A Wavelet-Balance Approach for Steady-State Analysis of Nonlinear Circuits

Abstract : In this paper, a novel wavelet-balance method is proposed for steady-state analysis of nonlinear circuits. Taking advantage of the superior computational properties of wavelets, the proposed method presents several merits compared with those conventional frequency–domain techniques. First, it has a high convergence rate $0(h^4)$, where is the step length. Second, it works in time domain so that many critical problems in frequency domain, such as nonlinearity and high order harmonics, can be handled efficiently. Third, an adaptive scheme exists to automatically select proper wavelet basis functions needed at a given accuracy. Numerical experiments further prove the promising features of the proposed method in solving steady-state problems.
Document type :
Journal articles
Complete list of metadatas

Cited literature [17 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01333733
Contributor : Mathias Legrand <>
Submitted on : Saturday, June 18, 2016 - 9:33:17 PM
Last modification on : Monday, June 20, 2016 - 1:28:31 PM

File

Xi.pdf
Files produced by the author(s)

Identifiers

Citation

Xin Li, Bo Hu, Xieting Ling, Xuan Zeng. A Wavelet-Balance Approach for Steady-State Analysis of Nonlinear Circuits. IEEE Transactions on Circuits and Systems Part 1 Fundamental Theory and Applications, Institute of Electrical and Electronics Engineers (IEEE), 2002, 49 (5), ⟨10.1109/TCSI.2002.1001960⟩. ⟨hal-01333733⟩

Share

Metrics

Record views

74

Files downloads

154