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Abstract The need for an efficient method of integra-

tion of a dense normal field is inspired by several com-

puter vision tasks, such as shape-from-shading, photo-

metric stereo, deflectometry, etc. Our work is divided

into two papers. In the first paper entitled Part I: A

Survey, we have selected the most important properties

that one may expect from any integration method. We

have then reviewed most existing methods, according to

the selected properties, and concluded that no method

satisfies all of them. In the present paper entitled Part

II: New Insights, we propose several variational meth-

ods which aim at filling this gap. We first introduce

a new discretization for quadratic integration, which

is designed to ensure both fast recovery and the abil-

ity to handle non-rectangular domains. Yet, with this

solver, discontinuous surfaces can be handled only if

the scene is a priori segmented into pieces without dis-

continuity. Inspired by edge-preserving methods from

image processing (e.g., total variation and non-convex

regularization, anisotropic diffusion and variational seg-

mentation), we then introduce several discontinuity-

preserving functionals. In view of the selected crite-

ria, that inspired by the Mumford-Shah segmentation

method is shown to be the best compromise.
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shading.

Y. Quéau
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1 Introduction

In this paper, we study several methods for numerical

integration of a gradient field over a 2D grid. Our aim

is to estimate the values of a function z : R2 → R, over

a set Ω ⊂ R2 where an estimate g = [p, q]> : Ω → R2

of its gradient ∇z is available. Formally, we want to

estimate values z(u, v) satisfying the following equation

in z:

∇z(u, v) = [p(u, v), q(u, v)]
>︸ ︷︷ ︸

g(u,v)

, ∀(u, v) ∈ Ω (1)

where ∇z(u, v) is the gradient of the unknown depth

map z, g = [p, q]
>

is the data, i.e. an estimate of ∇z,
and Ω ⊂ R2 is the reconstruction domain.

1.1 Expected Properties of an Integration Method

In our survey paper [19], we have shown that an ideal

numerical tool for solving equation (1) should satisfy

the following properties, appart accuracy:

• PFast: be as fast as possible;

• PRobust: be robust to a noisy gradient field;

• PFreeB: be able to handle a free boundary ;

• PDisc: preserve the depth discontinuities;

• PNoRect: be able to work on a non-rectangular do-

main Ω;

• PNoPar: have no critical parameter to tune.

We have also shown in [19] that no existing method

simultaneously meets all these requirements. Building

upon the conference papers [18,20,48], our aim in this

second paper is to fill this gap, through the study of sev-

eral variational formulations of the integration problem.
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1.2 Variational Methods in Image Processing

In view of the PRobust property, variational methods,

which aim at estimating the surface by minimization of

a well-chosen criterion, are particularly suited for the

integration problem. Hence, we choose the variational

framework as basis for the design of new methods. This

choice is also motivated by the fact that the property

which is the most difficult to ensure is probably PDisc.

Numerous variational methods have been designed for

edge-preserving image processing: such methods may

thus be a natural source of inspiration for designing

discontinuity-preserving integration methods.

For a comprehensive introduction to this literature,

we refer the reader to [3] and to pioneering papers such

as [10,15,35,39]. Basically, the idea in edge-preserving

image restoration is that edges need to be processed in a

particular way. This is usually achieved by choosing an

appropriate energy to minimize, formulating the inverse

problem as the recovery of a restored image z : Ω ⊂
R2 → R minimizing the energy:

E(z) = F(z) +R(z) (2)

where:

• F(z) is a fidelity term penalizing the difference be-

tween a corrupted image z0 and the restored image:

F(z) =

∫∫
(u,v)∈Ω

Φ
(
z(u, v)− z0(u, v)

)
dudv (3)

with Φ chosen accordingly to the type of corruption

the original image z0 is affected by. For instance,

ΦL2
(s) = s2 is the natural choice in the presence of

additive, zero-mean, Gaussian noise, while ΦL1(s) =

|s| can be used in the presence of bi-exponential

(Laplacian) noise, which is a rather good model when

outliers come into play (e.g., “salt & pepper” noise).

• R(z) is a regularization term, which usually penal-

izes the gradient of the restored image:

R(z) =

∫∫
(u,v)∈Ω

λ(u, v) Ψ (‖∇z(u, v)‖) dudv (4)

In (4), λ ≥ 0 is a field of weights which control the

respective influence of the fidelity and the regular-

ization terms. It can be either manually tuned be-

forehand (if λ(u, v) ≡ λ, λ can be seen as a “hyper-

parameter”), or defined as a function of ‖∇z(u, v)‖.
The choice of Ψ must be made accordingly to a prior

one has on the image smoothness. The quadratic

penalty ΨL2
(s) = s2 will produce “smooth” images,

while piecewise-constant images are obtained when

choosing the sparsity penalty ΨL0(s) = 1 − δ(s),

with δ(s) = 1 if s = 0 and δ(s) = 0 otherwise.

The latter approach preserves the edges, but the nu-

merical resolution is much more difficult, since the

regularization term is non-smooth and non-convex.

Hence, several choices of regularizers “inbetween”

the quadratic and the sparsity ones have been sug-

gested. For instance, the infamous total variation

(TV) regularizer is obtained by setting Ψ(s) = |s|.
Efficient numerical methods exist for solving this

non-smooth, yet convex, problem. Examples include

primal-dual methods [12], augmented Lagrangian

(ADMM, Bregman iterations) approaches [24], and

forward-backward splittings [41]. The latter can also

be adapted to the case where the regularizer Ψ is

non-convex, but smooth [42]. Such non-convex reg-

ularization terms were shown to be particularly ef-

fective for edge-preserving image restoration [23,37,

39]. Another strategy is to apply least-squares in a

non-uniform manner. For instance, setting weights

λ(u, v) in (4) inversely proportional to ‖∇z(u, v)‖
yields the “anisotropic diffusion” model by Perona

and Malik [45]. The discontinuity points can also be

automatically estimated and discarded, in the spirit

of Mumford and Shah’s segmentation method [38].

1.3 Notations

Although we chose for simplicity to write the variational

problems in a continuous form, we are overall interested

in solving discrete problems. Two different discretiza-

tion strategies exist. The first one consists in using vari-

ational calculus to derive the (continuous) necessary

optimality condition, then discretize it by finite differ-

ences, and eventually solve the discretized optimality

condition. The alternative method, inspired by the fi-

nite elements method, is to discretize the functional it-

self by finite differences, before solving the optimality

condition associated to the discrete problem. As shown

in [20], the latter approach eases the handling of the

boundary of Ω, hence we use it as discretization strat-

egy. The variational models hereafter will be presented

using the continuous notations, because we find them

more readable. The discrete notations will be used only

when deriving the numerical resolution. Yet, to avoid

confusion, we will use caligraphic letters for the con-

tinuous energies (e.g., E , F , R), and capital letters for

their discrete counterparts (e.g., E, F , R). With these

conventions, it should be clear whether an optimiza-

tion problem is discrete or continuous. Hence, we will

use the same notation ∇z = [∂uz, ∂vz]
>

in both cases,

keeping in mind that this notation represents either the

gradient of z or a finite differences approximation.
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1.4 Proposed Variational Framework

In this work, we show how to adapt the aforemen-

tioned variational models, originally designed for im-

age restoration, to the normal integration problem. Al-

though both these inverse problems are formally very

similar, they are somehow different, for the following

reasons. 1) The concept of edges in an image to re-

store is replaced by those of depth discontinuities and

kinks. 2) Contrarily to image processing functionals,

our data consist in an estimate g of the gradient of

the unknown z, in lieu of a corrupted version z0 of z.

As a consequence, the fidelity term F(z) will apply to

the difference between ∇z and g, and it is the choice

of this term which will or not allow depth discontinu-

ities. 3) Regularization terms are optional here: all the

methods we discuss basically work even with R(z) ≡ 0,

but we may use this regularization term to allow intro-

ducing, if available, a prior on the surface (e.g., user-

defined control points [31,34] or a rough depth estimate

obtained using a low-resolution depth sensor [33]). As

stated in our survey paper [19], such feature “is appre-

ciable, although not required”.

We will discuss methods seeking the unknown depth

z as the minimizer of an energy E(z) = F(z) +R(z) in

the form (2), but with different choices for F(z) and

R(z):

• F(z) now represents a fidelity term penalizing the

difference between the gradient of the recovered depth

map z and the datum g:

F(z) =

∫∫
(u,v)∈Ω

Φ (‖∇z(u, v)− g(u, v)‖) dudv (5)

• R(z) now represents prior knowledge of the depth:

R(z) =

∫∫
(u,v)∈Ω

λ(u, v)
[
z(u, v)− z0(u, v)

]2
(6)

where z0 is the prior, and λ(u, v) ≥ 0 is a user-

defined, spatially-varying, regularization weight. Let

us remark that we consider only quadratic regular-

ization: studying more robust regularization terms

(e.g., L1 norm) is left as perspective. The purpose

of this prior term is to avoid numerical instabili-

ties which may arise when considering solely the

fidelity term (5): since this fidelity term depends

only on ∇z, and not on z, the minimizer of (5)

can be estimated only up to an additive ambigu-

ity z(u, v) = z(u, v) + k, where k is an integration

constant. As discussed hereafter, the regularization

term also enables the introduction of a priori knowl-

edge of the surface.

1.5 Choosing λ and z0

A first situation where the regularization term may

have other purposes than ensuring stability is when one

would like to impose one or several control points on

the surface [31,34]. This can be achieved very simply

within the proposed variational framework, by setting

λ(u, v) ≡ 0 everywhere, except on the control points

locations (u, v) where a high value for λ(u, v) must be

set and the value z0(u, v) is fixed.

The second typical situation is when, given both

a coarse depth estimate and an accurate normal esti-

mate, one would like to “merge” them in order to cre-

ate a high-quality depth map. Such a problem arises,

for instance, when refining the depth map of an RGB-

D sensor (e.g., the Kinect) by means of shape-from-

shading [43], photometric stereo [26] or shape-from-

polarization [33]. In such cases, we may set z0 to the

coarse depth map, and visually select the value of λ(u, v) ≡
λ that offers the “best” 3D-reconstruction. Let us note

that our framework allows using non-uniform weights,

which can be useful in order to lower the influence of

outliers in the coarse depth map [26].

Eventually, in the absence of such priors, we will

use the regularization term only to fix the integration

constant: this is easily achieved by setting an arbitrary

prior (e.g., z0(u, v) ≡ 0), along with a small value for λ

(typically, λ(u, v) ≡ λ = 10−6).

1.6 Structure of the Paper

We will study in the next sections several choices for
the fidelity term F(z) defined in (5), which all enforce

the PRobust property. Whatever this choice, we will see

that a proper discretization of the energy-minimization

framework allows us to naturally handle both PFreeB

and PNoRect. Since it is difficult to design a method

which handles both PFast and PDisc, the rest of this

paper is split into two parts. We first consider in sec-

tion 2 the case of smooth surfaces, and introduce for this

purpose a new quadratic integration method which is

both very fast and parameter-free. With this method,

which extends that proposed in [20], all properties ex-

cept PDisc are enforced. On the other hand, when the

surface to recover is only piecewise-smooth, disconti-

nuities and kinks have to be properly handled. We in-

troduce in section 3 several new functionals, some of

them having been initially proposed in [18,48], which

allow the recovery of these sharp features. Although the

PDisc property is enforced using such methods, we will

see that numerical methods become slower, and that

one or several parameters need to be tuned.
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2 Smooth Surfaces

We first tackle the problem of recovering a “smooth”

depth map z from a noisy estimate g of ∇z. To this

end, we consider the quadratic variational problem:

min
z

∫∫
(u,v)∈Ω

‖∇z(u, v)− g(u, v)‖2

+ λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (7)

which admits a unique solution z ∈W 1,2(Ω). Our pur-

pose in this section is to introduce efficient numerical

schemes for approximating this solution.

If the depth map z is further assumed to be twice

differentiable, the necessary optimality condition as-

sociated to the continuous optimization problem (7)

(Euler-Lagrange equation) can be derived. This condi-

tion is a linear PDE in z: discretizing it using finite dif-

ferences yields a linear system of equations in the values

z(u, v) of the depth map. This system can be efficiently

solved by means of the conjugate gradient algorithm,

provided that appropriate preconditioning and initial-

ization are used [9]. Yet, as discussed by Harker and

O’Leary in [27], providing a consistent discretization on

the boundary of Ω is not straightforward, which may be

a source of bias. This is even more true when dealing

with non-rectangular domains Ω (cf. subsection 2.4).

Hence, following the advice in [27], and earlier work

in [20,30], we consider a different route, based on the

discretization of the functional itself.

2.1 Discretizing the Functional

Instead of a continuous gradient field g : Ω → R2 over

an open set Ω, we are actually given a finite set of val-

ues {gu,v = [pu,v, qu,v]
>, (u, v) ∈ Ω}, where the (u, v)

represent the pixels of the discrete part Ω of a 2D grid1.

Solving the discrete integration problem requires esti-

mating a finite set of values, i.e. the |Ω| unknown depth

values zu,v, (u, v) ∈ Ω (| · | denotes the cardinality),

which are stacked columnwise in a vector z ∈ R|Ω|.
As discussed in our survey paper [19], assuming that

the noise contained in g is Gaussian-distributed may

not be very meaningful in 3D-reconstruction applica-

tions such as photometric stereo [55], since the assump-

tion on the noise should rather be formulated on the

images. As a consequence, the least-squares variational

model (7) may not yield optimal results. This issue will

be discussed in more detail in subsection 3.4, where we

introduce the maximum-likelihood estimator for z, as-

suming Gaussian distribution of the noise in the images.

1 To ease the comparison between the variational and the
discrete problems, we will use the same notation Ω for both
the open set of R2 and the discrete subset of the grid.

For now, let us use a Gaussian approximation for the

noise contained in g, i.e., let us assume in the rest of

this section that each datum gu,v, (u, v) ∈ Ω, is equal

to the gradient ∇z(u, v) of the unknown depth map

z, taken at point (u, v), up to a zero-mean additive,

homoskedastic (same variance at each location (u, v)),

Gaussian noise:

gu,v = ∇z(u, v) + ε(u, v) (8)

where ε(u, v) ∼ N
(

[0, 0]
>
,

[
σ2 0

0 σ2

])
and σ is unknown2.

Now, we need to give a discrete interpretation of the

gradient operator in (8), through finite differences.

In order to obtain a second-order accurate discretiza-

tion, we combine forward and backward first-order fi-

nite differences, i.e. we consider that each measure of

the gradient gu,v = [pu,v, qu,v]
>

provides us with up

to four independent and identically distributed (i.i.d.)

statistical observations, depending on the neighborhood

of (u, v). Indeed, its first component pu,v can be under-

stood either in terms of both forward or backward finite

differences (when both the bottom and the top neigh-

bors are inside Ω), by one of both these discretizations

(only one neighbor inside Ω), or by none of these finite

differences (no neighbor inside Ω). Formally, we model

the p-observations in the following way:

pu,v =

∂+
u zu,v︷ ︸︸ ︷

zu+1,v − zu,v +ε+u (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u+ 1, v) ∈ Ω}︸ ︷︷ ︸
Ω+
u

(9)

pu,v =

∂−u zu,v︷ ︸︸ ︷
zu,v − zu−1,v +ε−u (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u− 1, v) ∈ Ω}︸ ︷︷ ︸
Ω−u

(10)

where ε
+/−
u ∼ N (0, σ2). Hence, rather than considering

that we are given |Ω| observations p, our discretization

handles these data as |Ω+
u |+ |Ω−u | observations, some of

them being interpreted in terms of forward differences,

some in terms of backward differences, some in terms

of both forward and backward differences, the points

without any neighbor in the u-direction being excluded.

This discretization is different from that proposed

by Horn and Brooks [30] (which is discussed in detail

in our survey paper [19]), who consider only forward

finite differences, yet replace the values p(u, v) by their

forward mean values 1
2 (p(u, v) + p(u+ 1, v)), in order

2 The assumptions of equal variance σ2 for both compo-
nents and of a diagonal covariance matrix are introduced only
for consistency with the least-squares problem (7). They are
discussed with more care in section 3.4.
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to reach a second-order accurate discretization. We be-

lieve that it is clearer to keep the original values p(u, v),

while ensuring discretization accuracy by combination

of forward and backward finite differences.

Symmetrically, the second component q of g corre-

sponds either to two, one or zero observations:

qu,v =

∂+
v zu,v︷ ︸︸ ︷

zu,v+1 − zu,v +ε+v (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u, v + 1) ∈ Ω}︸ ︷︷ ︸
Ω+
v

(11)

qu,v =

∂−v zu,v︷ ︸︸ ︷
zu,v − zu,v−1 +ε−v (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u, v − 1) ∈ Ω}︸ ︷︷ ︸
Ω−v

(12)

where ε
+/−
v ∼ N (0, σ2). Given the Gaussianity of the

noises ε
+/−
u/v , their independence, and the fact that they

all share the same standard deviation σ and mean 0, the

joint likelihood of the observed gradients {gu,v}(u,v) is:

L({gu,v, (u, v) ∈ Ω} | {zu,v, (u, v) ∈ Ω})

=
∏

(u,v)∈Ω+
u

1√
2πσ2

exp

{
− [∂+

u zu,v − pu,v]
2

2σ2

}

×
∏

(u,v)∈Ω−u

1√
2πσ2

exp

{
− [∂−u zu,v − pu,v]

2

2σ2

}

×
∏

(u,v)∈Ω+
v

1√
2πσ2

exp

{
− [∂+

v zu,v − qu,v]
2

2σ2

}

×
∏

(u,v)∈Ω−v

1√
2πσ2

exp

{
− [∂−v zu,v − qu,v]

2

2σ2

}
(13)

and hence the maximum-likelihood estimate for the depth

values is obtained by minimizing:

FL2
(z) =

1

2

( ∑∑
(u,v)∈Ω+

u

[
∂+
u zu,v − pu,v

]2
+
∑∑

(u,v)∈Ω−u

[
∂−u zu,v − pu,v

]2)

+
1

2

( ∑∑
(u,v)∈Ω+

v

[
∂+
v zu,v − qu,v

]2
+
∑∑

(u,v)∈Ω−v

[
∂−v zu,v − qu,v

]2)
(14)

where the 1
2 coefficients are meant to ease the continu-

ous interpretation: the integral of the fidelity term in (7)

is approximated by FL2(z), expressed in (14) as the

mean of the forward and the backward discretizations.

To obtain a more concise representation of this fi-

delity term, let us stack the data in two vectors p ∈
R|Ω| and q ∈ R|Ω|. In addition, let us introduce four

|Ω|×|Ω|, bi-diagonal, differentiation matrices D+
u , D−u ,

D+
v and D−v , associated with the finite differences op-

erators ∂
+/−
u/v . For instance, the i-th line of D+

u reads:(
D+
u

)
i,· =

[
0, . . . , 0, −1︸︷︷︸

Position i

, 1︸︷︷︸
Position i+1

, 0, . . . , 0
]

if m(i) ∈ Ω+
u

0> otherwise

(15)

where we denote :

m : {1, . . . , |Ω|} → Ω

i 7→ m(i) = (u, v)
(16)

the mapping associating linear indices i with the pixel

coordinates (u, v).

Once these matrices are defined, (14) is equal to:

FL2(z) =
1

2

(∥∥D+
u z− p

∥∥2
+
∥∥D−u z− p

∥∥2

)

+
1

2

(∥∥D+
v z− q

∥∥2
+
∥∥D−v z− q

∥∥2

)

− 1

2

( ∑∑
(u,v)∈Ω\Ω+

u

pu,v
2+
∑∑

(u,v)∈Ω\Ω−u

pu,v
2

)

− 1

2

( ∑∑
(u,v)∈Ω\Ω+

v

qu,v
2 +
∑∑

(u,v)∈Ω\Ω−v

qu,v
2

)
(17)

The terms in both the last rows of (17) being indepen-

dent from the z-values, they do not influence the actual

minimization and will thus be omitted from now on.

The regularization term (6) is discretized as:

R(z)=
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
=
∥∥Λ (z− z0

)∥∥2
(18)

withΛ a |Ω|×|Ω| diagonal matrix containing the values√
λu,v, (u, v) ∈ Ω.

Putting it altogether, our integration method for re-

covering smooth surfaces reads as the minimization of

the discrete functional:

EL2
(z) =

1

2

(∥∥D+
u z− p

∥∥2
+
∥∥D−u z− p

∥∥2

)

+
1

2

(∥∥D+
v z− q

∥∥2
+
∥∥D−v z− q

∥∥2

)
+
∥∥Λ (z− z0

)∥∥2
(19)
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2.2 Numerical Resolution

The optimality condition associated with the discrete

functional (19) is a linear equation in z:

Az = b (20)

where A is a |Ω| × |Ω| symmetric matrix3:

A =

L︷ ︸︸ ︷
1

2

[
D+
u
>

D+
u + D−u

>
D−u + D+

v
>

D+
v + D−v

>
D−v

]
+Λ2 (21)

and b is a |Ω| × 1 vector:

b =

Du︷ ︸︸ ︷
1

2

[
D+
u
>

+ D−u
>
]

p +

Dv︷ ︸︸ ︷
1

2

[
D+
v
>

+ D−v
>
]

q

+Λ2z0 (22)

The matrix A is very sparse: it contains at most

five non-zero entries per row. In addition, it is diagonal

dominant: if (Λ)i,i = 0, the value (A)i,i of a diagonal

entry is equal to the opposite of the sum of the other

entries (A)i,j , i 6= j, from the same row i. It becomes

strictly superior as soon as (Λ)i,i is strictly positive.

Let us also remark that, when Ω describes a rectangu-

lar domain and the regularization weights are uniform

(λ(u, v) ≡ λ), A is a Toeplitz matrix. Yet, this struc-

ture is lost in the general case where it can only be

said that A is a sparse, symmetric, diagonal dominant

(SDD) matrix with at most 5|Ω| non-zero elements. It

is positive semi-definite when Λ = 0, and positive defi-

nite as soon as one of the λu,v is non-zero.

System (20) can be solved by means of the conju-

gate gradient algorithm. Initialization will not influence

the actual solution, but it may influence the number of

iterations required to reach convergence. In our exper-

iments, we used z0 as initial guess, yet more elaborate

initialization strategies may yield faster convergence [9].

To ensure PFast, we used the multigrid preconditioning

technique [36]. This bounds the computational com-

plexity required to reach a ε relative accuracy4 by:

O (5|Ω| log |Ω| log(1/ε)) (23)

which is inbetween the complexities of the approaches

based on Sylvester equations [27] (complexityO(|Ω|1.5))

and on FFT [21] / DCT [53] (O(|Ω| log(|Ω|))). On the

other hand, these competing methods explicitly require

that Ω is rectangular, while ours does not.

3 A and b are purposely divided by two in order to ease
the continuous interpretation of subsection 2.3.
4 In our experiments, the threshold of the stopping criterion

is set to ε = 10−4.

By construction, our integration method consisting

in minimizing (19) satisfies the PRobust property (it

is the maximum-likelihood estimate in the presence of

zero-mean Gaussian noise). The discretization we in-

troduced does not assume any particular shape for Ω,

neither treats the boundary in a specific manner, hence

PFreeB and PNoRect are also satisfied. We also showed

that PFast could be satisfied, using a resolution method

based on the preconditioned conjugate gradient algo-

rithm. Eventually, let us recall that tuning λ and/or

manually fixing the values of the prior z0 is necessary

only to introduce a prior, but not in general. Hence,

PNoPar is also enforced. In conclusion, our integration

method for smooth surfaces satisfies all the selected

properties, except PDisc. Let us now provide additional

remarks on the connections between the proposed dis-

crete approach and a fully variational one.

2.3 Continuous Interpretation

One can remark that system (20) is nothing else than

a discrete analogue of the Euler-Lagrange equation as-

sociated with the continuous functional (7). This opti-

mality condition reads:

−∆z + λz = −∇ · g + λz0 over Ω (24)

(∇z − g) · η = 0 over ∂Ω (25)

with η a normal vector to the boundary ∂Ω of Ω, ∆ the

Laplacian operator, and ∇· the divergence operator.

Indeed, system (20) reads:

Lz︸︷︷︸
≈−∆z

+Λ2z︸︷︷︸
≈λz

= Dup + Dvq︸ ︷︷ ︸
≈−∇·g

+Λ2z0︸ ︷︷ ︸
≈λz0

(26)

where the matrix-vector products are easily interpreted

in terms of the differential operators in the continu-

ous formula (24). One major advantage when reason-

ing from the beginning in the discrete setting is that

one does not need to find out how to discretize the

natural5 boundary condition (25), which was already

emphasized in [20,27]. Yet, the identifications in (26)

show that both the discrete and continuous approaches

are equivalent, provided that an appropriate discretiza-

tion of the continuous optimality condition is used. It

is thus possible to derive O(5|Ω| log |Ω| log(1/ε)) algo-

rithms based on the discretization of the Euler-Lagrange

equation, contrarily to what is stated in [27]. The real

drawback of such approaches does not lie in complexity,

but in the difficult discretization of the boundary con-

dition. This is further explored in the next subsection.

5 As stated in [27], homogeneous Neumann conditions of
the type ∇z · η = 0, used e.g. in [1], should be avoided.



Normal Integration – Part II: New Insights 7

2.4 Example

To clarify the proposed discretization of the integration

problem, let us consider a non-rectangular domain Ω

inside a 3× 3 grid, like the one depicted in figure 1.

(1, 1)

v

u (1, 3)(1, 2)

(2, 1) (2, 3)(2, 2)

(3, 1) (3, 2)

Fig. 1 Example of non-rectangular domain Ω (solid dots)
inside a 3 × 3 grid. When invoking the continuous optimal-
ity condition, the discrete approximations of the Laplacian
and the divergence near the boundary involve several points
inside ∂Ω (circles) for which no data is available. First-order
approximation of the natural boundary condition (25) is thus
required. Relying only on discrete optimization simplifies a lot
the boundary handling.

The vectorized unknown depth z and the vectorized

components p and q of the gradient write in this case:

z =



z1,1

z2,1

z3,1

z1,2

z2,2

z3,2

z1,3

z2,3


p =



p1,1

p2,1

p3,1

p1,2

p2,2

p3,2

p1,3

p2,3


q =



q1,1

q2,1

q3,1

q1,2

q2,2

q3,2

q1,3

q2,3


(27)

The sets Ω
+/−
u/v all contain five pixels:

Ω+
u = {(1, 1) , (2, 1) , (1, 2) , (2, 2) , (1, 3)} (28)

Ω−u = {(2, 1) , (3, 1) , (2, 2) , (3, 2) , (2, 3)} (29)

Ω+
v = {(1, 1) , (2, 1) , (3, 1) , (1, 2) , (2, 2)} (30)

Ω−v = {(1, 2) , (2, 2) , (3, 2) , (1, 3) , (2, 3)} (31)

so that the differentiation matrices D
+/−
u/v have five non-

zero rows. For instance, the matrix associated with the

forward finite differences operator ∂+
u reads:

D+
u =



−1 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 0 0


(32)

The Laplacian matrix L defined in (21) is worth:

L =



2 −1 0 −1 0 0 0 0

−1 3 −1 0 −1 0 0 0

0 −1 2 0 0 −1 0 0

−1 0 0 3 −1 0 −1 0

0 −1 0 −1 4 −1 0 −1

0 0 −1 0 −1 2 0 0

0 0 0 −1 0 0 2 −1

0 0 0 0 −1 0 −1 2


(33)

One can observe that this matrix describes the connec-

tivity of the graph representing the discrete domain Ω:

the diagonal elements (L)i,i are the numbers of neigh-

bors connected to the i-th point, and the off-diagonals

elements (L)i,j are worth −1 if the i-th and j-th points

are connected, 0 otherwise.

Eventually, the matrices Du and Dv defined in (22)

are equal to:

Du =
1

2



−1 −1 0 0 0 0 0 0

1 0 −1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 −1 −1 0 0 0

0 0 0 1 0 −1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 −1 −1

0 0 0 0 0 0 1 1


(34)

Dv =
1

2



−1 0 0 −1 0 0 0 0

0 −1 0 0 −1 0 0 0

0 0 −1 0 0 −1 0 0

1 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 −1

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 1 0 1 1


(35)

Let us now show how these matrices relate to the

discretization of the continuous optimality condition (24).

Using second-order central finite differences approxi-

mations of the Laplacian (∆zu,v ≈ zu,v−1 + zu−1,v +

zu+1,v + zu,v+1 − 4zu,v) and of the divergence operator
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(∇ · gu,v ≈ 1
2 (pu+1,v − pu−1,v) + 1

2 (qu,v+1 − qu,v−1)),

we obtain:

[4zu,v−zu,v−1−zu−1,v−zu+1,v−zu,v+1]+λu,vzu,v =

1

2
[pu−1,v − pu+1,v]+

1

2
[qu,v−1 − qu,v+1]+λu,vz

0
u,v (36)

The pixel (u, v) = (2, 2) is the only one whose four

neighbors are inside Ω. In that case, (36) becomes:

[4z2,2 − z2,1 − z1,2 − z3,2 − z2,3]︸ ︷︷ ︸
=(L)5,·z

+ λ2,2z2,2︸ ︷︷ ︸
=(Λ2)5,·z

=
1

2
[p1,2 − p3,2]︸ ︷︷ ︸
=(Du)5,·p

+
1

2
[q2,1 − q2,3]︸ ︷︷ ︸
=(Dv)5,·q

+ λ2,2z
0
2,2︸ ︷︷ ︸

=(Λ2)5,·z
0

(37)

where we recognize the fifth equation of the discrete

optimality condition (26). This shows that, for pixels

having all four neighbors inside Ω, both the continuous

and the discrete variational formulations yield the same

discretizations.

Now, let us consider a pixel near the boundary, for

instance pixel (1, 1). Using the same second-order dif-

ferences, (36) reads:

[4z1,1 − z1,0 − z0,1 − z2,1 − z1,2] + λ1,1z1,1

=
1

2
[p0,1 − p2,1] +

1

2
[q1,0 − q1,2] + λ1,1z

0
1,1 (38)

which involves the values z1,0 and z0,1 of the depth map,

which we are not willing to estimate, and the values p0,1

and q1,0 of the gradient field, which are not provided as

data. To eliminate these four values, we need to resort

to boundary conditions on z, p and q. The discretiza-

tions, using first order forward finite differences, of the

natural boundary condition (25), at locations (1, 0) and

(0, 1), read:

z1,1 − z1,0 = q1,0 (39)

z1,1 − z0,1 = p0,1 (40)

hence the unknown depth values z1,0 and z0,1 can be

eliminated from equation (38):

[2z1,1 − z2,1 − z1,2] + λ1,1z1,1

=
1

2
[−p0,1 − p2,1] +

1

2
[−q1,0 − q1,2] + λ1,1z

0
1,1 (41)

Eventually, the unknown values p0,1 and q1,0 need to

be approximated. Since we have no information at all

about the values of g outside Ω, we use homogeneous

Neumann boundary conditions6:

∇p · η = 0 over ∂Ω (42)

∇q · η = 0 over ∂Ω (43)

6 This assumption is weaker than the homogeneous Neu-
mann boundary condition ∇z · η = 0 used, e.g., in [1].

Discretizing these boundary conditions using first order

forward finite differences, we obtain:

p0,1 = p1,1 (44)

q1,0 = q1,1 (45)

The discretized optimality condition (41) becomes:

[2z1,1 − z2,1 − z1,2]︸ ︷︷ ︸
=(L)1,·z

+ λ1,1z1,1︸ ︷︷ ︸
=(Λ2)1,·z

=
1

2
[−p1,1 − p2,1]︸ ︷︷ ︸

=(Du)1,·p

+
1

2
[−q1,1 − q1,2]︸ ︷︷ ︸

=(Dv)1,·q

+ λ1,1z
0
1,1︸ ︷︷ ︸

=(Λ2)1,·z
0

(46)

which is exactly the first equation of the discrete opti-

mality condition (26).

Using a similar rationale, we obtain equivalence of

both formulations for the eight points inside Ω. Yet, let

us emphasize that discretizing the continuous optimal-

ity condition requires treating, on this example with a

rather “simple” shape for Ω, not less than seven differ-

ent cases (only (3, 2) and (2, 3) are similar). More gen-

eral shapes bring out to play even more particular cases

(points having only one neighbor inside Ω). Further-

more, boundary conditions must be invoked in order to

approximate the depth values and the data outside Ω.

On the other hand, the discrete functional provides ex-

actly the same optimality condition, but without these

drawbacks. The boundary conditions can be viewed as

implicitly enforced, hence PFreeB is satisfied.

2.5 Empirical Evaluation

We first consider the smooth surface from figure 2,

whose normals are analytically known, and compare

three discrete least-squares methods which all satisfy

PFast, PRobust and PFreeB : the DCT solution [53], the

Sylvester equations method [27], and the proposed one.

Since all these methods are based on least-squares, they

all provide robustness to additive Gaussian noise. Yet,

as shown in figure 3, our solution is slightly more accu-

rate, thanks to the new discretization. Indeed, the bias

near the boundary induced by the DCT method is cor-

rected. On the other hand, we believe the reason why

our method is more accurate than that from [27] is be-

cause we use first-order finite differences approximation

of the gradient, while [27] relies on central differences:

the second-order operators (Laplacian and divergence)

implicitly involved in the Sylvester equations from [27]

are not rotationally invariant. Although using second-

order finite differences induces an improved accuracy

with σ = 0, the lack of rotational invariance may be-

come problematic in the presence of noise.
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Fig. 2 Qualitative evaluation of the PRobust property. An additive, zero-mean, Gaussian noise with standard deviation
0.1‖g‖∞ was added to the (analytically known) gradient of the ground truth surface, before integrating this gradient by
three least-squares methods. Ours qualitatively provides better results than the Sylvester equations method from Harker and
O’Leary [27]. It seems to provide similar robustness as the DCT solution from Simchony et al. [53], but the quantitative
evaluation from figure 3 shows that our method is actually more accurate.

In addition, as predicted by the complexity analy-

sis in subsection 2.2, our solution relying on precondi-

tioned conjugate gradient iterations has a slightly lower

asymptotic complexity (O(5|Ω| log |Ω| log(1/ε)) than [27]

(O(|Ω|1.5)) and [53] (O(|Ω| log |Ω|)). The CPU times of

our method and of the DCT solution, measured using

Matlab codes running on a recent i7 processor, actually

seem proportional: according to our complexity anal-

ysis, we guess the proportionality constant is around

5 log(1/ε). Indeed, with ε = 10−4, which is the value

we used in our experiments, 5 log(1/ε) ≈ 46, which is

consistent with the second graph in figure 3.

Besides its improved accuracy, the major advan-

tage of our method over [27,53] is its ability to han-

dle non-rectangular domains (PNoRect). As discussed

in our survey paper [19], this makes possible the 3D-

reconstruction of piecewise-smooth surfaces, provided

that a user segments the domain into pieces where z

is smooth beforehand (cf. figure 4). Yet, if the seg-

mentation is not a priori performed, artifacts are vis-

ible near the discontinuities, which get smoothed, and

Gibbs phenomena appear near the continuous, yet non-

differentiable kinks. We will discuss in the next section

several strategies for removing such artifacts.
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Fig. 3 Quantitative evaluation of the PRobust (top) and
PFast (bottom) properties. Top: RMSE between the ground
truth depth map and the ones reconstructed from noisy gradi-
ents (adding a zero-mean Gaussian noise with standard devi-
ation σ‖g‖∞). Our discretization provides more accurate re-
sults than existing least-squares methods. Bottom: the com-
plexity of our approach is inbetween those of the methods
of Simchony et al. [53] (based on DCT) and of Harker and
O’Leary [27] (based on Sylvester equations).

Overall, we have introduced a quadratic integration

method, which is robust to Gaussian noise (PRobust),

with a discretization enforcing both PFreeB and PNoRect.

We have shown how to solve the associated optimal-

ity condition for a complexity which is slightly higher

than O(|Ω| log |Ω|), using the preconditioned conjugate

gradient technique (PFast). Eventually, its basic ver-

sion where no a priori is introduced is parameter-free

(PNoPar), but it also allows taking into account prior

knowledge of the solution, by appropriately tuning the

parameters (cf. subsection 1.5). All properties except

PDisc are thus satisfied. In the next section, we discuss

several strategies for satisfying this property.

RMSE = 0.11

RMSE = 4.66

Fig. 4 3D-reconstruction of surface Svase from its (analyti-
cally known) normals (see figure 3 in [19]), using the proposed
discrete least-squares method. Top: when Ω is restricted to
the vase. Bottom: when Ω is the whole rectangular grid.
Quadratic integration smooths the depth discontinuities and
produces Gibbs phenomena near the kinks.

3 Piecewise Smooth Surfaces

We now tackle the problem of recovering a surface which

is smooth only almost everywhere, i.e. everywhere ex-

cept on a “small” set where discontinuities and kinks

are allowed. Since all the methods discussed hereafter

rely on the same discretization as in section 2, they in-

herit its PFreeB and PNoRect properties, which will not

be discussed in this section. Instead, we focus on the

PFast, PRobust, PNoPar, and of course PDisc properties.

3.1 Proposed Strategies for Recovering Discontinuities

and Kinks

In order to clarify which variational formulations may

provide robustness to discontinuities, let us first con-

sider the 1D-example of figure 5, with Dirichlet bound-

ary conditions. As illustrated in this example, least-

squares integration of a noisy normal field will provide a

smooth surface. On the other hand, replacing the least-

squares estimator ΦL2
(s) = s2 by the sparsity estimator

ΦL0(s) = 1 − δ(s) will minimize the cardinality of the

difference between g and ∇z, which provides a surface

whose gradient is almost everywhere equal to g. As a

consequence, robustness to noise is lost, yet discontinu-

ities may be preserved.
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Ground truth

Least-squares

Sparsity

Fig. 5 1D-illustration of integration of a noisy normal field
(arrows) over a regular grid (circles), in the presence of discon-
tinuities. The least-squares approach is robust to noise, but
smooths the discontinuities. The sparsity approach preserves
the discontinuities, but is not robust to noise. An ideal inte-
gration method would inherit robustness from least-squares,
and the ability to preserve discontinuities from sparsity.

These estimators can be interpreted in the follow-

ing way: least-squares assume that all residuals defined

by ‖∇z(u, v) − g(u, v)‖ are “low”, while sparsity as-

sumes that most of them are “zero”. The former as-

sumption is commonly used for “noise”, and the latter

for “outliers”. In the case of normal integration, such

outliers can occur when: 1) ∇z(u, v) exists but its esti-

mate g(u, v) is not reliable; 2) ∇z(u, v) is not defined

because (u, v) lies within the vicinity of a discontinuity

or a kink. Considering that situation 1) should rather

be handled by robust estimation of the gradient [32],

we deal only with the second one. From now on, we use

the terminology “discontinuity” instead of “outlier”, al-

though this also covers the concept of “kink”.

We are looking for an estimator which combines
the robustness of least-squares to noise, and that of

sparsity to discontinuities. These abilities are actually

due to their asymptotic behaviors. Robustness of least-

squares to noise comes from the quadratic behavior

around 0, which ensures that “low” residuals are consid-

ered as “good” estimates, while this quadratic behav-

ior becomes problematic in ±∞: discontinuities yield

“high” residuals, which are over-penalized. The spar-

sity estimator has the opposite behavior: treating the

high residuals (discontinuities) exactly as the low ones

ensures that discontinuities are not over-penalized, yet

low residuals (noise) are. A good estimator would thus

be quadratic around zero, but sub-linear around ±∞.

Obviously, only non-convex estimators hold both these

properties. We will discuss several choices “inbetween”

the quadratic estimator ΦL2 and the sparsity one ΦL0

(cf. figure 6): the convex compromise ΦL1
(s) = |s| is

studied in subsection 3.2, and the non-convex estima-

tors Φ1(s) = log(s2 + β2) and Φ2(s) = s2

s2+γ2 , where β

and γ are hyper-parameters, in subsection 3.3.

−4 −2 0 2 4
0
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5

6

7

8

9

10

s
Φ
(s
)

 

 

ΦL0
(s)

ΦL1
(s)

ΦL2 (s)

Φ1(s)

Φ2(s)

Fig. 6 Graph of some robust estimators. The ability of ΦL2

to handle noise (small residuals) comes from its over-linear
behavior around zero, while that of ΦL0

to preserve disconti-
nuities (large residuals) is induced by its sub-linear behavior
in +∞. An estimator holding both these properties is neces-
sarily non-convex (e.g., Φ1 and Φ2, whose graphs are shown
with β = γ = 1), although ΦL1

may be an acceptable convex
compromise.

Another strategy consists in keeping least-squares as

basis for the integration, but using it in a non-uniform

manner. The simplest way would be to remove the dis-

continuity points from the integration domain Ω, and

then to apply our quadratic method from the previous

section, since it is able to manage non-rectangular do-

mains. Yet, this would require a priori detection of dis-

continuities, which might be tedious. It is actually more

convenient to introduce weights in the least-squares func-

tionals, with weights inversely proportional to the prob-

ability of lying on a discontinuity [48,50]. We discuss

this weighted least-squares approach in subsection 3.4,

where a statistical interpretation of the Perona and Ma-

lik’s anisotropic diffusion model [45] is also exhibited.

Eventually, an extreme case of weighted least-squares

consists in using binary weights, where the weights in-

dicate the presence of discontinuities. This is closely re-

lated to Mumford and Shah’s segmentation method [38],

which simultaneously estimates the discontinuity set

and the surface. We show in subsection 3.5 that this

approach is the one which is actually the most adapted

to the problem of integrating a noisy normal field in the

presence of discontinuities.
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3.2 Total Variation-like Integration

The problem of handling outliers in a noisy normal field

has been tackled by Du, Robles-Kelly and Lu, who com-

pare in [17] the performances of several M-estimators.

They conclude that regularizers based on the L1 norm

are the most effective ones. We provide in this sub-

section several numerical considerations regarding the

discretization of the L1 fidelity term:

FL1(z) =

∫∫
(u,v)∈Ω

‖∇z(u, v)− g(u, v)‖1dudv

=

∫∫
(u,v)∈Ω

{
|∂uz(u, v)− p(u, v)|

+ |∂vz(u, v)− q(u, v)|
}

dudv (47)

When p(u, v) ≡ 0 and q(u, v) ≡ 0, (47) is the so-

called “anisotropic total variation” (anisotropic TV)

regularizer, which tends to favor piecewise-constant so-

lutions while allowing discontinuity jumps. Considering

the discontinuities and kinks as the equivalent of edges

in image restoration, it seems natural to believe that

the fidelity term (47) may be useful for discontinuity-

preserving integration.

This fidelity term is not only convex, but also de-

couples the two directions u and v, which allows fast

ADMM-based (Bregman iterations) numerical schemes

involving shrinkages [25,48]. On the other hand, it is

not so natural to use such a decoupling: if the value of

p is not reliable at some point (u, v), usually that of q

is not reliable either. Hence, it may be wortwhile to use

instead a regularizer adapted from the “isotropic TV”.

This leads us to adapt the infamous model from Rudin,

Osher and Fatemi [49] to the integration problem:

ETV(z) =

∫∫
(u,v)∈Ω

‖∇z(u, v)− g(u, v)‖

+ λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (48)

Discretization. Since the term ‖∇z(u, v)−g(u, v)‖ can

be interpreted in different manners, depending on the

neighborhood of (u, v), we need to discretize it appro-

priately. Let us consider all four possible first-order dis-

cretizations of the gradient ∇z, associated to the four

following sets of pixels:

ΩUV = ΩUu ∩ΩVv , (U, V ) ∈ {+,−}2 (49)

The discrete functional to minimize is thus given by:

ETV(z)=
1

4

(∑∑
(u,v)∈Ω++

√[
∂+
u zu,v−pu,v

]2
+
[
∂+
v zu,v−qu,v

]2
+
∑∑

(u,v)∈Ω+−

√[
∂+
u zu,v−pu,v

]2
+
[
∂−v zu,v−qu,v

]2
+
∑∑

(u,v)∈Ω−+

√[
∂−u zu,v−pu,v

]2
+
[
∂+
v zu,v−qu,v

]2
+
∑∑

(u,v)∈Ω−−

√[
∂−u zu,v−pu,v

]2
+
[
∂−v zu,v−qu,v

]2)

+
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
(50)

Minimizing (50) comes down to solving the following

constrained optimization problem:

min
z,{rUV }

1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

‖rUVu,v ‖

+
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
s.t. rUVu,v = ∇UV zu,v − gu,v (51)

where we denote ∇UV = [∂Uu , ∂
V
v ]>, (U, V ) ∈ {+,−}2,

the discrete approximation of the gradient correspond-

ing to domain ΩUV .

Numerical Resolution. We solve the constrained opti-

mization problem (51) by the augmented Lagrangian

method, through an ADMM algorithm [22] (see [7] for

a recent overview of such algorithms). This algorithm

reads:

z(k+1) = argmin
z∈R|Ω|

α

8

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

∥∥∥∇UVzu,v
−
(
gu,v+rUVu,v

(k)−bUVu,v
(k)
)∥∥∥2

+
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
(52)

rUVu,v
(k+1)

= argmin
r∈R2

α

8

∥∥∥r−(∇UVz(k+1)
u,v −gu,v +bUVu,v

(k)
)∥∥∥2

+ ‖r‖ (53)

bUVu,v
(k+1)

= bUVu,v
(k)

+∇UV z(k+1)
u,v − gu,v − rUVu,v

(k+1)

(54)

where the bUV are the scaled dual variables, and α > 0

corresponds to a descent stepsize, which is supposed

to be fixed beforehand. Note that the choice of this

parameter influences only the convergence rate, not the

actual minimizer. In our experiments, we used α = 1.
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σ = 0% - RMSE = 4.52 σ = 0.5% - RMSE = 4.62 σ = 1% - RMSE = 4.79

Fig. 7 Depth estimated after k = 1000 iterations of the TV-like approach, in the presence of additive, zero-mean, Gaussian
noise with standard deviation equal to σ‖g‖∞. The indicated RMSE is computed on the whole domain. In the absence of noise,
both discontinuities and kinks are restored, although staircasing artifacts appear. In the presence of noise, the discontinuities
are smoothed. Yet, the 3D-reconstruction near the kinks is still more satisfactory than the least-squares one: Gibbs phenomena
are not visible, unlike in the second row of Fig. 4.

The z-update (52) is a linear least-squares problem

simimilar to the one which was tackled in section 2.

Its solution z(k+1) is the solution of the following SDD

linear system:

ATVz(k+1) = b
(k)
TV (55)

with :

ATV =
α

8

∑∑
(U,V )∈{+,−}2

[
DU
u

>
DU
u + DV

v

>
DV
v

]
+Λ2 (56)

b
(k)
TV =

α

8

∑∑
(U,V )∈{+,−}2

[
DU
u

>
pUV

(k)
+ DV

v

>
qUV

(k)
]
+Λ2z0 (57)

where the D
U/V
u/v matrices are defined as in (15), the

Λ matrix as in (18), and where we denote pUV
(k)

and

qUV
(k)

the components of g + rUV
(k) − bUV

(k)
.

The solution of system (55) can be approximated

by a few conjugate gradient iterations. At each itera-

tion, the previous estimate z(k) can be choosen as initial

guess (setting z(0), for instance, as the least-squares so-

lution from section 2). It should also be emphasized

that, although the second member b
(k)
TV has to be up-

dated at each iteration, the matrix ATV is always the

same: this allows computing the preconditioner only

once.

Eventually, the r-updates (53), (u, v) ∈ Ω, are basis

pursuit problems [16], which admit the following closed-

form solution (generalized shrinkage):

rUVu,v
(k+1)

=max

{
‖sUVu,v

(k+1)‖ − 4

α
, 0

}
sUVu,v

(k+1)

‖sUVu,v
(k+1)‖

(58)

with:

sUVu,v
(k+1)

= ∇UV z(k+1)
u,v − gu,v + bUVu,v

(k)
(59)

Discussion. This TV-like approach has two main ad-

vantages: apart from the stepsize α which controls the

speed of convergence, it does not depend on the choice

of a parameter, and it is convex. The initialization has

influence only on the speed of convergence, and not on

the actual minimizer: the ADMM scheme we use guar-

antees convergence towards the global minimum [51].

Eventually, it can be shown that the convergence rate

of this scheme is ergodic, and this rate can be improved

by rather simple modifications [24]. We cannot con-

sider that PFast is satisfied since, in comparison with

the quadratic method from section 2, yet the TV ap-

proach is “reasonably” fast. For completeness, let us

state that other optimization strategies can be consid-

ered for the TV approach: the FISTA algorithm from

Beck and Teboulle [5], and primal-dual algorithms such

as that proposed by Chambolle and Pock [12]. These al-

gorithms may be faster regarding our problem, but we

leave such a comparison as future work.

On the other hand, according to the results from
figure 7, discontinuities are recovered in the absence of

noise, although staircasing artifacts appear (such arti-

facts are partly due to the non-differentiability of TV in

zero [39]). Yet, the recovery of discontinuities is deceiv-

ing when the noise level increases. On noisy datasets,

the only advantage of this approach over least-squares

is thus that it removes the Gibbs phenomena around

the kinks i.e., where the surface is continuous, but non-

differentiable (e.g., the sides of the vase).

Because of the staircasing artifacts and of the lack of

robustness to noise, we cannot find this first approach

satisfactory. Yet, since turning the quadratic functional

into a non-quadratic one seems to have positive influ-

ence on discontinuities recovery, we believe that ex-

ploring non-quadratic models is a promising route. In

order to remove the staircasing artifacts, total varia-

tion could be replaced by total generalized variation

(TGV) [8]. We choose to consider other non-quadratic

models, namely non-convex ones.
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3.3 Non-convex Regularization

Let us now consider non-convex estimators Φ in the

fidelity term (5), which are often referred to as “Φ-

functions” [3]. As discussed in subsection 3.1, the choice

of a specific Φ-function should be made according to

several principles:

– Φ should have a quadratic behavior around zero,

in order to ensure that the integration is guided by

the “good” data. The typical choice ensuring this

property is ΦL2
(s) = s2, which was discussed in

section 2;

– Φ should have a sublinear behavior at infinity, so

that outliers do not have a predominant influence,

and also to preserve discontinuities and kinks. The

typical choice is the sparsity estimator ΦL0(s) = 0

if s = 0 and ΦL0
(s) = 1 otherwise;

– Φ should ideally be a convex function.

Obviously, it is not possible to simultaneously sat-

isfy these three properties. The TV-like fidelity term

introduced in subsection 3.2 is a sort of “compromise”:

it is the only convex function being (over-) linear in 0

and (sub-) linear in ±∞. Although it does not depend

on the choice of any hyper-parameter, we saw that it

has the drawback of yielding the so-called “staircase

effect”, and that discontinuities were not recovered so

well in the presence of noise. If we accept to lose the

convex property of Φ, we can actually design estima-

tors which better fit both other properties. Although

there may then be several minimizers, such non-convex

estimators were recently shown to be very effective for

image restoration [37].

We will consider two classical Φ-functions, whose

graphs are plotted in figure 6:

Φ1(s) = log(s2 + β2)

Φ2(s) =
s2

s2 + γ2

⇒


Φ′1(s) =

2 s

s2 + β2

Φ′2(s) =
2 γ2 s

(s2 + γ2)2

(60)

Let us remark that these estimators were initially

introduced in [18] in this context, and that other non-

convex estimators can be considered, based for instance

on Lp norms, with 0 < p < 1 [4].

Let us now show how to numerically minimize the

resulting functionals:

EΦ(z) =

∫∫
(u,v)∈Ω

Φ (‖∇z(u, v)− g(u, v)‖)

+ λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (61)

Discretization. We consider the same discretization strat-

egy as in subsection 3.2, aiming at minimizing the dis-

crete functional:

EΦ(z) =
1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

Φ
(∥∥∇UVzu,v − gu,v

∥∥)
+
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
(62)

which resembles the TV functional defined in (50), and

where ∇UV represents the finite differences approxima-

tion of the gradient used over the domain ΩUV , with

{U, V } ∈ {+,−}2.

Introducing the notations:

f(z)=
1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

Φ
(
‖∇UVzu,v − gu,v‖

)
(63)

g(z) = ‖Λ(z− z0)‖2 (64)

the discrete functional (62) is rewritten:

EΦ(z) = f(z) + g(z) (65)

where f is smooth, but non-convex, and g is convex

(and smooth, although non-smooth functions g could

be handled using the “iPiano” framework detailed here-

after).

Numerical resolution. The problem of minimizing a dis-

crete energy like (65), yielded by the sum of a con-

vex term g and a non-convex, yet smooth term f , can

be handled by forward-backward splitting. We use the

“iPiano” iterative algorithm by Ochs et al. [42], which

reads:

z(k+1)=(I+α1∂g)
−1
(
z(k)−α1∇f(z(k))+α2

(
z(k)−z(k−1)

))
(66)

where α1 and α2 are suitable descent stepsizes (in our

implementation, α2 is fixed to 0.8, and α1 is chosen by

the “lazy backtracking” procedure described in [42]),

(I + α1∂g)
−1

is the proximal operator of g, and∇f(z(k))

is the gradient of f evaluated at current estimate z(k).

We detail hereafter how to evaluate the proximal oper-

ator of g and the gradient of f .

The proximal operator of g writes, using (64):

(I + α1∂g)
−1

(x̂) = argmin
x∈R|Ω|

‖x− x̂‖
2

+ α1g(x) (67)

=
(
I + 2α1Λ

2
)−1 (

x̂ + 2α1Λz0
)

(68)

where the inversion is easy to compute, since the matrix

involved is diagonal.
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β = 0.1 - RMSE = 4.60 β = 0.5 - RMSE = 4.42 β = 1 - RMSE = 5.08

γ = 0.5 - RMSE = 4.51 γ = 1 - RMSE = 4.44 γ = 5 - RMSE = 4.67

Fig. 8 Non-convex 3D-reconstruction of surface Svase, using Φ1 (top) or Φ2 (bottom). An additive, zero-mean, Gaussian noise
with standard deviation σ‖g‖∞, σ = 1%, was added to the gradient field. The non-convex approaches depend on the tuning
of a parameter (β or γ), but they are able to reconstruct the discontinuities in the presence of noise, contrarily to the TV-like
approach. Staircasing artifacts indicate the presence of local minima (we used as initial guess z(0) the least-squares solution).

In order to obtain a closed-form expression of the

gradient of f defined in (63), let us rewrite this function

in the following manner:

f(z)=
1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

Φ
(
‖DUV

u,v z− gu,v‖
)

(69)

where DUV
u,v is a 2 × |Ω| finite differences matrix used

for approximating the gradient at location (u, v), using

the finite differences operator ∇UV , {U, V } ∈ {+,−}2:

DUV
u,v =

[(
DU
u

)
m−1(u,v),·(

DV
v

)
m−1(u,v),·

]
(70)

where we recall that the mapping m associates linear

indices with pixel coordinates (cf. equation (16)).

The gradient of f is thus given by:

∇f(z) =
1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

{
DUV
u,v

> (
DUV
u,v z− gu,v

)
×

Φ′
(
‖DUV

u,v z− gu,v‖
)

‖DUV
u,v z− gu,v‖

}
(71)

Given the choices (60) for the Φ-functions, this can be

further simplified:

∇f1(z)=
1

2

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

DUV
u,v
> (

DUV
u,v z− gu,v

)
‖DUV

u,v z− gu,v‖2 + β2

(72)

∇f2(z)=
1

2

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

γ2DUV
u,v
> (

DUV
u,v z− gu,v

)(
‖DUV

u,v z− gu,v‖2 + γ2
)2

(73)

Discussion. Contrarily to the TV-like approach (sub-

section 3.2), the non-convex estimators require setting

one hyper-parameter (β or γ). As shown in figure 8, the

choice of this parameter is crucial: when it is too high,

discontinuities are smoothed, while setting a too low

value leads to strong staircasing artifacts. Inbetween,

the values β = 0.5 and γ = 1 seem to preserve discon-

tinuities, even in the presence of noise (which was not

the case using the TV-like approach).

Yet, staircasing artifacts are still present. Despite

their non-convexity, the new estimators Φ1 and Φ2 are

differentiable, hence these artifacts do not come from

a lack of differentiability, as this was the case for TV.

They rather indicate the presence of local minima. This

is illustrated in figure 9, where the 3D-reconstruction

of a “Canadian tent”-like surface, with additive, zero-

mean, Gaussian noise (σ = 10%), is presented. When

using the least-squares solution as initial guess z(0), the

3D-reconstruction is very close to the genuine surface.

Yet, when using the trivial initialization z(0) ≡ 0, we

obtain a surface whose slopes are “almost everywhere”

equal to the real ones, but unexpected discontinuity

jumps appear. Since only the initialization differs in

these experiments, this clearly shows that the artifacts

indicate the presence of local minima.

Although local minima can sometimes be avoided by

using the least-squares solution as initial guess (e.g., fig-

ure 9), this is not always the case (e.g., figure 8). Hence,

the non-convex estimators perform overall better than

the TV-like approach, but they are still not optimal.

We now follow other routes, which use least-squares as

basis estimator, yet in a non-uniform manner, in order

to allow discontinuities.



16 Yvain Quéau et al.

Ground truth

z(0) = least-squares solution - RMSE = 0.78

z(0) ≡ 0 - RMSE = 13.16

Fig. 9 3D-reconstruction of a “Canadian tent”-like surface
by the non-convex integrator Φ1 (β = 0.5, k = 12000 itera-
tions), using two different initializations. The objective func-
tion being non-convex, the iterative scheme may converge to-
wards a local minimum.

3.4 Integration by Anisotropic Diffusion

Both previous methods (total variation and non-convex

estimators) replace the least-squares estimator by an-

other one, assumed to be robust to discontinuities. Yet,

it is possible to proceed differently: the 1D-graph in fig-

ure 5 shows that most data are corrupted only by noise,

and that the discontinuity set is “small”. Hence, apply-

ing least-squares everywhere except on this set should

provide an optimal 3D-reconstruction. To achieve this,

a first possibility is to consider weighted least-squares:

min
z

∫∫
(u,v)∈Ω

‖W(u, v) [∇z(u, v)− g(u, v)]‖2

+ λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (74)

where W is a Ω → R2×2 tensor field, acting as a weight

map designed to reduce the influence of discontinuity

points. The weights can be a priori computed according

to the integrability of g [48], or by convolution of the

components of g by a Gaussian kernel [1]. Yet, such ap-

proaches are of limited interest when g contains noise.

In this case, the weights should rather be set as a func-

tion inversely proportional to ‖∇z(u, v)‖, e.g.:

W(u, v) =
1√(

‖∇z(u,v)‖
µ

)2

+ 1

I2 (75)

with µ a user-defined hyper-parameter. The latter ten-

sor is the one proposed by Perona and Malik in [45]: the

continuous optimality condition associated to (74) is re-

lated to their “anisotropic diffusion model” 7. Such ten-

sor fields W : Ω → R2×2 are called “diffusion tensors”:

we refer the reader to [54] for a complete overview.

The use of diffusion tensors for the integration prob-

lem is not new [48], but we provide hereafter additional

comments on the statistical interpretation of such ten-

sors. Interestingly, the diffusion tensor (75) also appears

when making different assumptions on the noise model

than those we considered so far. Up to now, we assumed

that the input gradient field g was equal to the gradient

∇z of the depth map z, up to an additive, zero-mean,

Gaussian noise: g = ∇z + ε, ε ∼ N
(

[0, 0]>,

[
σ2 0

0 σ2

])
.

This hypothesis may not always be realistic. For in-

stance, in 3D-reconstruction scenarii such as photomet-

ric stereo [55], one estimates the normal field n : Ω →
R3 pixelwise, rather than the gradient g : Ω → R2,

from a set of images. Hence, the Gaussian assumption

should rather be made on these images. In this case,

and provided that a maximum-likelihood for the nor-

mals is used, it may be assumed that the estimated nor-

mal field is the genuine one, up to an additive Gaussian

noise. Yet, this does not imply that the noise in the

gradient field g is Gaussian-distributed. Let us clarify

this point.

Assuming orthographic projection, the relationship

between n and∇z is written, at every point (u, v) where

the depth map z is differentiable:

n(u, v) =
1√

‖∇z(u, v)‖2 + 1

[
−∇z(u, v)>, 1

]>
(76)

which implies that [−n1

n3
,−n2

n3
]> = [∂uz, ∂vz]

> = ∇z. If

we denote n the estimated normal field, it also follows

from (76) that [−n1

n3
,−n2

n3
]> = [p, q]> = g.

7 Although (75) actually yields an isotropic diffusion model,
since it “utilizes a scalar-valued diffusivity and not a diffusion
tensor” [54].
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Let us assume that n and n differ according to an

additive, zero-mean, Gaussian noise:

n(u, v) = n(u, v) + ε(u, v) (77)

where :

ε(u, v) ∼ N

[0, 0, 0]>,

σ2 0 0

0 σ2 0

0 0 σ2

 (78)

Since n3 is unlikely to take negative values (this

would mean that the estimated surface is not oriented

towards the camera), the following Geary-Hinkley trans-

forms:

t1 =
n3

(
n1

n3

)
− n1√

σ2

((
n1

n3

)2

+ 1

) (79)

t2 =
n3

(
n2

n3

)
− n2√

σ2

((
n2

n3

)2

+ 1

) (80)

both follow standard Gaussian distributionN (0, 1) [28].

After some algebra, this can be rewritten as:

1

σ
√

1 + p2
√
‖∇z‖2 + 1

[∂uz − p] ∼ N (0, 1) (81)

1

σ
√

1 + q2
√
‖∇z‖2 + 1

[∂vz − q] ∼ N (0, 1) (82)

This rationale suggests the use of the following fi-

delity term:

FPM(z) =

∫∫
(u,v)∈Ω

‖W(u, v) [∇z(u, v)− g(u, v)]‖2 dudv

(83)

where W(u, v) is the following 2×2 anisotropic diffusion

tensor field:

W(u, v) =
1√

‖∇z(u, v)‖2+1

[
1√

1+p(u,v)2
0

0 1√
1+q(u,v)2

]
(84)

Unfortunately, we experimentally found that choos-

ing (84) for the diffusion tensor field, discontinuities

were not always recovered. Instead, following the pio-

neering ideas from Perona and Malik [45], we introduce

two parameters µ and ν to control the respective influ-

ences of the terms forming the tensor field:

W(u, v)=
1√(

‖∇z(u,v)‖
µ

)2

+1

 1√
1+(p(u,v)

ν
)
2

0

0 1√
1+(q(u,v)

ν
)
2

 (85)

Replacing the matrix in (85) by I2 yields exactly the

Perona-Malik diffusion tensor (75), which reduces the

influence of the fidelity term on locations (u, v) where

‖∇z(u, v)‖ increases, which are likely to indicate dis-

continuities. Yet, our diffusion tensor (85) also reduces

the influence of points where p or q is high, which are

also likely to correspond to discontinuities. In our ex-

periments, we found that ν = 10 could always be used,

yet the choice of µ has more influence on the actual

results.

Discretization. Using the same discretization strategy

as in subsections 3.2 and 3.3 leads us to the following

discrete functional:

EPM(z) =
1

4

∑∑
(U,V )∈{+,−}2

{∥∥AUV (z)
(
DU
u z−p

)∥∥2

+
∥∥BUV (z)

(
DV
v z−q

)∥∥2

}
+
∥∥Λ (z− z0

)∥∥2
(86)

where the AUV (z) and BUV (z) are |Ω| × |Ω| diagonal

matrices containing the following {aUVu,v } and {bUVu,v } val-

ues, (u, v) ∈ Ω:

aUVu,v =
1√

1 +
(pu,v

ν

)2√ (∂Uu zu,v)2+(∂Vv zu,v)2

µ2 + 1
(87)

bUVu,v =
1√

1 +
( qu,v

ν

)2√ (∂Uu zu,v)2+(∂Vv zu,v)2

µ2 + 1
(88)

with (U, V ) ∈ {+,−}2.

Numerical resolution. Since the coefficients aUVu,v and

bUVu,v depend in a nonlinear way on the unknown values

zu,v, it is difficult to derive a closed-form expression for

the minimizer of (86). To deal with this issue, we use

the following fixed point scheme, which iteratively up-

dates the anisotropic diffusion tensors and the z-values:

z(k+1) = argmin
z∈R|Ω|

1

4

∑∑
(U,V )∈{+,−}2

{∥∥∥AUV (z(k))
(
DU
u z−p

)∥∥∥2

+
∥∥∥BUV (z(k))

(
DV
v z−q

)∥∥∥2
}

+
∥∥Λ (z− z0

)∥∥2
(89)

Now that the diffusion tensor coefficients are fixed, each

optimization problem (89) is reduced to a simple linear

least-squares problem. In our implementation, we solve

the corresponding optimality condition using Cholesky

factorization, which we experimentally found to provide

more stable results than conjugate gradient iterations.
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Least-squares Anisotropic diffusion

(MAE = 9.29 degrees) (MAE = 8.43 degrees)

Fig. 10 Left: three out of the 96 input images used for estimating the normals by photometric stereo [55]. Center: 3D-
reconstruction by least-squares integration of the normals (section 2), and angular error map (blue is 0 degree, red is 60
degrees). The estimation is biased around the occluded areas. Right: same, using anisotropic diffusion integration with the
tensor field defined in (84). The errors remain confined in the occluded parts, and do not propagate over the discontinuities.

Discussion. We first experimentally verify that the pro-

posed anisotropic diffusion approach is indeed a statis-

tically meaningful approach in the context of photomet-

ric stereo. As stated in [40], “in previous work on pho-

tometric stereo, noise is [wrongly] added to the gradi-

ent of the height function rather than camera images”.

Hence, we consider the images from the “Cat” dataset
presented in [52], and add a zero-mean, Gaussian noise

with standard deviation σ‖I‖∞, σ = 5%, to the images,

where ‖I‖∞ is the maximum graylevel value. The nor-

mals were computed by photometric stereo [55] over the

part representing the cat. Then, since only the ground-

truth normals are provided in [52], and not the depth

map, we a posteriori computed the final normal maps

by central finite differences. This allows us to calcu-

late the angular error, in degrees, between the real sur-

face and the reconstructed one. The mean angular er-

ror (MAE) can eventually be computed over the set

of pixels for which central finite differences make sense

(boundary and background points are excluded).

Figure 10 shows that the 3D-reconstruction obtained

by anisotropic diffusion outperforms that obtained by

least-squares. Besides, although we used the diffusion

tensor (84) (which does not require any parameter tun-

ing), discontinuities are partially recovered. The superi-

ority of anisotropic diffusion over least-squares remains

true when increasing the amount of noise (cf. figure 11),

which clearly indicates that the anisotropic diffusion ap-

proach is indeed better-suited for dealing with noise on

the images. Yet, the restoration of discontinuities is not

as sharp as with the previous approaches, and artifacts

are visible along the discontinuities (cf. figure 10).
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Fig. 11 Mean angular error (in degrees) as a function of the
standard deviation σ‖I‖∞ of the noise which was added to
the photometric stereo images. The anisotropic diffusion ap-
proach always outperforms least-squares. For the methods of
Simchony et al. [53] and Harker and O’Leary [27], the gradient
field was filled with zeros outside the reconstruction domains,
which adds even more bias.
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Although the parameter-free diffusion tensor (84)

seems able to recover discontinuities, this is not always

the case. For instance, we did not succeed in recovering

the discontinuities of the surface Svase. For this dataset,

we had to use the tensor (85). The results from figure 12

show that with an appropriate tuning of µ, discontinu-

ities are recovered and Gibbs phenomena are removed,

without staircasing artifact. Yet, as in the experiment

of figure 10, the discontinuities are not very sharp. Such

artifacts were also observed by Badri et al. [4], when ex-

perimenting with the anisotropic diffusion tensor from

Agrawal et al. [1]. Sharper discontinuities could be re-

covered by using binary weights: this is the spirit of the

Mumford-Shah segmentation method, which we explore

in the next subsection.

µ = 0.02 - RMSE = 2.38

µ = 0.2 - RMSE = 2.19

µ = 2 - RMSE = 5.09

Fig. 12 Integration by anisotropic diffusion. As long as µ is
small enough, discontinuities are recovered. Besides, no stair-
casing artifact is visible. Yet, the restored discontinuities are
not perfectly sharp.

3.5 Adaptation of the Mumford and Shah Functional

Let z0 : Ω → R be a noisy image to restore. In order to

estimate a denoised image z while perserving the dis-

continuities of the original image, Mumford and Shah

suggested in [38] to minimize a quadratic functional

only over a subset Ω\K of Ω, while automatically esti-

mating the discontinuity set K according to some prior.

A reasonable prior is that K must be “small”, so that

its length can be penalized, leading to the following op-

timization problem:

min
z,K

µ

∫∫
(u,v)∈Ω\K

‖∇z(u, v)‖2 dudv +

∫
K

dσ

+ λ

∫∫
(u,v)∈Ω\K

[
z(u, v)− z0(u, v)

]2
dudv (90)

where λ and µ are positive constants, and
∫
K
dσ is the

length of the set K (which models the discontinuities

in the image). We refer the reader to [3] for a detailed

introduction about this model and its qualitative prop-

erties.

Several approaches have been proposed to numeri-

cally minimize the Mumford-Shah functional: finite dif-

ferences scheme [11], piecewise constant approximation

[13], primal-dual algorithms [47], etc. Another approach

consists in using elliptic functionals. An auxiliary func-

tion w : Ω → R is introduced. This function stands for

1 − χK , where χK is the characteristic function of the

set K. Ambrosio and Tortorelli have proposed in [2] to

consider the following optimization problem:

min
z,w

µ

∫∫
(u,v)∈Ω

w(u, v)2 ‖∇z(u, v)‖2 dudv

+

∫∫
(u,v)∈Ω

[
ε ‖∇w(u, v)‖2+

1

4ε
[w(u, v)−1]2

]
dudv

+ λ

∫∫
(u,v)∈Ω

[
z(u, v)− z0(u, v)

]2
dudv (91)

By using the theory of Γ -convergence, it is possible to

show that (91) is a way to solve (90) when ε→ 0.

We modify the above models, so that they fit our

integration problem. Considering g as basis for least-

squares integration everywhere except on the disconti-

nuity set K, we obtain the following energy:

EMS(z,K) = µ

∫∫
(u,v)∈Ω\K

‖∇z(u, v)− g(u, v)‖2 dudv +

∫
K

dσ

+

∫∫
(u,v)∈Ω\K

λ(u, v)
[
z(u, v)−z0(u, v)

]2
dudv (92)
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for the Mumford-Shah functional, while the approach

by elliptic functionals leads us to replace (92) by the

Ambrosio-Tortorelli approximation:

EAT(z, w) = µ

∫∫
(u,v)∈Ω

w(u, v)2 ‖∇z(u, v)− g(u, v)‖2 dudv

+

∫∫
(u,v)∈Ω

[
ε ‖∇w(u, v)‖2+

1

4ε
[w(u, v)− 1]2

]
dudv

+

∫∫
(u,v)∈Ω

λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (93)

where w : Ω → R is a smooth approximation of 1−χK .

Numerical resolution. We use the same strategy as in

section 2 for discretizing∇z(u, v) inside functional (93),

i.e. all the possible first-order discrete approximations

of the differential operators are summed. Since disconti-

nuities are usually “thin” structures, it is possible that a

forward discretization contains the discontinuity while

a backward discretization does not. Hence, the defini-

tion of the weights w should be made accordingly to

that of ∇z. Thus, we define four fields w
+/−
u/v : Ω → R,

associated with the finite differences operators ∂
+/−
u/v .

This leads to the following discrete analogous of func-

tional (93):

EAT(z,w+
u ,w

−
u ,w

+
v ,w

−
v ) =

+
µ

2

(∥∥W+
u

(
D+
u z− p

)∥∥2
+
∥∥W−

u

(
D−u z− p

)∥∥2

+
∥∥W+

v

(
D+
v z− q

)∥∥2
+
∥∥W−

v

(
D−v z− q

)∥∥2

)
+
ε

2

(∥∥D+
uw+

u

∥∥2
+
∥∥D−uw−u

∥∥2
+
∥∥D+

v w+
v

∥∥2
+
∥∥D−v w−v

∥∥2
)

+
1

8ε

(∥∥w+
u −1

∥∥2
+
∥∥w−u −1

∥∥2
+
∥∥w+

v − v1
∥∥2

+
∥∥w−v −1

∥∥2
)

+
∥∥Λ (z− z0

)∥∥2
(94)

where w
+/−
u/v ∈ R|Ω| is a vector containing the values of

the discretized field w
+/−
u/v , and W

+/−
u/v = Diag(w

+/−
u/v )

is the |Ω|×|Ω| diagonal matrix containing these values.

We tackle the nonlinear problem (94) by an alter-

nating optimization scheme:

z(k+1) = argmin
z∈R|Ω|

EAT(z,w+
u

(k)
,w−u

(k)
,w+

v
(k)
,w−v

(k)
) (95)

w+
u

(k+1)
=argmin

w∈R|Ω|
EAT(z(k+1),w,w−u

(k)
,w+

v
(k)
,w−v

(k)
) (96)

and similar straightforward updates for the other in-

dicator functions. We can choose as initial guess, for

instance, the smooth solution from section 2 for z(0),

and w+
u

(0)
= w−u

(0)
= w+

v
(0)

= w−v
(0) ≡ 1.

At each iteration (k), updating the surface and the

indicator functions requires solving a series of linear

least-squares problems. We achieve this by solving the

resulting linear systems (normal equations) by means

of the conjugate gradient algorithm. Contrarily to the

approaches that we presented so far, the matrices in-

volved in these systems are modified at each iteration.

Hence, it is not possible to compute the preconditioner

beforehand. It could be computed at each iteration, but

in our experiments we did not consider any precondi-

tioning strategy at all. Thus, the proposed scheme could

obviously be accelerated. For instance, it might be in-

teresting to propose a strategy for iteratively refining

the preconditioner, rather than not using any or fully

computing it at each iteration. This is left as perspec-

tive.

Discussion. Let us now check experimentally, on the

same noisy gradient of surface Svase as in previous ex-

periments, whether this new integration method, in-

spired by the Mumford-Shah functional, satisfies the

expected properties. In the experiment of figure 13, we

performed 50 iterations of the proposed alternating op-

timization scheme, with various choices for the hyper-

parameter µ. The ε parameter was set to ε = 0.1 (we

recall that this parameter is not critical: it only has to

be “small enough”, in order for the Ambrosio-Tortorelli

approximation to converge towards the Mumford-Shah

functional). As it was already the case with other non-

convex regularizers (cf. subsection 3.3), a bad tuning

of the parameter leads either to over-smoothing (high

values of µ) or to staircasing artifacts (low values of

µ), which indicate the presence of local minima. Yet,

by appropriately setting this parameter, we obtain a

3D-reconstruction which is very close to the genuine

surface, without staircasing artifact.

The Mumford-Shah functional being non-convex, lo-

cal minima may be present. Yet, as shown in figure 14,

the choice of the initialization may not be as crucial

as with the non-convex estimators from subsection 3.3.

Indeed, the 3D-reconstruction of the “Canadian tent”

surface, using as initial guess the least-squares solution,

is similar to that obtained by using the trivial initial-

ization z(0) ≡ 0.

Hence, among the methods we have studied, the

adaptation of the Mumford-Shah model is the approach

which provides the most satisfactory 3D-reconstructions:

it is possible to recover sharp discontinuities, even in the

presence of noise, and with limited artifacts.
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µ = 1 - RMSE = 4.94

µ = 45 - RMSE = 2.37

µ = 100 - RMSE = 4.14

Fig. 13 3D-reconstructions from the noisy gradient of Svase,
using the Mumford-Shah integrator. If µ is tuned appropri-
ately, sharp discontinuities can be restored, without staircas-
ing artifacts.

z(0) = least-squares solution - RMSE = 0.74

z(0) ≡ 0 - RMSE = 1.84

Fig. 14 3D-reconstruction of the “Canadian tent” surface by
the Mumford-Shah integrator (µ = 20), using two different
initializations. The choice of the initial guess matters, but not
as much as with the non-convex estimators from section 3.3.

4 Conclusion and Perspectives

We presented a thorough review of the state-of-the-art

in a first paper (Part I: A Survey), as well as new meth-

ods for integrating a dense gradient field in the present

one (Part II: New Insights). The review allowed us to

select six criteria which should be met by an optimal in-

tegration method: PFast, PRobust, PFreeB, PDisc, PNoPar

and PNoRect. We then detailed in section 2 a least-

squares solution designed to meet all these criteria, ex-

cept PDisc. Eventually, we discussed in section 3 several

non-quadratic or non-convex variational formulations.

Although these approaches are slower and a parameter

must be tuned, they are able to recover sharp features

such as discontinuities and kinks (PDisc is satisfied).

Among these methods, which are summarized in ta-

ble 1, we believe that the Mumford-Shah approach dis-

cussed in section 3.5 is the one which represents the

overall best compromise. Yet, the other ones are also

promising. Indeed, other non-convex estimators than

those introduced in section 3.3 may create less staircas-

ing, and other anisotropic diffusion tensors than those

proposed in section 3.4 may yield reduced artifacts.

Future research directions may include accelerating

the numerical schemes and proving their convergence

when this is not trivial (e.g., for the non-convex inte-

grators). We also believe that introducing additional

smoothness terms inside the functionals may be use-

ful for eliminating the artifacts in anisotropic diffusion

integration. Quadratic (Tikhonov) smoothness terms

were suggested in [27]: to enforce surface smoothness

while preserving the discontinuities, we should rather

consider non-quadratic ones. In this view, higher-order
functionals (e.g., total generalized variation methods [8])

may reduce not only these artifacts, but also staircas-

ing. Indeed, as shown in figure 15, such artifacts may be

visible when performing photometric stereo [55] with-

out prior segmentation. Yet, this example also shows

that the artifacts are visible only over the background,

and do not seem to affect the relevant part.

3D-reconstruction is not the only application where

efficient tools for gradient field integration are required.

Although the assumption on the noi se distribution

may differ from one application to another, PDE-based

imaging problems such as Laplace image compression [46]

or Poisson image editing [44] also require an efficient

integrator. In this view, the ability of our methods to

handle control points may be useful. We illustrate in fig-

ure 16 an interesting application. From an RGB image

I, we selected the points where the norm of the gradient

of the luminance was the highest (conserving only 10%

of the points). Then, we created a gradient field g equal

to zero everywhere, except on the control points, where
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Table 1 Main features of the five methods of integration proposed in this paper. The quadratic method has all desirable
properties, except PDisc. The others hold PDisc (?: except the total variation approach in the presence of noise), yet they lose
PFast. In addition, all discontinuity-preserving methods except TV require tuning at least one hyper-parameter. Besides, stair-
casing artifacts may appear. Overall, despite such artifacts, we recommend the Mumford-Shah approach, using the quadratic
method as initial guess, in order to avoid local minima.

Method PFast PRobust PFreeB PDisc PNoRect PNoPar Local minima Staircasing
Quadratic + + + − + + No No

Total variation − + (?) + + + + No Yes
Non-convex − + + + + − Yes Yes

Anisotropic diffusion − + + + + − No No
Mumford-Shah − + + + + − Yes Yes

(a) (b) (c) (d)

(e) (f)

Fig. 15 3D-reconstruction using photometric stereo. (a-c) All (real) input images. (d) 3D-reconstruction by least-squares,
without segmentation. (e) 3D-reconstruction by least-squares, after segmentation. (f) 3D-reconstruction using the Mumford-
Shah approach, without segmentation. When discontinuities are handled, it is possible to perform photometric stereo without
prior segmentation of the object.

it was set to the gradient of the color levels. The prior

z0 was set to a null scalar field, except on the control

points where we retained the original color data. Even-

tually, λ is set to an arbitrary small value (λ = 10−9)

everywhere, except on the control points (λ = 10). The

integration of each color channel gradient is performed

independently, using the Mumford-Shah method to ex-

trapolate the data from the control points to the whole

grid. Using this approach, we obtain a nice piecewise-

constant approximation of the image, in the spirit of

the “texture-flattening” application presented in [44].

Besides, by selecting the control points in a more opti-

mal way [6,29], this approach could easily be extended

to image compression, reaching state-of-the-art lossy

compression rates. In fact, existing PDE-based meth-

ods can already compete with the compression rate of

the well-known JPEG 2000 algorithm [46]. We believe

that the proposed edge-preserving framework may yield

even better results.

Eventually, some of the research directions already

mentioned in the conclusion section of our first paper

were ignored in this second paper, but they remain of

important interest. One of the most appealing examples

is multi-view normal field integration [14]. Indeed, dis-

continuities represent a difficulty in our case because

they are induced by occlusions, yet more information

would be obtained near the occluding contours by us-

ing additional views.
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(a) (b) (c)

Fig. 16 Application to image compression/image editing. (a) Reference image. (b) Control points (where the RGB-values and
their gradients are kept). (c) Restored image obtained by considering the proposed Mumford-Shah integrator as a piecewise-
constant interpolation method. A reasonable piecewise constant restoration of the initial image can be obtained from as few
as 10% of the initial information.
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