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Glossary

Markov process Here, this term indicates a probabilistic process in which there
exists a finite set of possible states (e.g., the 4 nucleotides, or the 20 amino acids)
and a matrix whose terms are the rates at which a state can change per unit
time. This conveniently represents the evolutionary process at the molecular
level. Such a process is said to be homogeneous when the matrix is constant
through time and through evolutionary lineages.

Dynamic programming is a computer science method for solving a com-
plex problem by breaking it down into a collection of simpler subproblems. Here,
it is used to calculate a result for a whole tree by considering progressively larger
parts of this tree, starting from the tree leaves for which the desired result can
be easily computed.

Phylogenetic tree A tree is an object made of nodes connected by edges
such that no closed circuit of edges exists, and there exists a path between any
pair of nodes. Tree leaves are those nodes connected to a single other node. In a
rooted tree, one node has a special status by being the tree root. A phylogenetic
tree represents the evolutionary divergence of biological entities, usually species
or genes, the leaves, from their last common ancestor, the tree root. Its nodes
figure ancestral entities. Its edges figure evolutionary lineages. In a species tree,
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biological entities are species. In a gene tree, they are homologous genes, that
is, genes sharing a common ancestor.
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ancestral chromosome; ancestral sequence reconstruction; continuous charac-
ters; discrete characters; gene adjacencies; gene order; gene content; gene tree/species
tree reconciliation; maximum likelihood; parsimony;

Synopsis

Biological organisms are the result of a long evolutionary history, and knowl-
edge of the path they have followed through time is very beneficial to the un-
derstanding of their extant shapes and functions. Interestingly, each lineage
keeps a record of its own evolutionary history. Comparing lineages thus allows
to restore the information of ancestral traits (e.g. morphologies, molecules, etc)
and gives insights on organisms living in the past, as well as on the history of
their diversification.

We survey mathematical models and computational methods used to re-
construct ancestral states for different levels of organization: phenotypic traits,
DNA and protein sequences, gene repertoires, and genome architecture. We
discuss the possibility of reconstructing ancestral genomes in their entirety, in-
tegrating all these levels of complexity.

Introduction

The theoretical possibility of reconstructing ancestral molecules from the se-
quence of these molecules in extant organisms has been formalized by Pauling
and Zuckerkandl (1963), and has become practical and widely applied in the
recent years. Various types of traits have been considered for ancestral recon-
struction: sequence data, either of the nucleotide or protein types, have been
extensively studied. Methods for processing sequence data can often be seen
in a more general fashion as methods handling characters with a discrete set
of values. Therefore, these methods also allow to consider non-sequence data
such as binary characters, presence/absence. Other sets of methods consider
continuous characters (e.g., body mass) and allow the reconstruction of their
ancestral values.

Ancestral reconstruction of gene content has also been studied with the ob-
jective of understanding the evolutionary history of gene repertoires over time.
Methods for discrete characters can be applied in this case, but a model incor-
porating the processes of gene evolution is more accurate. Indeed, the processes
of gene evolution in genomes include duplications and horizontal gene trans-
fer, which are improperly rendered when genes are coded as discrete character
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data. It has triggered the development of new methods specific for the recon-
struction of gene history and hence ancestral genic repertoires. Similarly, the
order of genes along chromosomes has been considered as a target for ancestral
reconstruction. Because this problem becomes very rapidly computationally
intractable, the less ambitious target of reconstructing ancestral adjacencies be-
tween genes along chromosomes has been studied.

For very shallow divergences, recent attempts have also been performed to
reconstruct full ancestral chromosomal sequences, with both genic and non cod-
ing nucleotides.

This chapter describes major methods for all these problems, which con-
cern the reconstruction of ancestral traits or sequences along a pre-established
phylogenetic tree, and starting from a set of observed trait values (e.g., mul-
tiple alignment of extant homologous sequences) (see Figure 1). Notably, the
procedures described here are those that have been widely used recently to re-
construct ancestral enzymes in order to study the path followed by a protein
along evolutionary time.

1 Ancestral character reconstruction

Inferring the ancestral states of a given trait requires a set of values measured
in extant organisms, a binary rooted or unrooted phylogeny relating these or-
ganisms and a model assuming a particular process of trait evolution. This
model may contain parameters, such as rates of change between states or the
branch lengths of the phylogeny, which are usually estimated from the data in
the case of probabilistic reconstructions. Three methodological frameworks are
commonly considered to infer ancestral characters: Parsimony (Sankoff, 1975),
Maximum Likelihood (ML) (Schluter et al., 1997) and the Bayesian framework
(Pagel et al., 2004).

Models used to infer ancestral characters are usually homogeneous continuous-
time Markov processes (Pagel, 1994; Lewis, 2001) defined over state spaces en-
compassing extant measures. Examples of such state spaces are finite sets of
binary characters (e.g. presence/absence of wings, expression/inhibition of a
gene, etc), finite unordered spaces (e.g. nucleotides, amino-acids, diets, mor-
phology, gene orders), ordered discrete sets (e.g. number of genes, genome
size), or continuous sets allowing continuous variation along a numerical range
of values (e.g. body size, mass, optimal growth temperature).

1.1 Discrete characters

Markov models for a finite state space Ω may contain several parameters, de-
pending on the a priori assumptions that are made about transition rates be-
tween states (Pagel, 1994; Yang, 2006). When applied on binary or unordered
(excepted nucleotides or amino acids, see Section 2) sets of characters of size
k, the models are called Mk. Extensions of Mk are for example the Binary
and Multi-State Speciation and Extinction models (BiSSE and MuSSE, respec-
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Figure 1: Reconstruction of ancestral characters along a phylogenetic
tree

tively) developed to simultaneously infer the process of state change with the
estimation of speciation and extinction rates along the phylogeny (Maddison
et al., 2007; FitzJohn, 2012). Mk model makes the assumption that transi-
tion rates are constant across lineages. The Hidden Rates Model (HRM) relax
this homogeneity hypothesis and intends to capture the variation of transition
rates between states across the phylogeny, yielding more accurate estimations
of ancestral states (Beaulieu et al., 2013).

Maximum parsimony reconstructions are approximations of solutions when
the rates of events are supposed to be low, so that the probability of multiple
events on one branch can be considered negligible. In this case, consider a cost
dij of transition between states on any branch, with i, j ∈ Ω, and ancestral
states are chosen in order to minimise the sum of the costs of transitions on
all branches. Calculations typically follow a dynamic programming procedure
along the phylogeny (Sankoff, 1975). If the state space is small, a cost Cu(i) is
computed for every node u of the phylogeny, and every possible state i, starting
from the leaves and following a postorder traversal of the tree. For a leaf l,
Cl(i) = 0 if the state i is present at leaf l, and Cl(i) = ∞ otherwise. Then,
assuming that u1 and u2 are the children of u, apply

Cu(i) = min
j∈Ω

(Cu1
(j) + dij) + min

j∈Ω
(Cu2

(j) + dij).

(For u1, the cost Cu1
(j) + dij is computed for all possible values j ∈ Ω, and the

minimum is retained. Similarly for u2).
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One can thus obtain the set Froot of minimal cost states at the tree root, those
for which Croot(i) is minimal. The set Fp of minimal cost states at internal node
p, child of node a, is recursively computed, from root to leaves, with:
Fp ← ∅ #Initially, Fp is the empty set
#for each minimal cost state assigned to parent node a
for each i ∈ Fa do

m← minj(dij + Cp(j)) #The minimum cost m is computed
#All states j associated with a cost equal to m are added
#to the set of possible values

for each j do
if dij + Cp(j) = m
Fp ← Fp ∪ {j}

The set Fp gives all most parsimonious ancestral states at node p, and the
result does not depend on the position of the root. There are two primary is-
sues with the use of parsimony to reconstruct ancestral states. First, parsimony
ignores branch lengths, which are indicative of variation of evolutionary rates
between lineages. Second, parsimony does not account for variation of rates be-
tween the different states of the character, excepted with weighted parsimony,
which assign weights to state changes. But, in this case it is always difficult to
attribute appropriate weights a priori.

Likelihood calculations follow the same computational framework, with the
advantage of probabilistically accounting for the concerns raised above about
parsimony. Let Lu(i) be the probability of observing the state i at node u,
plij being the probability for state i to turn into j along a branch of length l,
computed according to the evolutionary model. Conditional probabilities are
computed recursively along the tree from the leaves to the root. For a leaf l,
Ll(i) = 1 if i is the observed value at leaf l, and Ll(i) = 0 otherwise. For other
nodes,

Lu(i) = (
∑
j1∈Ω

pl1ij1 × Lu1
(j1))(

∑
j2∈Ω

pl2ij2 × Lu2
(j2))

where u1 and u2 are the children of node u and lk is the length of the branch
between u and uk, which has to be a parameter of the model.

The probabilistic approach considers two types of ancestral character recon-
struction, the marginal and the joint reconstructions. The marginal reconstruc-
tion gives the probabilities P (u = i|S) of each state i of a given ancestral node
u, where S represents the observed values at all leaves of the tree. Using Bayes
formula, we obtain:

P (u = i|S) =
P (u = i)P (S|u = i)

P (S)
=
πiP (S|u = i)

P (S)
.

where πi is the equilibrium frequency of character i. Provided it is computed
after rooting the tree at its node r, the vector of conditional probabilities at the
tree root defined above corresponds to the term P (S|r = i). This procedure is
called ”empirical Bayes” by Yang (2006).
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The joint reconstruction gives the most probable set of residues across all
ancestral nodes, and necessitates a backward traversal of the tree like in the
parsimony case (Pupko et al., 2002).

The computations have a quadratic complexity with respect to the state
space size k, which makes dynamic programming a weak tool for large or infinite
state spaces. If the state space is the integer set, it is possible to see the cost
function Cu(i) as an affine function of i and to propagate only the coefficients of
the function along the nodes, instead of every value, to reach a complexity that
does not depend on the size of the state space (Csűrös, 2014), making parsimony
calculations feasible. When the state space is large but without a good structure
to order it, as with gene orders (Section 4, there can be n! possible gene orders),
then the ancestral reconstruction becomes intractable.

1.2 Continuous characters

When the state space Ω is a continuous set of numbers, the parsimony cost
function dij is usually defined as the absolute value or the square of the difference
between i and j. The cost C cannot be computed for all values i ∈ Ω, and the
coefficients of a linear or quadratic function of i is computed at each node,
following the same dynamic programming principle (for an exhaustive review
on parsimony methods see Csűrös (2014)). If dij = (i− j)2, then the parsimony
solution is also the ML one under a Brownian motion (BM) with a constant
rate, which is the most commonly used Markovian process under continuous
characters. BM assumes that the trait value changes as a random walk, with
multiple and independent steps drawn from a Normal distribution of mean 0
and variance σ2. The consequence of the independence between steps is that
the net change of the trait value along a branch of length t is drawn from a
Normal distribution of mean 0 and variance t × σ2. With a BM process, the
only parameter is the variance σ2, the trait changes with a constant rate along
the phylogeny and drifts neutrally without directionality or evolves towards
an optimum that drifts neutrally (Felsenstein, 2004). BM is a special case of
the Ornstein-Uhlenbeck (OU) process, which contains an additional attraction
parameter toward a central value, increased with the distance from this central
value. OU might be of interest when stabilising selection acts on the trait
under consideration (Martins 1994). Extensions of these models were proposed
to account for the heterogeneity in rate of change over time (Blomberg et al.,
2003; Harmon et al., 2010; Eastman et al., 2011). For instance, the Early Burst
Model (Harmon et al., 2010) allows the rate of the BM process to exponentially
change in time.

The estimation of ancestral continuous trait values can be performed in ML
(Schluter et al., 1997). Likelihoods of transitions in state between adjacent nodes
are easily derived from the BM process formulation, and the joint likelihood of
the Brownian rate (σ2) and all internal states is maximized over the entire tree.
Restricted ML (REML) is also often used (Felsenstein, 1985; Paradis et al.,
2004). REML does not analyze the raw data directly, but instead realises the
ML estimations using the contrasts among the observations. REML has been
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shown to produce unbiased estimates of variance and covariance parameters.
Ancestral values may be estimated in the Bayesian framework (Huelsenbeck
et al., 2002; Pagel et al., 2004), allowing to integrate over uncertainty in the
tree topology, branch lengths, and rate parameters.

Two alternative methods are commonly considered: the Phylogenetic Inde-
pendent Contrast (PIC) (Felsenstein, 1985) and the Generalized Least Squares
(GLS) methods (Martins and Hansen, 1997). However, they are not usually
employed to infer ancestral character values and were rather designed to con-
trol for the influence of tree topology on the estimation of correlations between
evolving traits. PIC assumes a BM-like model to recursively transform the tip
values into statistically independent and identically distributed values, called
contrasts, over the internal nodes up to the root. Thus, the ancestral values
can be estimated with the data of descendant nodes only, contrarily to ML esti-
mations. GLS estimates the unknown parameters in a linear regression model.
It assumes the model Y = DX, where D is a vector of observed values at the
tips, X is a matrix describing both the phylogeny unifying the tips along which
the trait evolves and the process of trait evolution (usually a BM process). Y
is the vector of ancestral trait estimates. In many situations, ML, PIC and
GLS produce similar values, especially when a simple BM process is assumed
to model the evolution of traits (Martins, 1999).

2 Ancestral sequence reconstruction

Ancestral sequence reconstruction (ASR) from extant molecular sequences (DNA
or proteins) consists in computing ancestral residues, given extant residues at
the leaves of a phylogenetic tree. As such it requires a multiple alignment of
sequences, a phylogenetic tree and a substitution model. Computations are
usually done independently at each site of the aligned sequences.

ASR inherits from all models and methods for ancestral character recon-
struction for small state spaces (DNA or amino-acids). But models of sequence
evolution have their specificities. First, depending on the number of parameters
defining the transition rates between states, the Mk model takes different names
(e.g. Jukes and Cantor (JC) when all rates are equal or General Time Reversible
(GTR) when all rates are different (Yang, 2006)). Second, the variation of evo-
lutionary rates across sequence sites is usually accounted for, modelled by a
gamma distribution discretized in K classes of 1

K weight. Then, the likelihood
equation of section 1 becomes:

Ls
u(i) =

K∑
c=1

1

K
[(
∑
j1

p
luui
ij1

)Ls
u1

(j1))(
∑
j2

p
luui
ij2

)Ls
u2

(j2))].

With sequences, the marginal reconstruction is the most frequently used
algorithm to compute ancestral characters. However, an efficient algorithm de-
veloped by Pupko et al. (2002) can be employed to perform joint reconstruction.
It deals with all ancestral nodes together, and the set of sequence residues at all
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nodes of largest probability is considered to be the best ancestral reconstruction
at a given site. While the marginal reconstruction requires a computation time
proportional to the number of sequences, the joint reconstruction is exponential
in the sequence number when across-site rate variation is modeled with a dis-
cretized gamma distribution (Liberles, 2007). Joint reconstruction is therefore
difficult for more than a few tens of sequences.

Yang (2006) indicates that joint and marginal reconstructions usually pro-
duce consistent results where the most probable joint reconstruction for a site
consists of the best marginal reconstruction at each node. Furthermore, when
conflicting results arise, neither reconstruction is very reliable.

In practice, the marginal approach of ancestral sequence reconstruction in
ML, retaining the most probable residue for each node at each site is most often
employed in ancestral protein resurrection experiments. Several software pack-
ages implement this procedure: PAML (Yang, 2007), MEGA (Tamura et al.,
2011), DAMBE (Xia, 2013), and bppAncestor, a part of the Bio++ library
(Guéguen et al., 2013).

When the goal is the resurrection of ancestral proteins, the residue with
largest probability at each node is often retained. In this case, it is interesting
to consider the magnitude of this largest probability: values above .9 indicate
high confidence in the reconstructed ancestral residue, whereas residues with
moderate probabilities are those where reconstruction is uncertain. This strat-
egy, though, is biased towards the most frequent amino acid at each protein site
(Yang, 2006). An alternative strategy that avoids this bias is to generate an
ancestral sequence by randomly drawing at each site one residue according to
the probability vector computed for this site. The second strategy also allows
to generate a small number of putative ancestral sequences in order to measure
the sensitivity of inferences to the uncertainty about ancestral sequences.

Several studies have compared ASRs by the parsimony and probabilistic ap-
proaches (Yang et al., 1995; Zhang and Nei, 1997). The general outcome is that
probabilistic methods are more accurate than the parsimony approach, except
when sequence divergences are weak where the two approaches perform similarly.
The probabilistic approach has also the advantage of estimating the uncertainty
of the reconstruction at each ancestral site. It was also shown that complex
probabilistic models which aim at capturing the compositional heterogeneity of
the substitution process provide more accurate estimates of ancestral sequences
(Groussin et al., 2013). However, the downside of parameter-rich models is that
they may require large datasets to accurately estimate all parameters, and may
also increase the time and memory requirements of the algorithm.

Models of insertions and deletions on a multiple alignment are necessary to
correctly infer the presence or absence of a residue at some site in an ancestral
sequence. For this, alignments have to be computed together with phyloge-
nies, so that indels are scored according to an evolutionary model. It is done
in parsimony by Löytynoja and Goldman (2008), and statistical models of in-
sertion/deletion are included in alignments algorithms of Diallo et al. (2007).
In that case the alignment, phylogeny and presence or absence of ancestral
residues are simultaneously given as an input to ASR methods. Diallo et al.
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(2010) present a software for computing indels (and thus, an alignment) given a
phylogeny, while Suchard and Redelings (2006) and Lunter et al. (2005) propose
a Bayesian co-estimation of alignment and phylogeny.

Finally, Groussin et al. (2015) highlighted that an erroneous tree negatively
impact ASR accuracy and that the use of species tree-aware gene trees recon-
structed with models of duplication, transfer and loss events (see Section 3)
strongly increase ASR accuracy. This calls for an additional integration of du-
plication, transfer and loss in alignment and phylogeny algorithms.

3 Gene content

Several approaches exist for the reconstruction of ancestral gene content onto
a species tree. A first one is the analysis of phylogenetic profiles, i.e. a matrix
of binary characters coded as presence/absence of genes at the leaves of a given
phylogeny of species (see Figure 2). A slightly more sophisticated version of
phylogenetic profiles considers counts of homologous genes as discrete characters
to allow the reconstruction of ancestral copy numbers for the genes under study.
But before reconstructing ancestral gene content, it is important to first consider
the evolutionary events that may affect the history of genes. For instance, in
all organisms, genes can be duplicated or lost. In addition, many organisms
have the ability to integrate genes from distantly related donors via lateral
gene transfer (LGT). LGT is believed to be frequent in Bacteria and Archaea,
and is beginning to be recognised as important in unicellular eukaryotes. It is
still considered to be much rarer in multicellular eukaryotes, although several
cases have been described. Hence, the application of methods that ignore LGT
as a process for the evolution of gene repertoires should be restricted to very
particular cases. Dollo parsimony (Farris, 1977), which allows loss of characters,
but forbids gains after an initial origination of the gene has been very popular
for genome reconstruction in the absence of LGT. But more realistic approaches
attribute asymmetrical costs for gain and loss to account for the possibility of
gene transfer with a relatively high cost. The equivalent likelihood methods
use a birth-and-death model in which probabilities of gene loss and gain are
different, and can be estimated from the dataset (see e.g. (Szöllősi and Daubin,
2012) for review). When the phylogenetic profile represents the number of copies
for each gene, and not only their presence/absence, it is possible to estimate the
branch-wise rates of duplication, transfer and loss along a phylogeny of species
(Csurös, 2010). There is considerable flexibility in the definition of the birth-
and-death model for gene evolution, the most simple models being linear, i.e
with rates of gain and loss that are independent of gene family size.

However, the analysis of phylogenetic profiles imperfectly renders the evolu-
tion of gene families along the phylogeny of species (see Figure 2). Numerous
events of duplication, transfer and loss remain invisible to the examination of
gene presence/absence or counts. This is the case in particular for gene re-
placements by LGT. The possibility of reconstructing gene phylogenies based
on sequence alignments reveal such hidden evolutionary events. The mapping
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Figure 2: Using phylogenetic profiles or gene phylogenies may recon-
struct different ancestral gene contents. The solid lines represent the
evolution of the gene within the species tree. Horizontal dotted lines represent
the dates of species divergence, restricting LGTs between species that co-exist
in time.

of a gene family tree onto a species tree, invoking events of duplication, transfer
and loss is called reconciliation (Maddison, 1997). A number of algorithms have
been proposed, which are more or less complete in the set of events that are
modelled (Doyon et al., 2011). An efficient solution to the problem of reconcili-
ation considering duplication and loss is the LCA (for Last Common Ancestor)
algorithm (Górecki and Tiuryn, 2006), which can run in linear time with the
number of nodes in the gene tree. The modelling of LGT is more complex. LGT
reconciliation has been proposed for the problem of gene replacement specifi-
cally. The problem here is to define a minimal number of editing operations to
transform the gene tree in the species tree. The Subtree Pruning and Regrafting
(SPR) approach reproduces the effect of transfers on phylogeny and has hence
been the subject of active research (Nakhleh et al., 2005; Beiko and Hamilton,
2006; Than and Nakhleh, 2008). However, the problem is computationally dif-
ficult and only applies to gene families without multi-copies. More complete
models, that account for duplication, transfer and loss (DTL) and hence apply
to the modelling of the evolution of multicopy gene families have been devel-
oped, both in a parsimony and probabilistic framework (Doyon et al., 2011;
Tofigh, 2009; David and Alm, 2011; Szöllősi et al., 2012, 2013; Sjöstrand et al.,
2014). The problem is still hard, but can become tractable through the addi-
tion of biologically relevant restrictions. For instance, an important constraint
to include into DTL reconciliation algorithms is the time consistency of gene
transfers: LGT can only occur among lineages that are contemporary in the
history of species (see Figure 2). A promising approach for handling such time
constraints is to fully specify the sequence of speciation events in the species
tree in which the gene tree is reconciled (Tofigh, 2009), and to allow genes to
evolve in lineages that are not explicitly represented in the tree representing the
relationships among extent species (Szöllősi et al., 2013). A full reconciliation
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between a species tree and all gene trees yields the best possible reconstruction
for the gene repertoire at nodes of the species tree.

4 Gene order

Molecular ancestral character reconstruction methods actually began with the
organisation of genes along chromosomes. Dobzhansky and Sturtevant (1938)
constructed the phylogeny and ancestral chromosome conformations of 17 drosophila
species, based on the observation of inversions. Already at that time the com-
putational complexity arising from a model of evolution of gene arrangements
subjected to inversions was visible (Sturtevant and Tan, 1937): after only a
few events, scenarios are difficult to reconstruct even under a parsimony prin-
ciple. This partly explains that ancestral gene order reconstruction methods
seem underage: models are simple but computationally costly, hard to apply to
a complex reality and to integrate with other kind of evolutionary signal.

Nevertheless the organisation of genes along chromosomes contains valuable
information on adaptation and modes of evolution of organisms, which has often
been overlooked. And the methodology slowly comes of age.

Dobzhansky-Sturtevant-like methods, modelling chromosomes as permuta-
tions subject to inversions, often generalized into double cuts-and-joins to cap-
ture more possible events (Yancopoulos et al., 2005), have been used to recon-
struct gene orders of some mammalian (Alekseyev and Pevzner, 2009) or an-
giosperm (Sankoff et al., 2009) ancestors with a parsimony principle. Such tech-
niques are limited to few (typically less than 10) closely related genomes, all with
equal gene content, with the notable exception of some including whole genome
duplications when ohnologous genes are still present in two copies (Zheng and
Sankoff, 2013) or when ohnologous segments can be detected (Gavranović and
Tannier, 2010). A probabilistic model of evolution of permutations by inver-
sions has been implemented in Badger (Larget et al., 2005), and applied to
reconstruct animal mitochondria or Yersinia pestis ancestral gene orders (Dar-
ling et al., 2008). These cannot benefit from the computational facilities of
dynamic programming because of the large state space, and use Monte Carlo
techniques for space explorations.

A way to bypass the algorithmic complexity and to scale up to hundreds of
genomes with unequal gene content is to model the evolution of independent lo-
cal characters instead of the evolution of a whole genome, just as it is the case for
nucleotide sequences and substitutions. This method was also —and is still—
applied independently from bioinformatics with cytogenetics data (Svartman
et al., 2006). Gene orders may be seen as sequences of adjacencies, which are
the links between two consecutive genes (Gallut et al., 2000). Adjacencies can
be summed up by a binary character, either two genes are consecutive, or not.
The immediate advantage of this view is that it can benefit from the standard
methodological arsenal of ancestral character reconstruction on binary charac-
ters (see Section 1). Yet there are several drawbacks to such an hypothesis of
independent evolution of adjacencies. One is that the information connecting
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the adjacencies, used to estimate inversion distances, is lost. Another is that
genomes considered as sets of independently evolving adjacencies are not any-
more constrained to be linear arrangement of genes (yet the single cut-or-join
model of genome evolution has this linearity constraint (Feijão and Meidanis,
2011; Miklós et al., 2014)). Linearization techniques, often related to Travel-
ling Salesman approaches, have to be applied to sets of reconstructed ancestral
adjacencies (Maňuch et al., 2012) in order to present bona fide gene orders.

Parsimony approaches (Sankoff or Dollo) on adjacencies have been used,
together with linearization procedures to reconstruct ancestors of mammalian
(Ma et al., 2006), yeasts (Chauve et al., 2010), monocotyledons (Sankoff et al.,
2009), or bacterial (Wang et al., 2006) clades.

Evolution of adjacencies is so simple that it paves the way to integrating gene
order and gene content, via gene phylogenies, in a single framework (Sankoff
and El-Mabrouk, 2000). Thus, it is now possible to model the evolution of
adjacencies along reconciled phylogenies (Ma et al., 2008; Bérard et al., 2012;
Louis et al., 2013; Patterson et al., 2013).

Prospective methods have attempted the reconstruction of more ancient ani-
mal proto-karyotypes: amniotes (Kohn et al., 2006; Nakatani et al., 2007), bony
fishes (Jaillon et al., 2004; Woods et al., 2005; Catchen et al., 2008), verte-
brates (Naruse et al., 2004; Kohn et al., 2006; Nakatani et al., 2007), chordates
(Putnam et al., 2008), or even eumetazoa (Putnam et al., 2007). However, the
accuracy of these ad-hoc methodologies has not been studied as thoroughly as
for more generic methods, which probably also miss a satisfactory validation
process due to the lack of simulators with a diversified enough model of whole
genome evolution.

The complete reconstruction of ancestral genomes

Imagine now a theoretical pipeline that should reconstruct the full sequences of
genomes from the past. First give its gene content (Section 3), then order the
genes (Section 4), align genic and intergenic regions and reconstruct ancestral
sequences (Section 2).

Whereas such integration has been attempted and applied to a small frag-
ment of eutherian genomes (Blanchette et al., 2008), or the chromosome of a
medieval bacteria (Rajaraman et al., 2013), the problem is still very challenging
for several reasons.

One is that there are specific problems to whole genome reconstruction, like
borders between genic and intergenic which can be fuzzy: sometimes homolo-
gous border sequences are genic in one organism, and intergenic in another, due
to the variation of the start and stop positions of genes. Overlapping alignments,
possibly with different phylogenetic histories, have to be handled.

Another is that each step highly depends on the others: the construction of
phylogenetic trees depends on sequence alignments, while sequence alignment
(especially when modeling indels) depends on evolutionary history along a tree
(Section 2); gene order can be informative for gene content (Lafond et al., 2013);
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every step depends on the accuracy of phylogenetic trees, which in turn are
informed by sequence and gene content evolution (Szöllősi et al., 2012), and
could also benefit from information about the evolution of gene order. The
sequencial pipeline adds up the errors of each step without the possibility of
any backward correction, while real integrative models are missing. Even small
error rates can lead to many errors at the genomic scale.

The validity of all the methods described above is a big issue. True an-
cestral molecules are unknown and the accuracy of computational estimations
can be approached via simulations (but no simulator realistically handles all
possible events), via extremely rare cases where an ancient sequence is known
(Rajaraman et al., 2013), via expectations about ancestral genomic features
(e.g., stability of gene content, or linearity of ancestral chromosomes (Boussau
et al., 2013)) or via the viability of resurrections (Groussin et al., 2015).
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