M. Nofar and C. B. Park, Poly (lactic acid) foaming, Progress in Polymer Science, vol.39, issue.10, pp.1721-1741, 2014.
DOI : 10.1016/j.progpolymsci.2014.04.001

S. Lee, Introduction Foam Extrusion: Principles and Practice, pp.1-18, 2014.

J. Zhang, G. M. Rizvi, C. B. Park, and M. M. Hasan, Study on cell nucleation behavior of HDPE???wood composites/supercritical CO2 solution based on rheological properties, Journal of Materials Science, vol.113, issue.11, pp.46-3777, 2011.
DOI : 10.1002/app.29991

M. Lee, C. Tzoganakis, and C. B. Park, Extrusion of PE/PS blends with supercritical carbon dioxide, Polymer Engineering & Science, vol.53, issue.7, pp.1112-1120, 1998.
DOI : 10.1002/pen.10278

S. S. Rizvi, S. J. Mulvaney, and A. S. Sokhey, The combined application of supercritical fluid and extrusion technology, Trends in Food Science & Technology, vol.6, issue.7, pp.232-240, 1995.
DOI : 10.1016/S0924-2244(00)89084-6

C. B. Park, A. H. Behravesh, and R. D. Venter, Low density microcellular foam processing in extrusion using CO2, Polymer Engineering & Science, vol.42, issue.11, pp.1812-1823, 1998.
DOI : 10.1002/pen.10351

B. Jeon, H. K. Kim, S. W. Cha, S. J. Lee, M. Han et al., Microcellular foam processing of biodegradable polymers ??? review, International Journal of Precision Engineering and Manufacturing, vol.44, issue.4, pp.14-679, 2013.
DOI : 10.1177/0021955X08088859

D. L. Tomasko, H. B. Li, D. H. Liu, X. M. Han, M. J. Wingert et al., A review of CO2 applications in the processing of polymers, Ind. Eng. Chem. Res, pp.42-6431, 2003.

S. P. Nalawade, F. Picchioni, and L. P. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications, Progress in Polymer Science, vol.31, issue.1, pp.31-50, 2006.
DOI : 10.1016/j.progpolymsci.2005.08.002

URL : http://tbk.eldoc.ub.rug.nl/FILES/root/2006/ProgPolymSciNalawade/2006ProgPolymSciNalawade.pdf

M. Sauceau, J. Fages, A. Common, C. Nikitine, and E. Rodier, New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Progress in Polymer Science, vol.36, issue.6, pp.36-749, 2011.
DOI : 10.1016/j.progpolymsci.2010.12.004

URL : https://hal.archives-ouvertes.fr/hal-01152908

L. M. Matuana and C. A. Diaz, Study of cell nucleation in microcellular poly(lactic acid) foamed with supercritical CO2 through a continuous-extrusion process, Ind. Eng. Chem. Res, pp.49-2186, 2010.

L. M. Matuana and C. A. Diaz, Strategy To Produce Microcellular Foamed Poly(lactic acid)/Wood-Flour Composites in a Continuous Extrusion Process, Industrial & Engineering Chemistry Research, vol.52, issue.34, pp.52-12032, 2013.
DOI : 10.1021/ie4019462

S. Pilla, S. G. Kim, G. K. Auer, S. Gong, and C. B. Park, Microcellular extrusion-foaming of polylactide with chain-extender, Polymer Engineering & Science, vol.91, issue.19, pp.49-1653, 2009.
DOI : 10.1515/POLYENG.2005.25.3.239

S. Pilla, S. G. Kim, G. K. Auer, S. Gong, and C. B. Park, Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends, Materials Science and Engineering: C, vol.30, issue.2, pp.255-262, 2010.
DOI : 10.1016/j.msec.2009.10.010

N. , L. Moigne, M. Sauceau, M. Benyakhlef, R. Jemai et al., Foaming of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organo-clays nano-biocomposites by a continuous supercritical CO2 assisted extrusion process, Eur. Polym. J, pp.61-157, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01611610

M. Mihai, M. A. Huneault, B. D. Favis, and H. Li, Extrusion Foaming of Semi-Crystalline PLA and PLA/Thermoplastic Starch Blends, Macromolecular Bioscience, vol.251, issue.53, pp.907-920, 2007.
DOI : 10.1080/10601329608010888

M. Mihai, M. A. Huneault, and B. D. Favis, Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide, Journal of Applied Polymer Science, vol.117, issue.5, pp.2920-2932, 2009.
DOI : 10.1115/1.2826127

M. Mihai, M. A. Huneault, and B. D. Favis, Rheology and extrusion foaming of chain-branched poly(lactic acid), Polymer Engineering & Science, vol.251, issue.3, pp.629-642, 2010.
DOI : 10.1007/BF01498927

T. Vigh, M. Sauceau, J. Fages, E. Rodier, I. Wagner et al., Effect of supercritical CO2 plasticization on the degradation and residual crystallinity of melt-extruded spironolactone, Polym. Adv. Technol, pp.25-1135, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01611614

C. Nikitine, E. Rodier, M. Sauceau, J. Letourneau, and J. Fages, and single screw extrusion process, Journal of Applied Polymer Science, vol.170, issue.2, pp.981-990, 2010.
DOI : 10.1007/978-3-662-03939-7

URL : https://hal.archives-ouvertes.fr/hal-01618294

C. Nikitine, E. Rodier, M. Sauceau, and J. Fages, Residence time distribution of a pharmaceutical grade polymer melt in a single screw extrusion process, Chemical Engineering Research and Design, vol.87, issue.6, pp.809-816, 2009.
DOI : 10.1016/j.cherd.2008.10.008

URL : https://hal.archives-ouvertes.fr/hal-01618296

Z. K. Nagy, M. Sauceau, K. Nyúl, E. Rodier, B. Vajna et al., Use of supercritical CO2-aided and conventional melt extrusion for enhancing the dissolution rate of an active pharmaceutical ingredient, Polymers for Advanced Technologies, vol.19, issue.5, pp.909-918, 2012.
DOI : 10.1021/ja02086a003

URL : https://hal.archives-ouvertes.fr/hal-01618290

A. Common, E. Rodier, M. Sauceau, and J. Fages, Flow and mixing efficiency characterisation in a CO2-assisted single-screw extrusion process by residence time distribution using Raman spectroscopy, Chemical Engineering Research and Design, vol.92, issue.7, pp.92-1210, 2014.
DOI : 10.1016/j.cherd.2013.10.013

URL : https://hal.archives-ouvertes.fr/hal-01611624

J. Wang, W. Zhu, H. Zhang, and C. B. Park, Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity, Chemical Engineering Science, vol.75, pp.75-390, 2012.
DOI : 10.1016/j.ces.2012.02.051

M. Keshtkar, M. Nofar, C. B. Park, and P. J. Carreau, Extruded PLA/clay nanocomposite foams blown with supercritical CO 2, Polymer, vol.55, issue.16, pp.4077-4090, 2014.
DOI : 10.1016/j.polymer.2014.06.059

J. W. Lee, K. Wang, and C. B. Park, Challenge to Extrusion of Low-Density Microcellular Polycarbonate Foams Using Supercritical Carbon Dioxide, Industrial & Engineering Chemistry Research, vol.44, issue.1, pp.44-92, 2005.
DOI : 10.1021/ie0400402

C. B. Park, D. F. Baldwin, and N. P. Suh, Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers, Polymer Engineering and Science, vol.42, issue.5, pp.35-432, 1995.
DOI : 10.1002/aic.690150124

X. Xu, C. B. Park, D. Xu, and R. , Pop-Iliev, Effects of die geometry on cell nucleation of PS foams blown with CO2, Polym. Eng. Sci, pp.43-1378, 2003.

S. Alavi and S. S. Rizvi, Strategies for Enhancing Expansion in Starch-Based Microcellular Foams Produced by Supercritical Fluid Extrusion, International Journal of Food Properties, vol.3, issue.1, pp.23-34, 2005.
DOI : 10.1016/S0963-9969(02)00223-5

A. Behravesh, C. Park, M. Pan, and R. Venter, Effective suppression of cell coalescence during chapping in the extrusion of microcellular HIPS foams, 212th National ACS Meeting, pp.37-767, 1996.

H. E. Naguib, C. B. Park, and N. Reichelt, Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams, Journal of Applied Polymer Science, vol.22, issue.4, pp.91-2661, 2004.
DOI : 10.1002/app.13448

C. B. Park, V. Padareva, P. C. Lee, and H. E. Naguib, Extruded open-celled LDPE-based foams using non-homoheneous melt structure, J. Polym. Eng, pp.25-239, 2005.
DOI : 10.1515/polyeng.2005.25.3.239

Q. Huang, B. Seibig, and D. Paul, Polycarbonate hollow fiber membranes by melt extrusion, Journal of Membrane Science, vol.161, issue.1-2, pp.287-291, 1999.
DOI : 10.1016/S0376-7388(99)00122-2

R. Chandra and R. Rustgi, Biodegradable polymers, Progress in Polymer Science, vol.23, issue.7, pp.1273-1335, 1998.
DOI : 10.1016/S0079-6700(97)00039-7

T. A. Hottle, M. M. Bilec, and A. E. Landis, Sustainability assessments of bio-based polymers, Polymer Degradation and Stability, vol.98, issue.9, pp.98-1898, 2013.
DOI : 10.1016/j.polymdegradstab.2013.06.016

C. J. Weber, V. Haugaard, R. Festersen, and G. Bertelsen, Production and applications of biobased packaging materials for the food industry, Food Additives & Contaminants, vol.19, issue.sup1, pp.172-177, 2002.
DOI : 10.1016/S0924-2244(99)00019-9

J. Black, Biocompatibility: definitions and issues, Biological Performance of Materials: Fundamentals of Biocompatibility, pp.3-15, 2005.

D. F. Williams, On the mechanisms of biocompatibility, Biomaterials, vol.29, issue.20, pp.2941-2953, 2008.
DOI : 10.1016/j.biomaterials.2008.04.023

A. Soroudi and I. Jakubowicz, Recycling of bioplastics, their blends and biocomposites: A review, European Polymer Journal, vol.49, issue.10, pp.2839-2858, 2013.
DOI : 10.1016/j.eurpolymj.2013.07.025

G. Verreck, A. Decorte, H. Li, D. Tomasko, A. Arien et al., The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers, The Journal of Supercritical Fluids, vol.38, issue.3, pp.383-391, 2006.
DOI : 10.1016/j.supflu.2005.11.022

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Cleeren et al., The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64, European Journal of Pharmaceutical Sciences, vol.26, issue.3-4, pp.349-358, 2005.
DOI : 10.1016/j.ejps.2005.07.006

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Liu et al., Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer, International Journal of Pharmaceutics, vol.327, issue.1-2, pp.327-372, 2006.
DOI : 10.1016/j.ijpharm.2006.07.024

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Liu et al., The effect of supercritical CO2 as a reversible plasticizer and foaming agent on the hot stage extrusion of itraconazole with EC 20cps, The Journal of Supercritical Fluids, vol.40, issue.1, pp.153-162, 2007.
DOI : 10.1016/j.supflu.2006.05.005

J. G. Lyons, M. Hallinan, J. E. Kennedy, D. M. Devine, L. M. Geever et al., Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process, International Journal of Pharmaceutics, vol.329, issue.1-2, pp.329-62, 2007.
DOI : 10.1016/j.ijpharm.2006.08.028

H. Tian, Z. Tang, X. Zhuang, X. Chen, and X. Jing, Biodegradable synthetic polymers: Preparation, functionalization and biomedical application, Progress in Polymer Science, vol.37, issue.2, pp.237-280, 2012.
DOI : 10.1016/j.progpolymsci.2011.06.004

A. Salerno and C. D. Pascual, Bio-based polymers, supercritical fluids and tissue engineering, Process Biochemistry, vol.50, issue.5, pp.826-838, 2015.
DOI : 10.1016/j.procbio.2015.02.009

X. Jing, H. Mi, T. Cordie, M. Salick, X. Peng et al., Fabrication of Porous Poly(??-caprolactone) Scaffolds Containing Chitosan Nanofibers by Combining Extrusion Foaming, Leaching, and Freeze-Drying Methods, Industrial & Engineering Chemistry Research, vol.53, issue.46, pp.53-17909, 2015.
DOI : 10.1021/ie5034073

H. Mi, M. R. Salick, X. Jing, B. R. Jacques, W. C. Crone et al., Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding, Materials Science and Engineering: C, vol.33, issue.8, pp.4767-4776, 2013.
DOI : 10.1016/j.msec.2013.07.037

H. Mi, X. Jing, M. R. Salick, and P. , Xiang-Fang, L.-S. Turng, A novel thermoplastic polyurethane scaffold fabrication method based on injection foaming with water and supercritical carbon dioxide as coblowing agents, Polym. Eng. Sci, pp.54-2947, 2014.

H. Zhao, Z. Cui, X. Sun, L. Turng, and X. Peng, Morphology and Properties of Injection Molded Solid and Microcellular Polylactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends, Industrial & Engineering Chemistry Research, vol.52, issue.7, pp.52-2569, 2013.
DOI : 10.1021/ie301573y

R. Auras, B. Harte, and S. Selke, An Overview of Polylactides as Packaging Materials, Macromolecular Bioscience, vol.4, issue.9, pp.835-864, 2004.
DOI : 10.1002/mabi.200400043

K. Cink, J. C. Smith, J. R. Nangeroni, and . Randall, Extruded polylactide foams blown with carbon dioxide, WO Patent App, 2005.

J. Reigner, R. Gendron, and M. F. Champagne, Extrusion foaming of poly(lactic acid) blown with CO2: toward 100% green material, Cell. Polym, vol.26, pp.83-115, 2007.

S. T. Lee, L. Kareko, and J. , Study of Thermoplastic PLA Foam Extrusion, Journal of Cellular Plastics, vol.91, issue.4, pp.293-305, 2008.
DOI : 10.1002/app.13448

Å. Larsen and C. Neldin, Physical extruder foaming of poly(lactic acid)-processing and foam properties, Polymer Engineering & Science, vol.25, issue.5, pp.941-949, 2013.
DOI : 10.1016/j.biomaterials.2003.10.023

S. Ahmadzadeh, A. Nasirpour, J. Keramat, N. Hamdami, T. Behzad et al., Nanoporous cellulose nanocomposite foams as high insulated food packaging materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.468, pp.201-210, 2015.
DOI : 10.1016/j.colsurfa.2014.12.037

URL : https://hal.archives-ouvertes.fr/hal-01278109

G. Jiang, H. Huang, and Z. Chen, Microstructure and thermal behavior of polylactide/clay nanocomposites melt compounded under supercritical CO2, Advances in Polymer Technology, vol.50, issue.3, pp.174-182, 2011.
DOI : 10.1016/j.pmatsci.2005.05.002

H. Zhao, G. Zhao, L. Turng, and X. Peng, Enhancing Nanofiller Dispersion Through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites, Industrial & Engineering Chemistry Research, vol.54, issue.28, pp.54-7122, 2015.
DOI : 10.1021/acs.iecr.5b01130

C. Kuo, L. Liu, W. Liang, H. Liu, and C. Chen, Preparation of polylactic acid (PLA) foams with supercritical carbon dioxide and their applications for reflectors of white light-emitting diode (LED) lamps, Materials Research Bulletin, vol.67, pp.67-170, 2015.
DOI : 10.1016/j.materresbull.2015.03.026

A. Ayoub and S. S. Rizvi, Properties of supercritical fluid extrusion-based crosslinked starch extrudates, Journal of Applied Polymer Science, vol.74, issue.6, pp.3663-3671, 2008.
DOI : 10.1002/aic.690410217

A. Ayoub and S. S. Rizvi, Reactive supercritical fluid extrusion for development of moisture resistant starch-based foams, Journal of Applied Polymer Science, vol.107, issue.4, pp.2242-2250, 2011.
DOI : 10.1002/app.27538

N. Zhao, L. H. Mark, C. Zhu, C. B. Park, Q. Li et al., and Water as Co-blowing Agents, Industrial & Engineering Chemistry Research, vol.53, issue.30, pp.53-11962, 2014.
DOI : 10.1021/ie502018v

M. T. Masatcioglu, E. Yalcin, M. Kim, G. Ryu, S. Celik et al., Physical and chemical properties of tomato, green tea, and ginseng-supplemented corn extrudates produced by conventional extrusion and CO2 injection process, European Food Research and Technology, vol.64, issue.5, pp.237-801, 2013.
DOI : 10.1111/j.1365-2621.1999.tb15893.x

S. E. Ondo, S. Singkhornart, and G. Ryu, Effects of die temperature, alkalized cocoa powder content and CO2 gas injection on physical properties of extruded cornmeal, Journal of Food Engineering, vol.117, issue.2, pp.173-182, 2013.
DOI : 10.1016/j.jfoodeng.2013.01.040

L. Myat and G. Ryu, Effect of Carbon Dioxide Injection on Physiochemical Properties and Saccharification of Extruded Corn Starch for Fermentation Substrate Preparation, Journal of Microbial & Biochemical Technology, vol.05, issue.01, pp.5-18, 2013.
DOI : 10.4172/1948-5948.1000093

Y. Wang and G. Ryu, Physicochemical and antioxidant properties of extruded corn grits with corn fiber by CO2 injection extrusion process, Journal of Cereal Science, vol.58, issue.1, pp.110-116, 2013.
DOI : 10.1016/j.jcs.2013.03.013

S. Singkhornart, S. Edou-ondo, and G. Ryu, Influence of germination and extrusion with CO2 injection on physicochemical properties of wheat extrudates, Food Chemistry, vol.143, pp.122-131, 2014.
DOI : 10.1016/j.foodchem.2013.07.102

M. Masatcioglu, E. Yalcin, P. J. Hwan, G. Ryu, S. Celik et al., Hull-less barley flour supplemented corn extrudates produced by conventional extrusion and CO2 injection process, Innovative Food Science & Emerging Technologies, vol.26, pp.26-302, 2014.
DOI : 10.1016/j.ifset.2014.06.003

S. S. Rizvi and S. J. Mulvaney, Extrusion processing with supercritical fluids, 1992.

S. J. Mulvaney and S. S. Rizvi, Extrusion processing with supercritical fluids, Food Technol, vol.47, pp.74-82, 1993.

S. S. Rizvi and S. J. Mulvaney, Supercritical fluid extrusion process and apparatus, 1995.
DOI : 10.1007/978-1-4615-2674-2_265

Z. Hicsamaz, E. Dogan, C. Chu, and S. S. Rizvi, Leavened Dough Processing by Supercritical Fluid Extrusion (SCFX), Journal of Agricultural and Food Chemistry, vol.51, issue.21, pp.6191-6197, 2003.
DOI : 10.1021/jf034142z

K. Ruttarattanamongkol, M. E. Wagner, and S. S. Rizvi, Properties of yeast free bread produced by supercritical fluid extrusion (SCFX) and vacuum baking, Innovative Food Science & Emerging Technologies, vol.12, issue.4, pp.12-542, 2011.
DOI : 10.1016/j.ifset.2011.07.006

M. Kasih, Innovative Application of Supercritical Fluid Extrusion (SCFX) in Yeast Free Bread Production, 2009.

I. Paraman, M. E. Wagner, and S. S. Rizvi, Micronutrient and Protein-Fortified Whole Grain Puffed Rice Made by Supercritical Fluid Extrusion, Journal of Agricultural and Food Chemistry, vol.60, issue.44, pp.60-11188, 2012.
DOI : 10.1021/jf3034804

I. Paraman, S. Supriyadi, M. E. Wagner, and S. S. Rizvi, Prebiotic fibre-incorporated whey protein crisps processed by supercritical fluid extrusion, International Journal of Food Science & Technology, vol.42, pp.48-2193, 2013.
DOI : 10.1080/10408690290825574

M. K. Sharif, S. S. Rizvi, and I. Paraman, Characterization of supercritical fluid extrusion processed rice???soy crisps fortified with micronutrients and soy protein, LWT - Food Science and Technology, vol.56, issue.2, pp.56-414, 2014.
DOI : 10.1016/j.lwt.2013.10.042

V. Z. Sun, I. Paraman, and S. S. Rizvi, Supercritical Fluid Extrusion of Protein Puff Made with Fruit Pomace and liquid Whey, Food and Bioprocess Technology, vol.100, issue.2, pp.1707-1715, 2015.
DOI : 10.1016/j.jfoodeng.2010.04.004

K. Y. Cho and S. S. Rizvi, NEW GENERATION OF HEALTHY SNACK FOOD BY SUPERCRITICAL FLUID EXTRUSION, Journal of Food Processing and Preservation, vol.64, issue.2, pp.192-218, 2010.
DOI : 10.2202/1556-3758.1074

K. Manoi and S. S. Rizvi, Rheological characterizations of texturized whey protein concentrate-based powders produced by reactive supercritical fluid extrusion, Food Research International, vol.41, issue.8, pp.41-786, 2008.
DOI : 10.1016/j.foodres.2008.07.001

K. Manoi and S. S. Rizvi, Physicochemical changes in whey protein concentrate texturized by reactive supercritical fluid extrusion, Journal of Food Engineering, vol.95, issue.4, pp.627-635, 2009.
DOI : 10.1016/j.jfoodeng.2009.06.030

N. A. Mustapha, K. Ruttarattanamongkol, and S. S. Rizvi, The effects of supercritical fluid extrusion process on surface hydrophobicity of whey protein concentrate and its relation to storage and heat stability of concentrated emulsions, Food Research International, vol.48, issue.2, pp.48-470, 2012.
DOI : 10.1016/j.foodres.2012.05.015

S. S. Afizah and . Rizvi, Stability and rheological properties of corn oil and butter oil emulsions stabilized with texturized whey proteins by supercritical fluid extrusion, J. Food Eng, vol.166, pp.139-147, 2015.

C. Okolieocha, D. Raps, K. Subramaniam, and V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004???2015) and future directions ??? A review, European Polymer Journal, vol.73, pp.73-500, 2015.
DOI : 10.1016/j.eurpolymj.2015.11.001