
HAL Id: hal-01334135
https://hal.science/hal-01334135

Submitted on 21 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconstructable Software Appliances with Kameleon
Cristian Ruiz, Salem Harrache, Michael Mercier, Olivier Richard

To cite this version:
Cristian Ruiz, Salem Harrache, Michael Mercier, Olivier Richard. Reconstructable Software Appli-
ances with Kameleon. Operating Systems Review, 2015, 49 (1), pp.80-89. �10.1145/2723872.2723883�.
�hal-01334135�

https://hal.science/hal-01334135
https://hal.archives-ouvertes.fr

Reconstructable Software Appliances with Kameleon

Cristian Ruiz, Salem Harrache, Michael Mercier and Olivier Richard
firstname.lastname@inria.fr

INRIA/Univ. of Grenoble, Grenoble, France

ABSTRACT
A software appliance builder bundles together an applica-
tion with its needed middleware and an operating system to
allow easy deployment on Infrastructure as a Service (IaaS)
providers. These builders have the potential to address a
key need in our community: the ability to reproduce an ex-
periment. This paper reports the experiences on developing
a software appliance builder called Kameleon that leverages
popular and well tested tools. Kameleon simplifies the cre-
ation of complex software appliances that are targeted at
research on operating systems, HPC and distributed com-
puting. It does so by proposing a highly modular descrip-
tion format that encourages collaboration and reuse of pro-
cedures. Moreover, it provides debugging mechanisms for
improving experimenter’s productivity. To justify that our
appliance builder stands above others, we compare it with
the most known tools used by developers and researchers
to automate the construction of software environments for
virtual machines and IaaS infrastructures.

Categories and Subject Descriptors
D.2.4 [Distributed Systems]: Miscellaneous

Keywords
Reproducible Research, Testbed, Virtual Appliances, Cloud
Computing, Experiment Methodology.

1. INTRODUCTION
Large testbed infrastructures for experimentation in net-

works and large scale systems such as Grid’5000 [3], Fu-
tureGrid [9], etc. are available, which enable the deploy-
ment of complex software stacks either on bare metal or
using an IaaS provider. These infrastructures’ high degree
of software stack customizability appeal to researchers who
want to test their ideas in real settings. However, the man-
agement of these software stacks is not always trivial, their
setup is a tedious and time consuming task that should be
automated whenever possible. The lack of automation can
be attributed to the low expertise, lack of the proper tools
and the long learning path for researchers. The lack of au-
tomation leads to the inability to reproduce an experiment,
since it is not even possible to build or set the experimental
setup under the exact same conditions where an experiment
took place. A recent study [5], where the buildability of ar-
tifacts was evaluated, found that only 24% of publications

Copyright is held by the author(s)

in ACM conferences and journals can be built. To preserve
the experimental setup some works are relying on software
appliances technology. Industry has been using software ap-
pliances for provisioning software in a more resilient way,
they have developed software appliance builders which au-
tomate the construction of software appliances.

1.1 Motivations

Base software layer
(O.S. + middleware)

- User machine

- Other machine
 Virtual machine
 Cloud computing
 Real machine

Experimantal
setup

- Installation of packages

- Source code compilation

- Application configuration

- etc.

...

Figure 1: Creation process of an experimental setup.

Figure 1 illustrates the process to derive an experimental
setup. Experimenters start from a base setup which includes
an operating system plus a middleware. This base setup
could be located in the same machine of the experimenter,
in a virtual machine, in an IaaS provider as Amazon EC21,
OpenStack2, etc; or in a real machine that belongs to a com-
puting cluster. The experimenter will apply a sequence of
actions 〈Ai〉 which consists in, for instance: installation of
software packages, source code compilation, software config-
uration, etc. Applying these actions 〈Ai〉 produce an exper-
imental setup E′, which is then used for the evaluation of a
given implementation, algorithm, etc. Due to space limita-
tions in research papers the composition of E′ is not prop-
erly described, nor are the sequence of actions 〈Ai〉 that were
taken to derive E′. In domains such as High Performance
Computing, Distributed Systems and Operating Systems re-
search, experimental setup configuration, which includes the
operating system, version of libraries and compilers, compi-
lation flags, etc, are crucial requirements to be able to repeat
an experiment [4].

1.2 Reconstructability
To improve experimentation, we claim that an experi-

menter needs to know the exact process that led to the cre-
ation of a particular experimental setup, E′, as well as to
be able to replay and modify this process to arrive at the
same and alternative experimental setups. We introduce
the concept of reconstructability of an experimental setup

1http://aws.amazon.com/ec2/
2http://www.openstack.org/

http://aws.amazon.com/ec2/
http://www.openstack.org/

to formally capture this process. An experimental setup E′

is reconstructable if the following three facts hold:

• Experimenters have access to the original base exper-
imental setup E.

• Experimenters know exactly the sequence of actions
〈A1, A2, A3, ..., An〉 that produced E′.

• Experimenters are able to change some action Ai and
successfully re-construct an experimental setup E′′.

Reconstructability can be expressed functionally as E′ =
f(E, 〈Ai〉), where f applies 〈Ai〉 to E to derive the exper-
imental setup E′. Thus, if reconstructability holds, we are
guaranteed to be able to derive E′ no matter when 〈Ai〉 is
applied to E. Reconstructability does not hold when:

• An action Ai is composed of sub-tasks that are exe-
cuted concurrently making the process not determinis-
tic. For example: compilation of software using Make-

files with the option -j that runs parallel compilation
process. This provokes compilation rules to run in any
order if they are not connected by dependencies.

• Packages with the latest release of Debian (Debian 8)
have a time of expiration. Therefore, old packages can
not be installed.

Reconstructability also does not hold when either the base
setup, E, or the specific software used in an action, Ai, is
no longer available. The availability of software becomes an
issue when reconstructability depends on package managers
and configuration management tools [6]. For example, there
is no guarantee that a git repository which is used by an
action will be available at a later point in time.

1.3 Contributions
This paper identifies the necessary ingredients for a soft-

ware appliance builder to be a viable solution for the preser-
vation and packaging of experimental setups. The contribu-
tions of this paper and what makes it different from our two
previous publications [8, 13] are:

1. In Section 1.2, we introduced the concept of recon-
structability, which identifies the process to build an
experimental setup so that the setup can be rebuilt
and can be built with variations.

2. In Section 3, we evaluate existing software appliance
builders against the criteria needed to improve user
productivity.

3. In Section 4, we refine the Kameleon syntax and con-
cepts, and we extend the persistent cache mechanism
so that it supports new concepts.

4. In Section 5, we demonstrate that Kameleon is mod-
ular, enables the reuse of code, and builds on proven
technology.

5. Section 5.2, we identify the container requirements for
different types of software appliances.

The rest of this paper is structured as follows: Section 2
presents related work. Section 3 presents a qualitative com-
parison of the most widely used software appliance builders.
Section 4 presents a complete description of Kameleon archi-
tecture, concepts and features. Section 5 presents use cases
that validate our approach. Section 6 presents future work.
Section 7 concludes.

2. RELATED WORK
Re-running an experiment with the original software arti-

facts could be achieved by using virtual appliances and vir-
tual machine snapshots [10, 7]. Brammer et. al [2] present a
system to create executable papers, which relies on the use
of virtual machines and aims at improving the interactions
between authors, reviewers and readers with reproducilibity
purposes. Kameleon differs in that it allows the re-execution
of an experiment with the original software artifacts and the
ability to modify the experimental setup cleanly and easily.

Widely used tools such as Vagrant3, provide reproducible
environments for development. Vagrant uses pre-built im-
ages which hinders understanding of the operating system
layer and makes modifications to this layer difficult. Kameleon
differs in that the construction of the operating system layer
is part of the software appliance generation. This fact makes
its recipes less complex than the recipes used by popular con-
figuration management tools such as Puppet4 and Chef5.

From the traceability point of view, Kameleon can be
compared to interactive notebooks such as IPython6 where
the goal is to track every step that leads to a given re-
sult. Kameleon keeps a trace of all the steps that led to
the creation of a given software stack, it does so by pro-
viding a structured, modular and understandable language.
Kameleon makes reconstructability of software appliances
possible, experimenters are able to explore all the actions,
modify and repeat the environment generation.

In Section 3.3, we discuss software appliance builders.

3. COMPARISON
We describe and evaluate the most widely used software

appliance builders in cloud infrastructures and development
environments. The evaluation uses as criteria: 1) how well
they support the software appliance build cycle and 2) whether
they meet the criteria for improving experimenters’ produc-
tivity to build an experimental setup.

3.1 Software Appliance Build Cycle
All the analyzed tools follow the same pattern in the pro-

cess of building a software appliance. The tool takes as
input a Description File that details all the requirements
that the software appliance should meet. Then, it initial-
izes a Container. A container is the environment that it
is used for building the software appliance. This term con-
tainer encompasses: system level virtualization techniques
(e.g., chroot, openVZ, Linux Containers), full virtualization
technologies (e.g., VirtualBox, KVM, Xen, VMware) and
real physical machines. Once the container is initialized,
the tool parses the description and starts to carry out the
bootstrap, setup and export procedures. The output of this
process is a software appliance formatted for the infrastruc-
ture that will finally host it. The main steps in the software
appliance build cycle are explained below:

• Bootstrap: This refers to the process of getting a
bootable operating system. This bootable image can
be either built from scratch or it can be retrieved from
some external source. The normal procedure is to get
an ISO image from the target operating system and

3http://www.vagrantup.com/
4http://puppetlabs.com/
5https://www.getchef.com/chef/
6http://ipython.org/notebook.html

http://www.vagrantup.com/
http://puppetlabs.com/
https://www.getchef.com/chef/
http://ipython.org/notebook.html

follow the installation procedure. Another option is to
download and load a software appliance already cre-
ated.

• Setup: In this step, users apply several procedures
to customize the base system and make it meet their
needs. These procedures include mainly the installa-
tion and configuration of software. There are many
possible ways to customize, by using shell scripts or
configuration management tools such as Salt, Chef,
Puppet, Ansible, etc.

• Export: This step creates the final format for the soft-
ware appliance. The final format ranges form the avail-
able virtual disk formats (e.g., VDI7, VMDK8 ,QCOW29)
to more simple formats based on tarballs10.

3.2 Criteria for Improving User Productivity
The evaluation is driven by the question: What makes

an experimenter more productive when building a complex
software appliance? The following criteria will be used for
the evaluation:

• Easiness: The tool has a low learning curve. Spe-
cially, a low learning curve is supported by provid-
ing a simple language to describe the appliance across
the different levels of the software appliance’s software
stack (e.g., O.S. level, middleware or application).

• Support during the build process: Long compila-
tion times are commonplace when building these kinds
of software stacks, for instance the compilation of oper-
ating system kernels, modules, scientific libraries. Be-
cause this process is frequently error prone, a mecha-
nism for debugging or checkpointing the process makes
the experimenter more productive. Validation of the
correct functioning of the software appliance is required
as well.

• Containers diversity: The tool should support a va-
riety of container types. This enables hassle-free trans-
portation of an experimental setup from one infras-
tructure to another, because experimenters are more
comfortable with working in specific environments. Ad-
ditionally, it should be easy to integrate new types of
containers that meet the requirements of the experi-
menter. For example, libraries such as ATLAS11 which
gets its speed by specializing itself for the underlying
architecture, needs to be compiled on the target ma-
chine where it will finally run. Certain Linux modules
need direct access to real hardware. Therefore, they
could not run on virtualize systems. That is the case
for Dune [1] and CControl [12].

• Shareability: Instructions for building a software ap-
pliance must be organized and stored in a modular
way to enable the reuse of procedures and collaborate
within a community.

7https://www.virtualbox.org/manual/ch05.html
8http://www.vmware.com/app/vmdk/?src=vmdk
9http://www.linux-kvm.org/page/Qcow2

10It refers to a computer file format that can combine multiple files
into a single file.

11http://math-atlas.sourceforge.net/

• Reconstructability: One important shortcoming is
the reproduciblity of experiments in computer science.
It has been demonstrated that one of the causes is
the impossibility to build the same software artifacts12

used in a publication [5]. Thus a requirement is to
be able to reconstruct a software appliance from its
definitions, which will at the same time enable later
customization as defined in Section 1.2.

3.3 Software Appliance Builders
In this section, we describe and evaluate the most widely

used software appliance builders according to our criteria for
improving user productivity. Table 1 shows the evaluation.

3.3.1 Docker
Docker13 offers a powerful and lightweight way to build

software appliances that are packed in Linux Containers
(LXC). Docker manages and tracks changes and dependen-
cies, making it easier for users to understand how the final
appliance was built. It relies on repositories for enabling
users to share their artifacts with other collaborators. The
most appealing feature of Docker is that it makes applica-
tions portable across many infrastructures. As a downside,
however, applications are run inside Linux Containers which
could be not suitable for certain uses (e.g., run an applica-
tion that uses cgroups14). The description of the building
process is done using a simple syntax based on few con-
structs that help customize the containers.

3.3.2 Packer
Packer15 helps users to create identical software appli-

ances targeted at multiple platforms. The process is com-
posed of: builders, responsible for creating machines and
generating images from them for various platforms; provi-
sioners, used to install and configure software (many options
are available from simple shell scripts to high-end configura-
tion management tools) and postprocessors, that help man-
age the final produced image. Packer supports a variety of
container types and it strives to make descriptions portable
across different containers. Thus the burden of changing
from one development environment to another is reduced.
However, a different language is used to describe the oper-
ating system layer, which makes difficult to add modifica-
tions to this layer. Additionally, the tool do not provide any
mechanism for organizing the instructions which hampers
shareability.

3.3.3 BoxGrinder
BoxGrinder16 creates appliances from simple plain text

descriptions for various platforms. It utilizes the host sys-
tem to perform the image creation using the guestfs17 library
which results in a faster process. Then, the newly created
software appliance can be exported locally to be used for
a virtualization technology or it can be moved outside to
be used in IaaS providers. Software appliance descriptions
are simple and easy to understand and can be composed for
reuse. BoxGrinder does not offer any mechanism for sup-
porting the build process and it is tied to build the software

12It refers to source code compiled for testing.
13https://www.docker.io/
14https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
15http://www.packer.io/
16http://boxgrinder.org/
17http://libguestfs.org/

https://www.virtualbox.org/manual/ch05.html
http://www.vmware.com/app/vmdk/?src=vmdk
http://www.linux-kvm.org/page/Qcow2
http://math-atlas.sourceforge.net/
https://www.docker.io/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.packer.io/
http://boxgrinder.org/
http://libguestfs.org/

Table 1: Comparison of widely used appliance builders based on criteria that would make an experimenter more productive.

Tool Kameleon Docker Packer BoxGrinder Veewee Oz
Easiness Yes Yes No Yes No No
Support in the building process Yes Yes Yes No No No
Container diversity Yes No Yes No Yes No
Shareability Yes Yes No Yes No No
Reconstructability Yes Yes No No No Yes

appliance using the host system which could be problematic
when some isolation is needed.

3.3.4 Veewee
Veewee18 is a tool for automating the creation of custom

virtual machine images. It is able to interact with several
virtual machine hypervisors. It offers to the user the possi-
bility of validating the generated software appliance through
the execution of behavioral tests. The capacities of the tool
for customizing a software appliance are very limited. De-
scription files are written in Ruby restricting the interaction
with shell scripts.

3.3.5 OZ
Oz19 was created to ease the automatic installation of op-

erating systems. It uses QEMU as a container and uses the
native operating system tools to install software. The cycle
of building a software appliance includes the generation of
metadata about the packages installed. Software appliances
are created using an XML-based language. Even though the
language allows almost any operation of customization, the
descriptions rapidly become complex and difficult to main-
tain.

3.3.6 Kameleon
Kameleon achieves easiness by proposing a structured lan-

guage based on few constructs and which relies on shell com-
mands. The hierarchical structure of recipes and the extend
mechanism allow shareability. Kameleon supports the build
process by providing debugging mechanisms such as interac-
tive shell sessions, break-points and checkpointing. Contain-
ers diversity is achieved by allowing the easy integration of
new containers using the same language for the recipes. Fur-
thermore, persistent cache makes possible reconstructability.
In Section 4, we present Kameleon in detailed.

3.4 Discussion
We found that many software appliance builders rely on

archive files (e.g. ISO images) to bootstrap a software appli-
ance. However, if the archive files is no longer available in a
repository, then reconstructability is impossible. We found
that 30% of Veewee definition files20 point to repositories
that either no longer exist or have some packages missing.
Furthermore, management of containers is implemented ei-
ther in the core of the tool or as plugins. This makes integra-
tion of new containers for non-advanced users difficult. Most
of the tools support a wide variety of containers, however,
because they are tied to virtualization, real hardware is not
taken into account. Shareability which implies modularity
and collaboration is not available. Docker is the only tool,
at the moment, which implements a collaborative model for
building software appliances. These tools do not support
debugging or check pointing in the build process.

18https://github.com/jedi4ever/veewee
19http://www.aeolusproject.org/oz.html
20This was tested with the version of veewee 0.3.7 by trying to build
all templates during the period of 02/12/2013 and 20/12/2013.

Finally, the way tools support the build cycle has an im-
portant impact on the recontructability given that some ac-
tions would be out of the user’s control. When the language
used in the tool’s Description file is based on less human-
readable languages, such as XML, or on complex recipes,
such as the ones used by Chef and Puppet, that tool ranks
lower in the easiness criteria.

4. KAMELEON APPLIANCE BUILDER

VM docker chroot Grid'5000

Containers

Kameleon

Recipe
Software
applianceP
a
r
s
e
r

Engine

Abstract hierarchy
CLI

Context

Shell

Persistent
cache

Figure 2: Kameleon architecture.

Kameleon is a small and flexible software appliance builder,
which eases the construction and reconstruction of custom
software stacks for research in HPC, Grid or Cloud com-
puting and Distributed Systems. Kameleon version 2.2.4 is
written in 2278 lines of Ruby21 and has few dependencies.
Kameleon achieves ease of use by structuring the specifi-
cation (recipes) for the construction of software appliances
into a hierarchy. The hierarchy’s structure is composed of
sections that allow a separation of customization and low
level tasks. This structure separates out the customization
tasks that can be easily performed by non-expert users from
the low level tasks, such as setting up a complete operating
system or exporting the whole file system, which are more
difficult. These sections are divided into steps that repre-
sent actions 〈Ai〉 such as: installation and configuration of a
certain scientific library, kernel patching, configuration of a
base system. Steps are composed of microsteps that enable
the customization and re-utilization of the same step in dif-
ferent recipes. Finally, the last level of the hierarchy wraps
shell commands and Kameleon defined commands. All the
aforementioned hierarchy is written using YAML, which en-
courages more human readable shell scripts22.

An advantage of Kameleon, and what distinguished it
from the existing appliance builders, is that it serves sim-
ply as a recipe parser and orchestrator of shell commands,
which means that all the logic for the creation of a software
appliance resides entirely in the recipes. Kameleon recipes
enable four advantages for experimenters: 1) it helps to un-
derstand how the software appliance was created (all the

21Measured with SLOCCount http://www.dwheeler.com/sloccount/
22http://yaml.org/spec/1.2/spec.pdf

https://github.com/jedi4ever/veewee
http://www.aeolusproject.org/oz.html
http://www.dwheeler.com/sloccount/
http://yaml.org/spec/1.2/spec.pdf

details are embedded in the same language); 2) it gives a
total control over the whole process, which reduces the bur-
den of integrating new containers, new operating systems,
or new export formats; 3) it enables the easy customization
of software appliances at any level (e.g. O.S., middleware,
applications, etc.); 4) it encourages a collaboration model
where researchers can reuse code and given that all details
are in the hierarchy of recipes and steps (text files) they can
be easily versioned.

Figure 2 shows the architecture of the system and the in-
teraction between the different modules. First, the parser,
with the help of the abstract hierarchy, parses the recipe and
creates as output the internal data structures that are input
to the engine module. The engine orchestrates the work-
flow of execution. The workflow is executed sequentially.
The context module helps to abstract the access to a given
container. All the low level operations (e.g., execution of
shell commands, I/O and file management) are performed
by the shell module. The engine integrates three important
mechanism for debugging: checkpoints, breakpoints and in-
teractive shell sessions. The persistent cache captures all
the data used during the process of building a software ap-
pliance, which is archived to allow the software appliance to
be reconstructed at a later time. Finally, the CLI module
implements the user interface.

4.1 Syntax
Figure 3 shows an example of a Kameleon recipe. We can

highlight three different elements: sections, steps and vari-
ables. Four sections are proposed by Kameleon but more can
be created. One section, called global, is dedicated to the
declaration of global variables that can be used through out
the recipe. The other sections correspond to the main steps
in the software appliance build cycle (bootstrap, setup and
export). Different sections in a Kameleon recipe allow a high
degree of customizability, reuse of code, and total control of
software appliance creation process by the experimenter. In
Figure 3, the based system is built from scratch using the
package manager of the Debian distribution as specified in
the bootstrap section.

Alternatively, it is possible to use existing images (e.g.,
Grid’5000 base environments, cloud images for different Linux
distributions, or software appliances market places23). The
setup section installs packages, configures the O.S., etc.
Within a section, users can execute shell commands, read
and write files, or perform other commands that are nec-
essary to carry out the desired customization. The options
in the export section depend on the disk formats that the
container supports. At the moment we have implemented
recipes for exporting to the most popular virtual disk for-
mats, tarballs and specific Grid’5000 format.

Listing 1 shows the definition of a step file. Each step file is
loaded automatically by Kameleon after parsing the recipe.
A step is divided into microsteps (e.g., create_group) which
are in turn divided into commands. The goal of dividing
steps into microsteps is the possibility of activating certain
actions within a step. For example, from Listing 1 we have
the possibility of executing only the microstep create_group

without executing the rest of the microsteps. There are two
types of variables: user defined variables that are provided
in the recipe such as: Linux distribution (distrib), archi-
tecture (kernel_arch), etc., and Kameleon variables such

23http://www.turnkeylinux.org

global:
 ## User varibales : used by the recipe
 user_name: kameleon
 user_password: $$user_name
 # Distribution
 distrib: debian
 release: wheezy
 kernel_arch: $$arch
 hostname: kameleon-$$distrib
 ## Disk options
 nbd_device: /dev/nbd1
 image_disk: $$kameleon_cwd/base_$$kameleon_recipe_name.qcow2
 image_size: 10G
 filesystem_type: ext4
 # rootfs options
 rootfs: $$kameleon_cwd/rootfs

 out_context:
 cmd: bash
 workdir: $$kameleon_cwd
 proxy_cache: 127.0.0.1

 in_context:
 cmd: USER=root chroot $$kameleon_cwd/rootfs bash
 workdir: /root/kameleon_workdir
 proxy_cache: 127.0.0.1

bootstrap:
 - initialize_disk_chroot
 - debootstrap:
 - repository: http://ftp.debian.org/debian/
 - start_chroot

setup:
 - install_software:
 - packages: >
 debian-keyring sudo less vim acpid linux-image-$$kernel_arch
 - configure_kernel
 - install_bootloader
 - configure_network
 - create_group:
 - name: admin
 - create_user:
 - name: $$user_name
 - groups: sudo admin
 - password: $$user_password
export:
 - qemu_save_appliance:
 - input: $$image_disk
 - output: $$kameleon_cwd/$$kameleon_recipe_name
 - save_as_qcow2
- save_as_vdi

In context definition

Out context definition

Step

Figure 3: In the example, the section headers illustrate contexts
(out_context and in_context), declarations (global) and sec-
tions (bootstrap, setup and export). This example uses a ch-
root jail as a container for building a software appliance based on
Debian Wheezy.

as $$kameleon_cwd (Kameleon work directory) that interact
with the engine. Contexts are mapped to special variables
(out_context and in_context) in the global section. They
indicate the necessary actions to set a shell in the respective
context (the concept of context is explained in the next sec-
tion). In the example, the recipe creates a Debian Wheezy
appliance with some base configuration, which is specified as
the distrib and release variables in the global section, and
exports the appliance in QCOW2 format, which is specified
in the export section as the step ”- save_as-qcow2”. The
Kameleon recipe illustrates that sections are composed of
steps that can be customized using variables. Table 2 illus-
trates exec_* commands, which are the minimal building
blocks of microsteps. An exec_* command wraps a shell
command to add error handling and interactiveness in case
of a problem.

4.2 Kameleon Contexts
By dividing the building process into independent parts,

contexts provide a way for a user to structure the software
appliance creation process so that it is independent from

http://www.turnkeylinux.org

Create User
- create_group:
- exec_in: groupadd $$group

- add_user:
- exec_in: useradd --create-home -s /bin/bash $$name
- exec_in: adduser $$name $$group
- exec_in: echo -n ’$$name:$$password’ | chpasswd
- on_export_init:
- exec_in: chown ’$$user_name:’ -R /home/$$user_name

- add_group_to_sudoers:
- append_in:
- /etc/sudoers
- |
%admin ALL=(ALL:ALL) ALL

Listing 1: Example of a step file. The prefix ‘$$‘ is used for
variables.

Exec: executes a com-
mand in a given con-
text

- exec_in: echo "Hello!" > hello.txt
- exec_in: apt-get -y update

Pipe: it works as Unix
pipelines but between
contexts

- pipe:
- exec_out: cat tlm_code.tar
- exec_in: cat > ./tlm_code.tar

Write: allows to write
a file in a context

- write_in:
- /root/.ssh/config
- |

Host *
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null

Hooks: defers some ini-
tialization or clean ac-
tions.

- on_setup_clean:
- exec_in: rm -rf /tmp/mytemp

Table 2: Kameleon commands.

the final target platform. When an appliance is built with
Kameleon it is necessary to deal with 3 different contexts
(more can be defined if required). The objective of all these
contexts is to have a contextualized shell session. Contexts
are as follows:

• Local context : It refers to the location where Kameleon
is executed. Normally, it is the user’s machine.

• OUT context : It is where the process of bootstraping
will take place. Some procedures have to be carried
out in order to create the place where the software
appliance is built (IN context). This could be: the
same user’s machine using chroot. Thus, this context is
where the setup of the chroot takes place. Other exam-
ples of OUT context are: setting up a virtual machine,
access to an infrastructure in order to get an instance
and be able to deploy, setting up a Docker container.
This context also allows the appliance’s base file sys-
tem layout to be setup.

• IN context : It makes reference to inside the container
created by the OUT context. This context can be
mapped to a chroot, virtual machine, physical machine,
Linux container, etc. This context is frequently used
for customizing the software appliance.

The relation between the possible contexts used and the
section execution is shown in Table 3.

Section Context
used

Description

Bootstrap Local context
and OUT con-
text

Two possibilities: (1) build a file sys-
tem layout form scratch. (2) start
form an already created software ap-
pliance.

Setup Mostly IN
context

The commands run on the chosen
container: chroot, Docker, Linux
container, virtual machine and real
machine

Export Local context
and OUT con-
text

Use of the container supported tools
for creating the final format for the
software appliance.

Table 3: Kameleon concepts, interrelation between contexts and
sections.

4.3 Checkpoint Mechanism
The construction of a software appliance is a trial and

error process. Kameleon provides a modular checkpoint
mechanism that saves time when debugging the software
appliance construction process. Time consuming tasks such
as the installation of an operating system from scratch are
not repeated during the debugging process. Thus, a check-
point mechanism encourages the automation of software ap-
pliance building as it makes the construction of software ap-
pliances less time consuming. We have integrated different
checkpointing mechanisms for each container supported by
Kameleon. They are based on snapshots of virtual machines
(QEMU, VirtualBox) and based on snapshots of QCOW2
disk images for the chroot container. Another checkpoint
mechanism use Docker commits to preserve the state of a
Docker image.

4.4 Extend Mechanism

extend: qemu/debian7.yaml

global:

bootstrap:
- "@base"

setup:
- "@base"
- install_software:

- packages: g++ make openssh openmpi build-essential fort77
- install_atlas:

- repository: http://sourceforge.net/math-atlas/Stable/
- version: "3.10.1"

- install_hpl:
- repository: "http://www.netlib.org/benchmark/hpl/"
- version: "2.1"
- hpl_makefile: "$$kameleon_recipe_dir/data/Make.Linux"

export:
- "@base"

Listing 2: Extend mechanism.

Listing 2 shows a Kameleon recipe that builds a software
appliance for the hpl benchmark. This recipe adds steps to
the setup section and reuse steps from the recipe shown in
Figure 3. This is done by using the extend: and "@base"

keywords. Recipes are provided as templates, which enable
a user to write a new recipe based on another existing recipe
by overwriting certain sections and variables. The main pur-
pose of this mechanism is to reduce the entry barrier for
non-expert users by encouraging the reuse of recipes. This
allows Kameleon’s users to take advantage from the recipes
already developed by the community.

4.5 Persistent Cache Mechanism
The persistent cache is the mechanism Kameleon uses to

enable reconstructability and preservation of environments
for experimentation. Our persistent cache captures all the
data and instructions (recipe and step files) used during the
construction of a software appliance. Data is captured in
two ways: 1) Polipo24 a web proxy cache for caching all
the packages coming from the network, and 2) custom pro-
cedures for caching data coming from other sources. This
mechanism is detailed in [13]. The persistent cache archive
is structured by step (Kameleon hierarchy) and it contains
files, control version repositories and mainly cache files gen-
erated by Polipo. A hash is associated with both a step
file and its generated persistent cache directory. This asso-
ciation enables Kameleon to ensure the coherency between
instructions and data used to build a software appliance.
Kameleon persistent cache mechanism enables any software
appliance to be rebuilt from its persistent cache. The only
requirement is that the software appliance has to be built
successfully at least once.

5. USE CASES
In this section, we demonstrate how Kameleon was used

to build different software appliances. These software appli-
ances illustrate a variety of software stacks (Table 4) with
different requirements. Specially, they are taken from differ-
ent domains (high performance computing, operating sys-
tem and distributed system); they use different container
technologies (chroot, Docker, VirtualBox, QEMU and real
machine in Grid’5000); and they use different container iso-
lation (lightweight, service, kernel module, and hardware
dependent).

5.1 Software Appliance Complexity
We start by describing different basic software appliances

that can be used as a base experimental environment. Then
we describe more complex software appliances used in re-
search papers.

• Basic software appliances: These software appli-
ances include several Linux flavors, for example: Fe-
dora, CentOS, Debian, Archlinux. Different configu-
rations were built from the very basic console mode to
the complete desktop configuration. This shows that
complete computer environments for researchers can
be built.

• Complex software appliances: These software ap-
pliances were used in different research papers: an ap-
plication for controlling cache utilization [12], a safe
user-level access to privileged CPU features [1], a for-
mal specification of a JavaScript module system [11].
Other appliances provide widely used computing frame-
works such as MapReduce25, benckmarks such as hpl26

and batch schedulers such as OAR27

5.2 Container isolation
Because software appliances require different levels of iso-

lation at build time, a software appliance builder needs to

24http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/
25https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
26http://www.netlib.org/benchmark/hpl/
27http://oar.imag.fr

provide isolation mechanisms. Kameleon provides isolation
with its notion of context. Below are examples of the isola-
tion requirements by different types of software appliances.

5.2.1 Lightweight.
Lightweight software appliances do not need any kind of

isolation, thus they can run inside a chroot. This kind of
software appliances can be exported to any format and run
in any infrastructure. Examples of lightweight software ap-
pliances include: MPI + TLM28 (electromagnetic simula-
tion code), Map Reduce framework. Formal Java [11], hpl
benchmark, Debian Wheezy basic system.

5.2.2 Service.
Service software appliances run a service (e.g. databases).

Since the appliance’s service may conflict with services run-
ning on the build machine, Kameleon allows the experi-
menter to use container isolation to isolate appliance services
from build machine services.

5.2.3 Kernel modules.
When the installation of a kernel module is part of the

software appliance creation, isolation at the level of oper-
ating system calls is needed, because the target kernel has
to be running. Therefore, the IN context has to take place
inside either a virtual or real machine. Sometimes a real
machine is required, for example: 1) installation of CCon-
trol library for cache coloring29, 2) installation of Dune30,
a kernel module that provides ordinary user programs with
safe and efficient access to privileged CPU features, which
are normally hidden when using a virtual machine.

5.2.4 Hardware dependent.
In contrast to the previous types of software appliances,

which can be built and deployed on different machines, a
hardware dependent software appliance must be built and
deployed on the same machine. An example of hardware
dependent software appliance is the hpl benchmark. This
benchmark is based on the linear algebra library ATLAS,
which must be optimized at built time for the deployment
machine.

5.3 Results and Discussion
Table 5 shows the building time of some of the software

appliances described above. The purpose of this data is to
show the different steps that compose the build process and
the time using various container technologies. For experi-
menters the process of generating an experimental environ-
ment could be perceived as a time consuming process. How-
ever, we observe that the built time of each of the software
appliances is less than 30 minutes, which could encourage
users to generate their custom experimental setups.

5.3.1 Hardware dependent software appliance eval-
uation

In this section, we use the hpl benchmark to evaluate
hardware dependence container isolation. hpl benchmark
requires the installation of multiple software packages whose
parameters need to be configured, for performance, to the

28http://www.petr-lorenz.com/emgine/
29https://github.com/perarnau/ccontrol
30http://dune.scs.stanford.edu/

http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://www.netlib.org/benchmark/hpl/
http://oar.imag.fr
http://www.petr-lorenz.com/emgine/
https://github.com/perarnau/ccontrol
http://dune.scs.stanford.edu/

Table 4: Software appliances built with Kameleon

Name Description Software stack Containers
used

Container
isolation

Domain

Debian
basic

Debian console mode Debian Wheezy chroot,
Docker,
VirtualBox,
QEMU,
Grid’5000

Lightweight Operating
systems.

Debian
Desktop

Debian GNOME Desktop
environment

Debian Wheezy,
GNOME

QEMU,
VirtualBox

Service Operating
systems.

CentOS CentOS console mode CentOS 6.5 VirtualBox,
QEMU

Lightweight Operating
systems.

Dune Dune library which provides
safe and efficient access to
privileged CPU features

Ubuntu Precise, Linux
headers, Git, make,
GCC

Grid’5000 kernel
module

Operating
systems

Formal
java

A JavaScript module sys-
tem

Debian Wheezy,
Haskell, JavaScript
modules

Chroot,
Docker

Lightweight Operating
systems

CControl Kernel Module to control
the amount of cache avail-
able to an application

Debian wheezy, make,
Git, build tools, CCon-
trol libraries, PAPI

QEMU,
VirtualBox

kernel
module

High
performance
computing.

hpl
bench-
mark

LinPACK benchmark Debian Wheezy, Open-
MPI, OpenSSH, C++,
make, Fortran, ATLAS
library, hpl benchmark

chroot,
Docker,
VirtualBox,
Grid’5000

Hardware
dependent

High
performance
computing.

Hadoop Framework for storage and
large-scale processing

Ubuntu Lucid, Python,
OpenSSH, Java 6,
Hadoop.

chroot Lightweight Distributed
computing.

TLM
stack

Large scale electromagnetic
simulations

Debian Wheezy, Open-
MPI, OpenSSH, TLM
application.

chroot Lightweight High
performance
computing.

OAR Resource and task manager
for HPC clusters and other
computing infrastructures.

Debian wheezy, Git,
Perl, Postgresql, OAR
server packages

QEMU,
VirtualBox

Service High
performance
computing.

Table 5: Building time of some software appliances. The time is presented in seconds (some steps have been omitted).

Steps AP11 AP22 AP33 AP44 AP55 AP66 AP77 AP88 AP99 AP1010

start-virtualbox 21 12 15 21 20 20
g5k-reserv 177
start-qemu 10
install-requirements 11 11 11 12 41 13 36
debootstrap 70 77 73 76 73 187
yum-bootstrap 279 141
switch-context-virtualbox 10 10 105 93 32
switch-context-qemu 7
Boostrap 70 77 177 101 32 109 110 446 313 229
install-software 25 81 339 18 15 209 22 61 38 264
configure-system 6 6 6 17 6 6 8 11 10
configure-apt 13 9 37 9 9 9 12
install-atlas 497
install-hpl 12
install-ccontrol 18
install-gnome 821
oar-prereq-install 89
install-lambdajs 78
upgrade-system 212
install-kameleon 76
oar-git-install 53
tlm-installation 16
Setup 130 251 841 276 64 842 165 515 1195 503
save-qemu-appliance 83 88
save-virtualbox-appliance 47 75 34 71 150 89
save-docker-appliance 6
save-appliance-from-g5k 157
Export 83 6 157 88 47 75 34 71 150 89
Total 213 257 998 364 111 917 199 586 1345 592

1 TLM stack
2 Formal java using docker
3 Ubuntu using Grid’5000
4 OAR using QEMU
5 Archlinux using VirtualBox

6 hpl benchmark using VirtualBox
7 CControl using VirtualBox
8 CentOS using VirtualBox
9 Debian Desktop using VirtualBox
10 Fedora minimal system using VirtualBox

Table 6: Containers comparison machine M1.

Container Build
Time[Secs]

Image Size
[Mbytes]

hpl result
[MFLOPS]

VirtualBox 2722 1100 3.3
QEMU 1826 1200 109.1
Docker 2293 1600 110.1

Grid’5000 1782 638 113.3

Table 7: Containers comparison machine M2.

Container Build
Time[Secs]

Image Size
[Mbytes]

hpl result
[MFLOPS]

VirtualBox 1004 1100 8.1
QEMU 971 1200 189.7
Docker 1066 1600 222.3

hardware that the appliance is running on. The parame-
ter configuration requires significant compilation time. The
evaluation was performed using two different machines.

• M1: Machine available in Grid’5000 in the cluster genepi.
Intel Xeon E5420 QC CPU 2.5 Ghz with 8GB of RAM
and HDD SATA disk.

• M2: Local machine. Intel Core i7-2760QM CPU 2.4
GHz with 8GB of RAM and SSD disk.

The machine descriptions indicate that the machines dif-
fer only in their disk technology. Table 6 shows the results
for machine M1. Table 7 shows the results for machine M2.
The tables illustrate the time to build the software appli-
ance (Build Time[Secs]), the software appliance size (Image
Size[MBytes]) and the time to execute the benchmark hpl
(hpl result[MFLOPS]). In the worst case scenario, the build
time never exceeds one hour (or 3,600 seconds). All the el-
ements necessary for reproducing these results are available
in our repository31.

Additionally, both tables show the millions of floating-
point operations per second (MFLOPS) obtained by deploy-
ing the generated appliance and executing the benchmark.
This is illustrative for a hypothetical experiment with goal
would be to evaluate for example, the performance of vir-
tual machine monitors. From this simple experiment, we
can see that the virtualization provide by VirtualBox sig-
nificantly impacts hpl benchmark performance: a factor of
34 times for M1 (from 113 Mflops to 3.3) and a factor of 27
times for M2 (222.3 to 8.1). In addition, the difference in
performance is minimal for the other containers on a par-
ticular machine. Finally, across machines, the difference in
disk technology make a significant difference in both build
and execute time.

Table 8 illustrates the correlation between the image size
of a software appliance and the cache size needed to store
the data used to build the appliance. We are using the image
size from Table 7: building hpl benchmark on machine M1.
Finally, the total archive space to build all three appliances
is illustrated on the last row. We can observe that storage
requirements is reduced in a factor of 5.

5.3.2 Experiment packaging example

31This paper was written using Org mode which enables to embed
all the analysis presented. This is available along with persistent
cache archives, Kameleon recipes and some additional scripts at http:
//exptools.gforge.inria.fr/kameleon/

Docker Virtualbox Qemu-kvm
Docker Virtualbox Qemu-kvm

Transfer

Kameleon

Recipes Cache archive

Kameleon

Cache archive

SA1

SA1

SA1

SA1

SA2

SA2

SA2

SA2

SA3

SA3

SA3

SA3

Cache archive

SA: Software Appliance

M1

M1

M2

M2

Figure 4: Example of experiment packaging with Kameleon.

This section demonstrates how Kameleon and its persis-
tent cache allow an experimenter to evaluate the perfor-
mance of a high performance application using different vir-
tualization techniques on different machines. This section’s
demonstration approximates the process used in the eval-
uation of Section 5.3.1. This section demonstrates the ad-
vantage of using Kameleon and its persistent cache system
through an example. Let us suppose an experimenter wants
to measure the performance of different techniques of vir-
tualization and implementations of them for the execution
of high performance applications. Assume that we have run
an experiment that measures execution time for two virtual-
ization techniques: system level virtualization (Docker) and
full virtualization (VirtualBox and QEMU-KVM) on a ma-
chine M1. Now, suppose a different experimenter wants to
run the same experiment in another machine M2. Here are
the issues they would face:

• The software appliances are rarely well described and
the information of how they are configured is missing.

• Three different images have to be available which will
consume space to store them and time to transfer.

• The images are static and introducing changes into
them is not always easy and clean.

• Depending on the type of applications or benchmarks
run in the experiment, recompilation could be needed
in order to re-run the experiment in the same exact
conditions. Therefore the images are not directly exe-
cutable on M2.

The process using Kameleon is depicted in Figure 4. Kameleon
brings the following advantages:

• All the details of composition and configuration resides
on the recipes as shown in Section 4.

• In the process of generating the different software ap-
pliances, a persistent cache archive will be generated
that contains all the data used during the generation
of the respective software appliances. This is the only
file that has to be stored and, in terms of size it is
most of the time smaller than the images generated as
shown in Table 8.

• The persistent cache archive contains all the original
data used for generating the images. This means that
the software appliance can be adapted to new contexts.

http://exptools.gforge.inria.fr/kameleon/
http://exptools.gforge.inria.fr/kameleon/

Table 8: Some persistent cache archives

Software
appliance

Container Image Size
[Mbytes]

Cache
Size[MBytes]

hpl benchmark VirtualBox 1100 581
hpl benchmark QEMU 1200 582
hpl benchmark Docker 1600 520
Archive for all appliances 3900 703

6. FUTURE WORK
In future work, we plan to generalize the persistent cache

to provide a repository of persistent cache files, and make
this repository available to the community. Our vision of
this community includes researchers and software develop-
ers: anyone who needs to build a particular software stack.
This repository will include the instructions (recipes and
steps files) and its associated data. Therefore, multiple soft-
ware appliances can be stored, reducing significantly the
storage requirements (as demonstrated in the last row of Ta-
ble 8). Using this repository and Kameleon eliminates the
need to store large binary files. Kameleon can impact the
manage of IT infrastructures as it can be used to manage the
deployment and customization of software appliances. Fur-
thermore, we are interested in exploring Kameleon as a plat-
form for continuous integration. We believe that Kameleon’s
automation of software appliance building is well suited for
continuous integration. Finally, because the whole environ-
ment setup is known, we believe that Kameleon can make
bug tracking easier.

7. CONCLUSIONS
We introduced the concept of reconstructability which

establishes the requirements that a software experimental
setup has to meet for improving the reproducibility of ex-
periments in computer science. We proposed Kameleon a
software appliance builder that supports reconstructability.
Kameleon provides a modular way to describe the construc-
tion of software appliances, which encourages collaboration
and reuse of work. Support of reuse lowers the entry barrier
for experimenters with low sysadmin skills. Kameleon per-
sistent cache makes experimental setups reconstructable at
any time.

8. ACKNOWLEDGMENTS
We would like to thank Peter F Sweeney for his insightful,

detailed and constructing comments on the paper.
Experiments presented in this paper were carried out us-

ing the Grid’5000 testbed, supported by a scientific interest
group hosted by Inria and including CNRS, RENATER and
several Universities as well as other organizations.

9. REFERENCES
[1] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,

D. Mazières, and C. Kozyrakis. Dune: Safe user-level
access to privileged cpu features. In Proceedings of the
10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 335–348,
Berkeley, CA, USA, 2012. USENIX Association.

[2] G. R. Brammer, R. W. Crosby, S. Matthews, and
T. L. Williams. Paper mâché: Creating dynamic
reproducible science. Procedia CS, 4:658–667, 2011.

[3] F. Cappello, F. Desprez, M. Dayde, E. Jeannot,
Y. Jégou, S. Lanteri, N. Melab, R. Namyst, P. Primet,
O. Richard, E. Caron, J. Leduc, and G. Mornet.
Grid’5000: a large scale, reconfigurable, controlable
and monitorable Grid platform. In 6th IEEE/ACM
International Workshop on Grid Computing (Grid),
pages 99–106, Nov. 2005.

[4] A. Carpen-Amarie, A. Rougier, and F. LÃijbbe.
Stepping stones to reproducible research: A study of
current practices in parallel computing. In Euro-Par
2014: Parallel Processing Workshops, volume 8805 of
Lecture Notes in Computer Science, pages 499–510.
Springer International Publishing, 2014.

[5] C. Christian, P. Todd, M. Gina, S. Akash, S. Zuoming,
and W. Alex. Measuring reproducibility in computer
systems research. Technical report, Arizona
Univeristy, Technical Report, 2013.

[6] E. Dolstra and A. Löh. Nixos: A purely functional
linux distribution. In Proceedings of the 13th ACM
SIGPLAN International Conference on Functional
Programming, ICFP ’08, pages 367–378, New York,
NY, USA, 2008. ACM.

[7] J. T. Dudley and A. J. Butte. In silico research in the
era of cloud computing. Nature Biotechnology,
28(11):1181–1185, Nov. 2010.

[8] J. Emeras, B. Bzeznik, O. Richard, Y. Georgiou, and
C. Ruiz. Reconstructing the software environment of
an experiment with kameleon. In Proceedings of the
5th ACM COMPUTE Conference: Intelligent and
scalable system technologies, COMPUTE ’12, pages
16:1–16:8, New York, NY, USA, 2012. ACM.

[9] G. Fox, G. von Laszewski, J. Diaz, K. Keahey,
J. Fortes, R. Figueiredo, S. Smallen, W. Smith, and
A. Grimshaw. FutureGrid - a reconfigurable testbed for
Cloud, HPC, and Grid Computing. CRC
Computational Science. Chapman & Hall, 04/2013
2013.

[10] B. Howe. Virtual appliances, cloud computing, and
reproducible research. Computing in Science and
Engg., 14(4):36–41, July 2012.

[11] S. Kang and S. Ryu. Formal specification of a
javascript module system. In Proceedings of the ACM
International Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’12, pages 621–638, New York, NY, USA,
2012. ACM.

[12] S. Perarnau, M. Tchiboukdjian, and G. Huard.
Controlling cache utilization of hpc applications. In
International Conference on Supercomputing (ICS),
2011.

[13] C. Ruiz, O. Richard, and J. Emeras. Reproducible
software appliances for experimentation. In
Proceedings of the 9th International ICST Conference
on Testbeds and Research Infrastructures for the
Development of Networks and Communities
(Tridentcom), Guangzhou, China, 2014.

	Introduction
	Motivations
	Reconstructability
	Contributions

	Related Work
	Comparison
	Software Appliance Build Cycle
	Criteria for Improving User Productivity
	Software Appliance Builders
	Docker
	Packer
	BoxGrinder
	Veewee
	OZ
	Kameleon

	Discussion

	Kameleon Appliance Builder
	Syntax
	Kameleon Contexts
	Checkpoint Mechanism
	Extend Mechanism
	Persistent Cache Mechanism

	Use Cases
	Software Appliance Complexity
	Container isolation
	Lightweight.
	Service.
	Kernel modules.
	Hardware dependent.

	Results and Discussion
	Hardware dependent software appliance evaluation
	Experiment packaging example

	Future work
	Conclusions
	Acknowledgments
	References

