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Abstract 

This work deals with investigating the electromagnetic deformation of liquid metals due to magnetic pressure. First, the 

distribution of the magnetic fringing field produced by a gapped AC inductor in presence of a liquid metal pool is 

analytically investigated. The analytical method uses a combination of the direct solution of the scalar magnetic 

potential together with the mirror image method and conformal mapping. In the next step, the liquid metal pool 

deformation by the magnetic pressure produced by the gapped inductor is analytically formulated. The model is based 

on the Young-Laplace equation which is pressure equilibrium over the surface of the liquid metal. The surface contour 

of the liquid metal pool appears in the results of the differential equation. The non-dimensionalized differential equation 

is solved by the use of Green’s functions. The proposed method is able to calculate the liquid metal pool deformation in 

2D. The analytical approach is validated by the results obtained from experimental tests. 
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Introduction 

The control of the free surface of liquid metals is of great importance for liquid metallurgical industries. During the 

electromagnetic processing, the free surface of the liquid metal is often prone to instability [1]. The problem of liquid 

metal pool deformation by means of magnetic pressure includes a capillary problem in which two different phenomena 

must be coupled together: Electromagnetic and Hydrostatic problems.  

 

Magnetic fringing field of a gapped coil in presence of liquid metal 
The scheme of the system is demonstrated in Figure 1. Assuming good electrical conductivity of the liquid metal and 

high enough frequency of the electric current in the coil, the magnetic fringing field of the gapped coil does not 

penetrate the pool. So it makes a path over the liquid sheet. To study the effect of the liquid metal pool on the magnetic 

fringing field, a combination of direct calculation of scalar magnetic potential, mirror image method and conformal 

mapping is applied. The calculation starts by using the analytical results presented by Roshen [2], where a direct 

calculation of the Laplace equation for the scalar magnetic potential of the gapped coil is obtained by applying the 

proper boundary conditions at the edge of the coil (� = 0). It is possible to show that the magnetic field at the fringing 

area (� > 0) in the absence of liquid metal can be calculated from (1) and (2) [2]: 

  
Fig. 1: Scheme of the magnetic system: Liquid metal 

pool is set at the edge of the gapped AC coil, causing a 

deformation of the magnetic field lines. 

Fig. 2: Magnetic field vectors calculated by Equations (1) and 

(2) in the (x, y) plane 
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where m=0 if �� + 
� > ���  and m=1 if �� + 
� ≤ ���. Figure 2 demonstrates the magnetic field vectors of �! = ���" +��
" calculated by Equations (1) and (2) in the x − y plane, where ��	is the gap length and �� is the mean magnetic field 

at the airgap of the coil and is equal to 0.8%&'()*/2�� with N number of turns, &'()* the current amplitude of the coil and 2�� as the gap size and .  

Assuming good electrical conductivity of the liquid metal and high enough frequency of the electric current in the coil, 

the magnetic fringing field of the gapped coil does not penetrate the pool. So it makes a path over the liquid sheet. The 

effect of the liquid metal is initially inserted into the problem by applying the mirror image method. This method 

represents a surface in the problem on which there is no perpendicular component of the magnetic field. This means that 

the mirror surface is a perfect conductor that does not allow the magnetic field lines to pass through. The resulting 

magnetic field is calculated by applying the superposition law, shifting the magnetic source shown in Fig. 1 to the 

distances +, and −, in the � − 
 plane. The resulting magnetic field can be written as [3], [4], [5] (Fig. 3): 
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where d is the distance of the mirror wall from the either magnetic sources, m = 0 if �� + ,�� + 
� > ���  , m = 1 if �� + ,�� + 
� ≤ ���, n = 0 if �� − ,�� + 
� > ��� and n = 1 if �� − ,�� + 
� ≤ ���. 
 

  
Fig. 3: Vector demonstration of the magnetic flux 

density in the presence of the mirror wall at x/d=0, 

calculated by (3) and (4) in the x − y plane. 

Fig. 4: Normalized magnetic flux density in the v direction for 

the u – v plane in the presence of liquid metal pool.   

 

In the next step, the final feature of the problem is formed by the application of Conformal Mapping to the results 

obtained by the mirror image method, where hyperbolic cosine mapping is used. If z = x + iy and w = u + iv, the 

transformation 4 = 5. cosh	: where k is a constant, will transform a series of lines parallel to the x-axis, and in the z-

plane, to a series of confocal hyperbolas in the w-plane. By expanding, the expressions for u and v could be obtained: ; = 5 cosh � cos 
    (5) < = 5 sinh � sin 
	    (6) 

The magnetic field in the u − v plane has two ;"  and <" components according to (7): �!�;, <� = −∇Ψ�;, <� = −@Ψ@; ;" − @Ψ@< <"    (7) 

with Ψ being the scalar magnetic potential distribution in the u-v plane. One may link this relation to the magnetic field 

in the x−y plane using (8) and (9): �A = −@Ψ@; = −@Ψ@� @�@; − @Ψ@
 @
@; = �� @�@; + �� @
@; 
   (8) 
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Finding the values for 
C�CA, 

C�CB, C�CA and 
C�CB [6], we may calculate the magnetic field distribution in the presence of the liquid 

metal. Figure 4 shows the normalized < component of the magnetic flux density in the u-v plane, where liquid metal 

pool exits at  
AD > 1. The calculated magnetic field distribution will be applied to the static MHD calculations in the next 

section to model the liquid metal surface contour.  

 

Analytical calculation of the melt deformation 

The scheme of the system is demonstrated in Fig. 5. An AC gapped coil with 2�� as the gap size, N the number of turns 

and &'()* cos(ωt) the current with ω = 2πf  and f  the frequency, is used as the magnetic field source. The fringing field 

of the coil is applied on the surface of the liquid metal pool. The magnetic permeability of the melt FG is the same as 

that of the free space, with HG as the electrical conductivity, ρ as the density, and γ as the surface tension. The meltpool 

surface contour (h(x)) is a function of the distance, expressed by the horizontal coordinate (x). The combination of the 

effects regarding the downward gravitational force and the surface tension will lead to a deformation of the liquid pool 

surface contour, like the scheme in the Fig. 5(c). The surface tension effect on the capillary pressure difference between 

two immiscible fluids is given by the Young-Laplace equation [7]: 

 ∆J = 	−K∇!. 3L +	JM    (10) 

 

where ∆p is the pressure difference, 3L	is the normal vector of the surface of the metal pool. Applying the initial values 

and boundary conditions in [5, 6, 8] one may solve (10) using Green’s function as: 
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where Pa 	and PQ 	are the left and right Green’s functions that act with respect to the singularity point ξ, cd  is the length 

of the meltpool (Fig. 5(b)),	XY is the Bond number, Z is the contact angle, Z[ is the correction contact angle, 5[	(equal 

to FG���cdY/2K) is the MHD pressure constant and \]	is the horizontal distribution of the magnetic field on the surface 

of the liquid metal pool at (h(x) = 0). The resulting surface contour is demonstrated in Fig. 6. The free surface of the 

melt in the middle at the relaxed situation (Fig. 6(a)) is equal to the capillary length. Figure 6 shows the liquid metal 

pool from the relaxed situation 6(a) till the deformed situation by 5[ = 1000. The two edges of the liquid pool at x = 0 

and x = 1 are in contact with the horizontal surface (h(x) = 0). The contact angle is equal to the assumed value, θ = π/6. 

It is obvious that by applying the magnetic pressure, due to the constant volume constraint, the contact point moves 

farther from the magnetic source and liquid metal squeezing happens. Experimental tests are shown in the Fig. 7(a)-(d), 

where a liquid pot (dimension is 8cm × 4cm × 1cm) containing Wood’s (melting point is 70oC, density is 9700kh/m3, 

electrical conductivity is 1.39×106 S/m) metal is exposed to the magnetic fringing field of a gapped coil (gap length is 

3cm, coil dimension is 28cm×14cm×5cm, winding turns are 20, wire diameter is 1cm), carrying a current of 0-400A, 

5kHz. A comparison between the analytical and experimental results is demonstrated in Fig. 8, where the normalized 

maximum deformation in the x-direction is assumed as the melt deformation.  

 

Conclusion 

It is obvious that by applying the magnetic pressure, the deformation increases in the melt. In the current range, less 

than 300A, the analytical method shows an overestimation. This happens because of an overestimation of the calculated 

magnetic field for the lower values of the deformation. The actual radius of the liquid Wood’s metal pool at the edge is 

around 2mm. However, considering this value for the analytical calculation of the magnetic field, will make the 

thickness of the modeled liquid metal pool several times higher than the real depth of the liquid metal pool in the 

relaxed situation (e.g. ℎY). Therefore, the edge radius is considered less than the reality, which leads in a higher 

magnetic field at the edge and consequently a higher deformation. 



 

 
Fig. 5: Scheme of the system including gapped AC coil 

beside the molten metal pool (a), different parameters (b) 

the expected effect of surface tension and gravitational 

force on the melt contour (c). 

Fig. 6: Normalized magnetic flux density in the v direction 

for the u – v plane in the presence of liquid metal pool.   

 

 

 
 

 

Fig. 7: Liquid metal pool deformation by means of 

magnetic pressure at different levels of current applied to 

the inductor; a) I=0A, b) I=100A c) I=200A, d) I=400A, 

5kHz 

Fig. 8: Comparison between the experimental and the 

analytical results; the deformation (c' − 1) is normalized 

with the length of the liquid metal pool as a length scale. 

Current amplitude appears in the MHD pressure constant 5[, where it is related to the calculated deformation. 
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