
cases. The cases in which it performs best are those in which
there are few materials in the image, or/and when the scaling
factors are either correlated along different materials, or on
the contrary if only one material per pixel varies significantly
from its reference signature. This approach is also sensitive to
deviations from the ELMM such as a noisy perturbation on
the scaled signatures.
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The spatial regularization on the abundances logically im-
proves the results for all the algorithms based on CLSU,
but it cannot improve the results for the bundle approaches.
Indeed, one drawback of the SUnSAL-TV algorithm is that it
cannot enforce the ASC, since it is not compatible with the
L1 norm minimization (the ASC forces the L1 norm of the
abundance vectors to be constant). What is more, the noisiness
of the abundance maps obtained with the bundles is not ideally
corrected by the TV, which tends to aggregate “noisy” areas of
the abundance maps into patches. However, the combination
of the spatial regularizations on the abundances and scaling
factors, coupled with the explicit scaling factor estimation is
able to improve the results significantly.

Indeed, the proposed approach is much more robust to noise
on the measured data as well as on the signatures thanks
to both spatial regularizations. Indeed, the spatial regular-
ization allows to estimate precisely the spatially correlated
abundances, getting rid of the noise and the uncertainty
which affects S-CLSU when two endmember variations of two
different materials share a common global shape, and can look
quite similar after appropriate scalings. The spatial coherency
of the abundances and the scaling factors allows to recover the
parameters more precisely. Besides, the explicit computation
of a different scaling factor for each pixel and material allows
to obtain smoother and separated variability maps, which also
makes the proposed algorithm much stronger in terms of
interpretability of its results. Of course, it is only possible
to recover accurately the scaling factors when the abundance
contribution of the corresponding material is high enough, or
otherwise when the spatial information allows to extrapolate
from higher abundance areas. If those two conditions are
missing, only the abundance is recovered with precision, while
the associated scaling factor tends to be close to one (its initial
value) as the abundance decreases. This phenomenon can be
interpreted geometrically, with the diagram of Fig. 2 in mind.
Let us suppose that there are three endmembers in the scene.
If in a given pixel, the abundance of one material is low,
then a different scaling factor for this material will change the
orientation of the simplex related to this pixel, but the edge of
the simplex linking the other two (scaled) endmembers will
not change, and thus the abundance coefficients for the other
two materials will not change much either. In the end, we can
say that the proposed approach does not require pure pixels
to extract the spectral variability of a material efficiently, but
only a significant abundance contribution of this material in
the considered pixel, or in the neighboring area.
From a quantitative point of view, we can see that the proposed
approach obtains the best results in terms of abundance
estimation, as well as spectral variability recovery. An explicit
spectral variability map can be only recovered for the S-CLSU,
PLMM and ELMM algorithms, since only those algorithms
estimate pixel-dependent endmembers, and thus enable us to
compute the sRMSE values.

It is interesting to note that both spatial regularizations im-
prove the results on their own w.r.t. to the simple ELMM case
(the spatial regularization on the abundances (resp. scaling
factors) improves the abundance (resp. scaling factors) estima-
tion), but the combination of both improves the results further

both for abundance and spectral variability estimation, since a
better estimation of the scaling factors allows in turn a better
abundance estimation, and vice versa. The regularizations also
improve the conditioning of the problem, and help to solve
the ambiguity between abundances and scaling factors. The
running time of the proposed algorithm is more important than
all others (except the PLMM), but the approach is relatively
fast thanks to the favorable initialization chosen.It allows to
achieve a good local miminum of the objective function while
limiting the number of iterations necessary to reach it with
a reasonable precision. However, we can note that S-CLSU
performed with SUnSAL-TV (which is based on the ADMM
technique) is faster than the usual nonnegative least squares,
even with the spatial regularization (at least for εΨ = 10−3).

We also compared the reconstruction errors of the different
algorithms, in terms of Root Mean Squared Error and in
terms of Spectral Angle. These measures are indirect, in the
sense that they only show how the mixing model used fits
the data, though it is possible to achieve excellent reconstruc-
tion errors with a poor abundance and/or spectral variability
retrieval. Conversely, accurate parameter estimation entails a
good reconstruction if the model is suited to the data. For
instance, we see that the bundle-based approaches fit the data
worse than FCLSU, although the abundance estimation is
significantly improved. We also see that for this data, all the
models based on unmixing the data in a cone spanned by three
endmembers achieve better reconstruction errors (as well as
abundance estimation). For CLSU, S-CLSU, and the ELMM-
based algorithms, the reconstruction error is similar, but there
are still important differences in the accuracy of the estimation
of the parameters. For the case of CLSU, only a simple scaling
has a positive effect on the abundance estimation, while the
reconstruction errors are of course the same in this case. In
the supplementary material file are also shown a sensitivity
analysis of the algorithm to the regularization parameters and
an analysis of the effect of smoothing the scaling factors.
B. Second scenario

1) Data: The second dataset we used was generated in
order to mimick the spectral variability induced by changing
illumination conditions and topography along the scene, using
a physical model introduced by Hapke [29]. This model
allows one to access the reflectance value of a material for
one wavelength, knowing the corresponding single scattering
albedo, the photometric parameters of the material, as well
as the incidence, emergence, and azimuth angles during the
acquisition. We refer the reader to [27] and references therein
for more details. For the simulations, we selected 3 endmem-
bers consisting in 16 wavelengths reflectance measurements
for materials commonly found on small bodies of the Solar
System (basalt, palagonite and tephra), and whose geometry
for the acquisition, as well as their photometric parameters are
known [34]. We show these reflectance spectral signatures,
acquired at nadir with an incidence angle of 30◦, in Fig
6. Note that palagonite and tephra are spectrally very close
(the spectral angle between the two materials is 10 degrees),
making the problem harder since the nonlinearities of the
Hapke model will have more influence on the abundances
for correlated endmembers. From these data, we recovered
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Fig. 5. The scaling factors estimated by S-CLSU (third row) and by the proposed approach (bottom row), compared to the true ones, and to the power of
the variability estimated by the PLMM algorithm (second row) for the first synthetic dataset.

Algorithm FCLSU BUNDLES + SUnSAL BUNDLES + FDN CLSU PLMM S-CLSU ELMM ELMM-Aψ
SR on abundances No No Yes No Yes No Yes No Yes No No Yes

aRMSE 0.0629 0.0490 0.0504 0.0407 0.0575 0.0432 0.0413 0.0886 0.0276 0.0269 0.0344 0.0199
sRMSE × × × × × × × 0.0614 0.0548 0.0545 0.0449 0.0439
xRMSE 0.0119 0.0213 0.0366 0.0331 0.1391 0.0085 0.0100 0.0136 0.0085 0.0100 0.0090 0.0088

xSAM (degrees) 1.4960 1.8752 2.1304 1.8716 7.9886 1.2268 1.2504 1.9231 1.2268 1.2504 1.3002 1.2433
Running Time (s) 14 26 131 18 8 16 6 311 17 7 366 399

TABLE I
QUANTITATIVE RESULTS FOR THE FIRST SYNTHETIC DATASET. THE BEST VALUES IN EACH LINE IS SHOWN IN RED, AND THE SECOND BEST ONE IS

SHOWN IN BLUE.
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Fig. 4. The abundances estimated by all algorithms (each column corresponds
to one endmember) for the first synthetic dataset, compared to the true ones
(first row).

the single scattering albedo spectra of these materials by
inverting the Hapke model [35]. Single scattering albedo is
completely characteristic to a material, and unlike reflectance,
which is the physical quantity we work with, it depends
neither on the geometry of the scene nor on the illumination
conditions [27]. Separately, a simulated smooth 200 × 200
Digital Terrain Model (DTM) was synthesized, assuming a
spatial resolution of 1m. This DTM simulates a hilly region
and is shown in Fig. 6. From this model and the definition
of the position of the sun and the sensor w.r.t. the scene (sun
making an angle of 18◦ with the flat part of the DTM and
sensor at nadir), we derived the acquisition angles associated
to each pixel. They depend on the position of the sun and
sensor, but also on the orientation of the tangent plane to
the surface at each location, which itself depends on the
topography of the scene. We show the computed angles in
Fig.7. Plugging these angles, the single scattering albedos
and the photometric parameters into the Hapke model, we
simulated the various instances of the reflectance endmembers
along the scene. Then we mixed these endmember variants in
each pixel using the LMM, using abundances generated in
a similar way to the previous section (with the same pixel
purity characteristics), providing a 200 × 200 × 16 image. A
false color composition, and a representation of the dataset (in
blue) and the endmembers generated by the Hapke model (in
red) using the first three components of a Principal Component
Analysis (PCA) are shown in Fig.8. This representation shows
that there are strictly speaking very few (one per material,
actually) pure pixels in the image. This figure confirms that
palagonite and tephra are spectrally close, when we look at
the scale of the second principal component. Furthermore, we
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Fig. 6. The reflectance endmembers (left) and the Digital Terrain Model used
for the second synthetic dataset (right).
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Fig. 7. The incidence, emergence and azimuth angles computed from the
DTM.

can see that the different materials are not equally affected by
spectral variability. The endmembers corresponding to basalt
are less affected by the nonlinearities of the Hapke model,
which have a stronger influence on high albedo materials,
whereas the spectrum of basalt is very flat and low. Hence
the shape of the variability is almost a straight line. For the
other two materials, the manifold of the endmember variants
is, however, more complex.

2) Experimental setup: The setup for this dataset is rather
similar to this of the first synthetic dataset, with a few notable
differences. The regularization parameters for all algorithms
are given in the supplementary material file. For this data, we
chose to set the mean of each extracted endmember bundle as
the reference endmembers. The idea is to obtain representative
endmembers to increase the robustness of the algorithm. For
a fair comparison, we chose the same set of endmembers for
FCLSU, CLSU and S-CLSU. The initial abundances used are
those of S-CLSU and the initial scaling factors ar either set
to one (approach denoted by ELMM-Aψ), or taken from the
results of S-CLSU as well (approach denoted by ELMM-Aψ-
C).

3) Results: The quantitative results of this second exper-
iment are shown in Table II. A visual representation of the
extracted abundances for most algorithms is shown in Fig.
9, while the scaling factors extracted by S-CLSU and the
proposed approach (ELMM-Aψ-C) are shown in Fig. 10.
We also show the endmembers estimated by the proposed
approach, compared the true ones using a PCA in Fig 11.

Fig. 8. A false color representation of the second synthetic dataset. Data
cloud (blue) and the endmember variants generated by the Hapke model (red)
shown using the first three components of a PCA.
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Fig. 9. The abundances estimated by all algorithms for the second synthetic
dataset, compared to the true ones.

P
L

M
M

 

 

1

2

3

4

5

x 10
−3

S
−

C
L

S
U

−
T

V

 

 

1

1.2

1.4

1.6

E
L

M
M

−
A

ψ
−

C

 

 

1

1.2

1.4

 

 

0.005

0.01

0.015

0.02

0.025

 

 

1

1.2

1.4

1.6

 

 

1

1.2

1.4

 

 

2

4

6

x 10
−3

 

 

1

1.2

1.4

1.6

 

 

1

1.2

1.4
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factors estimated by S-CLSU (middle row) and by the proposed approach
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Fig. 11. The second simulated dataset (blue), the endmember variants
generated by the Hapke model (red) and the sources estimated by the proposed
algorithm (green), shown using the first three components of a PCA.



11

Algorithm FCLSU BUNDLES + SUnSAL BUNDLES + FDN CLSU PLMM S-CLSU ELMM-Aψ ELMM-Aψ-C
TV on abundances No No Yes No Yes No Yes No No Yes Yes Yes

aRMSE 0.133 0.0860 0.0498 0.1330 0.0681 0.0676 0.0601 0.1445 0.0398 0.0300 0.0297 0.0290
sRMSE × × × × × × × 0.0814 0.0139 0.0135 0.0164 0.0129
xRMSE 0.0131 0.0105 0.0049 0.0716 0.0577 0.0041 0.0045 0.0052 0.0041 0.0045 0.0048 0.0049

xSAM (degrees) 2.0209 1.0906 1.1317 8.7639 7.9573 1.0882 1.1270 1.2035 1.0882 1.1270 1.2834 1.1688
Running Time (s) 10 15 152 10 7 11 6 235 12 7 234 248

TABLE II
QUANTITATIVE RESULTS FOR THE SECOND SYNTHETIC DATASET. THE BEST VALUES IN EACH LINE IS SHOWN IN RED, AND THE SECOND BEST ONE IS

SHOWN IN BLUE.

From Fig. 9 and Table II. we can see that for FCLSU,
CLSU, and the combination of the bundles and SUnSAL, the
results are similar to those of Sec. IV-A3. FCLSU gets poor
results since it does not take spectral variability into account.
CLSU obtains better results, as it does not really estimate
the abundances, but their products with the scaling factors.
SUnSAL is able to partly explain endmember variability, but
the resulting abundance maps are noisy, and the performance
is limited by the bundle extraction. The FDN approach only
provides slightly better results than FCLSU in this case (we
kept the best result over 15 bundle extractions). This might be
because the projection performed by the FDN approach suffers
from outliers in the bundles. SUnSAL obtains better results
with the same bundles because the sparsity constraint helps
discarding the outlier endmembers. The S-CLSU approach
obtains better results, and is able to recover an average
spectral variability map. In this case, its performance in terms
of sRMSE (but not aRMSE) is better than the proposed
approach initialized with the abundances S-CLSU obtains and
the scaling factors set to one. The reason S-CLSU obtains
satisfactory results is because the spectral variability in the
different materials have the same cause, and hence the scaling
factors for each material are correlated. However, the ELMM-
Aψ initialization also gets a worse endmember estimation
result because it cannot estimate the scaling factor of a material
whose abundance is too low. As explained in Sec. IV-A3,
the change in orientation of the simplex due to the scaling
factor associated to a low abundance material has little impact
on the remaining abundance coefficients. As S-CLSU is only
able to estimate one scaling factor for each endmember, if
we assume it applies to all endmembers, the error committed
is less important. A spatial regularization on the abundances
if beneficial to the performance of the various algorithms,
especially for the bundles approach with SUnSAL, as well
as S-CLSU. The PLMM obtains poor results here because
its abundances are similar to those of FCLSU, which means
the algorithm is probably stuck in a poor local minimum.
The proposed approach, initialized with the abundances and
scaling factors of S-CLSU is still able to improve the results
thanks to the regularizations, which accommodate the noise,
and especially the nonlinearities of the Hapke model, as can be
seen in Fig. 11. In this figure, we represent the data cloud (in
blue) and the endmembers generated by the Hapke model (in
red) using the first 3 components of a PCA. The endmembers
estimated in every pixel by the proposed algorithm are shown
in green. The extracted endmembers are allowed to deviate
from the ELMM (as it is defined in Eq. (5) ), and the
endmembers are extracted on a thickened line. This flexibility

Fig. 12. A RGB representation of the hyperspectral dataset (left). High
spatial resolution color image acquired over the same area at a different time
(middle). Associated Lidar data (right). Black corresponds to 9.6m and white
corresponds to 46.2m.

allows to approximate the endmember manifolds generated
by the Hapke Model better than S-CLSU does. Only the
basalt endmembers are more or less situated on a straight line,
because this material has a lower albedo than the other two,
and is then less affected by the illumination changes over the
scene. It is also interesting to note that, as could be expected,
the scaling factors extracted by S-CLSU or the proposed
approach are very correlated to the DTM, and even more to the
spatial maps of the incidence and emergence angles, shown in
Fig. 7. However, the proposed approach is able to drift away
from the the model of Eq. (5) and is more robust than S-
CLSU here thanks to both spatial regularizations (even when
the S-CLSU benefits from an additional spatial regularization
on the abundances). In this case, the freedom of the sources
to evolve around the straight lines cause a slight increase in
the spectral angle between the image and its reconstruction.
This could also be because the spatial regularizations denoise
the abundance and scaling factor maps, leading to a smoother
reconstructed image than the noisy data. These results confirms
the potential of the ELMM to deal with illumination and
topography induced spectral variability.

V. EXPERIMENTS ON REAL DATASETS

A. First Dataset

The first real dataset we use in this paper is a subset of a
hyperspectral image acquired over the University of Houston
campus, Texas, USA, in June 2012. The image comprises
144 spectral bands in the 380 nm to 1050 nm region, and
comes with a Lidar dataset acquired a day before over the
same area, with the same spatial resolution (2.5m). We are
interested here in a 152 × 108 × 144 subset of this image,
acquired over Robertson stadium on the Houston Campus and
its surroundings. Fig. 12 shows a RGB representation of the
observed scene, as well as a high spatial resolution RGB image
of the scene2.

We are comparing the same algorithms as before. In the
absence of ground truth, we will only assess the results visu-

2Note that it was acquired at a different time with a few notable changes
with respect to the dataset we are interested in (mainly parked cars).
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ally, and give the running times and reconstruction errors of
each algorithm. The regularization parameters for this dataset
are gathered in the supplementary material. For both synthetic
datasets, the PLMM algorithm was used with a spatial smooth-
ness constraint on the abundances, and a constraint forcing the
endmembers to be close the the reference extracted with VCA.
The bundle used was extracted using 45 subsets of 2 percent of
the pixels of the image, without replacement. For the proposed
approach, we initialized the algorithm with the abundances of
S-CLSU and the scaling factors set to one.

The estimated Intrinsic Dimensionality of the dataset using
the Hysime algorithm [36] is 17, but we chose to consider only
4 endmembers. The reason for this is twofold: First, when 17
endmembers are extracted, for all algorithms, most abundance
maps are very sparse and have very few spatial structure. This
is either because outliers are selected as endembers or because
a really rare material was chosen (such as an isolated car in a
single pixel only). Besides, ID estimation algorithms provide
an upper bound on the number of endmember to use, and the
definition of an endmember is actually application and context
dependent. Results with 4 endmembers are easier to visualize,
to interpret and to compare for our endmember variability
application. From the reference endmembers selected by VCA,
we identified 4 classes: vegetation, concrete stands, asphalt
and red metallic roofs. The vegetation endmember could have
been splitted into grass and trees, but we chose to consider
only one endmember vegetation to show the capability of the
algorithms to recover an interpretable spectral variability. The
same goes for the football field, which is actually mixed with
soil. However, the soil endmember is very hard to extract, as
there is probably no pure soil pixel for this material in the
considered dataset.

1) Results: The results on the real dataset are shown in Fig.
13 for the abundances and in Fig. 14 for the spectral variability
estimation. In addition, the reconstruction errors and running
times of the different algorithms are shown in Table III. From
Fig. 13, it seems that overall the abundance distributions of
FCLSU follow the visual examination of the image, with very
pure areas for the stands, and a good identification of the lawn
in the stadium and of the stands (all the stands are indeed made
of the same material if we refer to the high resolution RGB
image, whereas it is not clear at all from the RGB composition
of the hyperspectral data). However, the algorithm fails to
consider the red metallic roofs as pure. The bundle approach
combined with SUnSAL improves the purity of the red roof
areas but the stands are not so well identified and interpreted
as a mixture of concrete and asphalt. The CLSU algorithm
(without scaling) obtains visually more coherent results, but
both the red roofs and the concrete stands exhibit abundances
which are significantly higher than 1 for all materials (up to
1.3, corresponding to saturated red values in Fig. 13), because
CLSU does not actually estimate the abundances but a factor
incorporating spectral variability. The FDN approach obtains
very clear abundance maps for the vegetation and red roofs,
but once again the distinction between concrete stands and
asphalt (roads and parking lots) is not so clear. The abundances
from the PLMM are visually not very satisfying since there
are a lot a pixels which should be pure but are considered
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Fig. 13. The abundance maps estimated by all algorithms for the Houston
dataset. The color scale goes from 0 (blue) to 1 (red). For CLSU, all the
abundances higher than 1 are shown in red.

heavily mixed. However, the algorithm is still able to detect
most of the areas where spectral variability occurs (red roofs,
stadium stands for instance). S-CLSU, on the other hand,
obtains visually good results since it corrects the estimations
of CLSU thanks to the scaling. Then, the abundance maps
for the red metallic roofs are better defined. The vegetation is
also well identified. Asphalt and concrete stands are harder to
discriminate. Besides, the scaling factors map is hard to inter-
pret because only one scaling factor is estimated for all four
endmembers. In Fig. 14, the color scale for each material was
chosen using the results of the proposed approach. Otherwise,
the results from S-CLSU have a very large dynamic, which
makes it hard to visualize the results, added to the fact that
there is only a single variability map for all materials. The
proposed approach, although more computationally intensive,
obtains visually good results as well. The vegetation is well
identified, and the football field appears purer than with S-
CLSU thanks to the spatial regularization. With our definitions
of the endmembers, potential mixtures of grass with soil are
interpreted as variability. The distinction between grass and
tree leaves is also clearly identifiable in the scaling factors
maps because the leaves areas are associated in this case to
scaling factors smaller than 1, even though in some cases the
pixels can be mixed with red roofs or asphalt (for instance
in the area to the left of the stadium). In this case, the
model seems to accommodate the intrinsic variability of the
materials since it can estimate different scaling factors for
different materials in mixed pixels, thanks to the inclusion
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Fig. 14. Magnitude of the PLMM variability term (top row), the scaling factors estimated by S-CLSU (middle row) and the proposed approach (bottom row)
for the Houston dataset.

Algorithm FCLSU BUNDLES + SUnSAL BUNDLES + FDN CLSU PLMM S-CLSU ELMM-Aψ
xRMSE 0.0212 0.0065 0.0645 0.0047 0.0263 0.0047 0.0031

xSAM (degrees) 3.3057 1.0953 4.1885 1.4531 6.6727 1.4531 0.9885
Running Time (s) 4 6 5 4 333 5 402

TABLE III
RUNNING TIMES AND RECONSTRUCTION ERRORS OF THE TESTED ALGORITHMS ON THE HOUSTON DATASET.

of one scaling factor for each material and to the spatial
regularizations. The red roofs are also well detected, and the
corresponding scaling factors significantly differ depending on
the orientation of the roof (which we can clearly see with
the high resolution image and the Lidar data). The same phe-
nomenon occurs with the stands: the 4 stands are related to the
same endmember class, but they all have significantly different
scaling factors, depending once again on their orientation (they
also correspond to significant elevation changes, as can be seen
on the Lidar image). These two facts suggest that the ELMM is
indeed able to identify variability due to changing illumination
conditions. The asphalt abundance map coincides with the
location of the parking lots, and also shows local variations in
scale. Finally, the spatial regularization also eliminates outliers
(cars) in the spatial distribution of the scaling factors and
abundance maps.
B. Second Dataset

The second dataset we consider is a 200 × 200 × 186
subset of the Cuprite dataset, which is shown in Fig. 15. The
image was acquired by NASA’s AVIRIS sensor and covers
the Cuprite mining district in western Nevada, USA. We
extracted 14 endmembers with the VCA according to the ID
value estimated by Hysime on our subset. We compare the
same algorithms as before and show in Fig. 16 the estimated
abundance maps. The results are shown only for some of the
extracted endmembers. For the concerned algorithms, we also
show in Fig. 17 a map of the estimated spectral variability. We
also show the reconstruction errors and the running times of
all algorithms in Table IV. The materials have been identified
by visual comparison between the estimated abundance maps
and endmember signatures to those recovered in [15].

1) Results: From the visual results, we see for instance that
FCLSU detects a near pure area of Alunite in the top of the
rightmost part of the image, while this is interpreted as near
pure Muscovite with variability by the ELMM and S-CLSU,
which shows taking variability into account can significantly

Fig. 15. A RGB representation of the subset of the Cuprite dataset used.
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Fig. 16. The abundance maps estimated by some algorithms for the Cuprite
dataset. The color scale goes from 0 (blue) to 1 (red).
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change the abundance results. The PLMM algorithm detects
more or less the same variability areas than the ELMM, but
its abundance maps are in average lower, meaning that is
interprets the data as being more mixed. As for the variability
maps, for ELMM and S-CLSU, we chose the reference color
scale to reflect the dynamic of the map of S-CLSU. This shows
that for 14 materials, it can become very hard to interpret
visually, and even more so for mixed pixels, while the ELMM
results with one scaling factor for each material is much
clearer, even at this scale, which favors S-CLSU. Anyway,
we see that the materials in the scene seem to be significantly
affected by spectral variability, which makes the abundance
maps recovered by the algorithms taking it into account very
different from the ones recovered by the usual LMM.

VI. CONCLUSION

In this paper, we introduced an algorithm to unmix hy-
perspectral data according to a new Extended Linear Mixing
Model. This geometrically interpretable model aims at incor-
porating spectral variability in the spectral unmixing problem
under the form of scaled variations of reference endmembers,
while preserving the framework of the usual Linear Mixing
Model. We showed that the common partially Constrained
Least Squares Unmixing algorithm can be interpreted in this
framework, by assuming identical scalings for all endmembers.
We also proposed a more sophisticated algorithm to unmix
hyperspectral data following this model. The experiments on
two synthetic datasets show how the proposed algorithm is
able to take into account the spatial information provided by
neighboring pixels thanks to a spatial regularization on the
fractional abundances and on its spectral variability parame-
ters. In addition, the algorithm is robust to the absence of pure
pixels in the scene as well as to noise and deviations from the
ELMM. Tests on two simulated hyperspectral dataset using
abundance maps mimicking natural landscapes, and for one
of them a realistic physics-based model to simulate the effect
of changing illumination conditions because of the topography
of the scene show that the ELMM is suited to address this kind
of spectral variability. We compared the proposed algorithm
to the scaled version of CLSU, and to other approaches of
the literature which take spectral variability into account,
and evidenced its superior performance in our simulations,

both in terms of abundance estimation and spectral variability
retrieval. Tests on real datasets show the potential of the model
and algorithm to explain variability in practical scenarios.
Future work will focus on finding an automated way to select
the regularization parameters. We also plan to make more use
of Lidar data by being able to recover the acquisition angles
from the position of the sun and sensor, in order to match
them to the estimated scaling factors.
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