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Abstract

Recent concepts of quasi-static MHD turbulence between plane walls are presented. It is shown

that the dimensionality of this type of flow is governed by the ratio of the diffusion length associated

to the Lorentz force to the channel width. Depending on turbulence dimensionality, three different

dissipation mechanisms are activated that correspond to three different scalings for the intensity of

turbulent fluctuations. In all three regimes, the relative turbulent intensity is found to increase with

the applied magnetic field, in apparent contrast to commonly accepted ideas.
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1 Introduction

Turbulence under an externally imposed, static magnetic field has a well-known tendency to two-dimensionality
[5]. This effect is driven by the diffusive nature of the Lorentz force at low magnetic Reynolds number
[9] which smoothes out velocity gradients along the magnetic field. The final dimensionality of the flow,
is however strongly determined by the nature of the boundaries of the fluid domain. In the generic
case of a channel perpendicular to the field and bounded by two walls, Hartmann boundary layers that
develop along the walls preclude a fully quasi-two dimensional state, so the flow can be at best two-
dimensional in its bulk, or quasi-two-dimensional [9, 6]. With non dissipative boundaries (periodic or
slip-free boundary conditions), the transition between strictly two-dimensional and three-dimensional
states is mainly governed by the stability properties of large two-dimensional structures [3]. When walls
are present, by contrast, the flow states span a continuous spectrum of states involving different types of
three-dimensional effects (presence of transversal velocity, weak velocity gradients preserving topological
equivalent between planes perpendicular to the magnetic field, full three-dimensionality) [4, 7, 2].
Considering a generic channel configuration, we show that these states of dimensionality are solely de-
termined by the ratio lz/h of the diffusion length associated to the Lorentz force to the channel width.
We show that three different states can be distinguished, each of which characterised by a how the in-
tensity of turbulent fluctuations scales with the externally applied forcing. These scalings imply that in
the process of making the flow quasi-two dimensional, the effect of the magnetic field is to lower Joule
dissipation to the point where it actually increases the intensity of turbulence. These theoretical concepts
are verified experimentally on the FLOWCUBE experimental platform where turbulence is driven in a
cubic container by injecting electric current at one of the Hartmann walls of the vessel. In FLOWCUBE,
the intensity of the forcing is measured directly by the quantity of current that is injected in the flow.

2 Dimensionality and turbulence intensity

Consider a horizontal channel of width h, filled with liquid metal (density ρ, viscosity ν, electric con-
ductivity σ) and pervaded by a homogeneous static magnetic field Bez . Both the tendency to two-
dimensionality and the sources of three-dimensionality of MHD flows can be seen from the curl of the
Navier-Stokes equation and the cur l of Ohm’s law within the quasi-static approximation, which read:

∂zJz = −∇⊥ · J⊥ =
ρ

B
(u · ∇ωz + ω · ∇uz)−

ρν

B
∇2ωz, (1)

∇× J = σB∂zu. (2)

These equations express that horizontal layers of fluid can only be fed by electric current if either inertia
or viscous friction exist there to balance the Lorentz force. Furthermore, any electric current ”leak”
pulled into the core by either of these mechanisms results in the presence of velocity gradients along the
magnetic field, and hence in three-dimensionality. Conversely, quasi-two-dimensionality is only possible
if none of these forces acts, and ∂zu = 0 in the core. Velocity gradients would then still exist in the
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Figure 1: Schematic representation of generic flow configurations in a channel in an external magnetic
field. For illustration purposes, the flow is driven electrically by injecting electric current at the bottom
wall. Hartmann layers are represented in light blue, paths of electric current in red, and fluid flow in
blue. (a) lz << h (b) lz & h (c) lz >> h.

Hartmann layers because of viscous friction, and accordingly, the entire horizontally divergent electric
current flows there. The amount of current available to flow into horizontal planes is determined by the
intensity of the forcing driving turbulence (or equivalently, by the total current directly injected into the
flow, if it is electrically driven, as on figure 1). The height lz of the region where the the forcing current
is consumed by this mechanism determines the distance over which the Lorentz force is able to diffuse
momentum. Depending on whether in a structure of size l⊥ and typical velocity U(l⊥), the mechanism
is predominantly viscous or inertial, lz respectively scales as:

lνz ∼ l2
⊥

h
Ha or l(N)

z ∼ l⊥N
1/2, (3)

where Ha = Bh(ρ/σν)1/2 and N = σB2l⊥/(ρU) are the Hartmann number and interaction parameter.

The scaling for l
(N)
z was first proposed by [9] and experimentally verified by [7]. The ratio of the diffusion

length lz to the height of the channel determines the dimensionality of the flow, leading to three different
cases illustrated on figure 1.
If lz ≪ h, momentum diffusion by the Lorentz force does not reach out to both boundaries of the channel,
electric eddy currents spread over lz ≪ h and the flow is three-dimensional, with regions near one or both
channel walls (depending on the geometry of the forcing) where only a weak, residual flow exists.
If lz ∼ h, structures extend across the whole channel but three-dimensionality persists in the bulk.
If lz ≫ h, the flow is quasi-two dimensional and electric current flows almost exclusively in the Hartmann
boundary layers.

It is important to notice that l
(N)
z is scale-dependent and so strictly speaking, for a turbulent flow to be

quasi-two dimensional, all scales have to satisfy lz(l⊥) ≫ h. Hence, an intermediate state exists where
large scales are quasi-two-dimensional while smaller scales are three-dimensional [9, 4]. The three different
regimes of flow dimensionality correspond to different electric current paths and therefore different levels
of Joule dissipation. We shall now characterise them through the relation between forcing and the
measured Reynolds number. For this, we start by noticing that the total current induced by the forcing,
or directly injected into the flow, I spreads between the bulk (Ic), and through each of the Hartmann
layer (Ib and It), so that I = Ic + Ib + It. Since Ic diverges into the core over the height of the structure,
Ic ∼ 2πl⊥max{lz, h}Jc

⊥
. The horizontal current density Jc

⊥
is then estimated from (1) using only either

the first or the second term in the RHS of the equation, depending on whether viscous effects or inertia
dominate, respectively. Using Reb = Ubl⊥/ν and Re0 = (I/2πν

√
ρσ) to express these scalings non

dimensionally (indices b and t refer to bottom and top plates), it comes that if lz ≫ 1 then the flow is
quasi-two-dimensional[8, 1] and

Reb ∼ Re0. (4)
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Figure 2: Re′bHa
−1/3 and Re′tHa

−1/3 vs. Re0, representing the RMS of velocity fluctuations near the
bottom wall. Solid, dashed-dotted and dashed lines respectively represent scaling laws (4), (5) and (6).

If lz ≪ 1 or lz ∼ 1, the core current is pulled in by inertia [7], and

Reb ∼ Re
3/2
0 . (5)

Furthermore, (4) remains valid for any value of lz/h if the current in the core is pulled by viscous effects.
Regimes where this scaling holds shall therefore be called inertialess.
While scalings near the bottom wall give a measure of turbulent intensity where it is forced, scalings near
the top wall give a measure of its intensity away from where the forcing is applied. It turns out that if
lz ∼ h or lz ≫ h, then scalings for Ret are essentially the same as for Reb, albeit for a small correcting
factor [7]. If lz ≪ h, on the other hand, the top wall is outside of the region where turbulence diffuses
under the action of the Lorentz force. Any residual flow there is viscously entrained by the neighbouring
turbulence, and damped by the Lorentz force. This balance provides a scaling of the form

Ret ∼ Re
1/2
0 , (6)

which characterises the residual flow in this region. All three scalings are observed experimentally to
a great precision, over a wide range of values of Re0 and Ha (see figure 2). For the purpose of the
experiment, Reb and Ret were built on the RMS of velocity fluctuations and half of the scale at which
energy was injected into the flow ( materialised by the spacing between current injection electrodes Li).
For low forcing, the inertialess regime dominates both near the wall where turbulence is forced and the

wall where it isn’t. For high magnetic fields (hence l
(N)
z (l⊥)/h ≫ 1), a transition takes places to the

inertial regime where (5) holds in both regions. At lower fields, where l
(N)
z (l⊥)/h < 1, this transition is

only visible where turbulence is forced. The large scales of turbulence do not reach the top wall and (6)
becomes valid in this region.

3 Can magnetic fields enhance turbulence ?

An important feature of the measurements of turbulent intensity on figure 2 is that the prefactor in all
scalings laws linking Reb to Re0 depends on Ha. This wasn’t foreseen in theory and must be attributed
to the fact that while the injected current I induces an average flow, we diagnosed turbulent fluctuations,
which only receive a fraction of the energy of the average flow. It appears that the ratio of the RMS of
velocity fluctuations to the average velocity not only depends on Ha but monotonically increases with
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it. In other words, the relative turbulent intensity increases with the magnetic field, in apparent contra-
diction to the widely accepted idea that the magnetic field should suppress turbulence !
The paradox can be resolved by considering the energy balance integrated across the channel and ob-
serving that most of the power injected by the forcing P is dissipated ohmically. Using the expression of
the Lorentz force put forward by [9], ohmic dissipation integrated over the channel is expressed as:

∫ h

0

ǫJdz = −σB2〈
∫ h

0

u ·∆−1∂zzu〉dz ∼ −σB2l2
⊥
h
[

〈u〉 · ∂2
zz〈u〉+ 〈u′ · ∂2

zzu
′〉
]

,

where brackets and prime respectively refer to average and fluctuating quantities. Approximating the
derivatives as ∂2

zz〈u〉 ∼ 〈Ub〉2/l2z and ∂2
zzu

′ ∼ 〈U ′

b〉/l′2z , and using (3) with reference velocities 〈Ub〉 and
〈U ′2

b 〉1/2 to evaluate respectively lz and l′z, it comes that:

∫ h

0

ǫJdz ∼ −ρ
h

l⊥
〈Ub〉3

(

1 + α3
)

, (7)

where α = 〈U ′2
b 〉1/2/〈Ub〉 is the relative intensity of turbulent fluctuations. The total power driving the

flow across the channel is determined by the injected current as:

∫ h

0

PIdz ∼ IB

2πl⊥
〈Ub〉, (8)

and by virtue of (5), equating (8) and (7) for Ha >> 1, leads to an estimate for α:

α ∼ λHa1/3Re
−1/6
b . (9)

Experimental data support the scaling Ha1/3 and confirm that fluctuations become more intense as the
field is increased. It must be noted that this scaling applies to fully developed turbulence, for which
α & 1. The underlying mechanism is that while the magnetic field does suppress turbulence, it does so by
elongating structures. In the process, velocity gradients are reduced, and eddy currents responsible for
the ohmic dissipation are suppressed. The resulting structures are closer quasi-two-dimensionality and
dissipate much less energy than their three-dimensional counterpart. As a result, turbulence retains more
kinetic energy. In this sense, the application of a static magnetic field can indeed enhance turbulence.
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[6] A. Pothérat. Mhd turbulence at low rm: the role of boundaries. Magnetohydrodynamics, 48(1):13–23,

2012.
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