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Breakdown of leaf litter in a neotropical stream

CATHERINE MATHURIAU1 AND ERIC CHAUVET

Centre d’Ecologie des Systèmes Aquatiques Continentaux (CNRS-UPS), 29 rue Jeanne Marvig,
31055 Toulouse cedex, France

Abstract. We investigated the breakdown of 2 leaf species, Croton gossypifolius (Euphorbiaceae) and
Clidemia sp. (Melastomataceae), in a 4th-order neotropical stream (Andean Mountains, southwestern
Colombia) using leaf bags over a 6-wk period. We determined the initial leaf chemical composition
and followed the change in content of organic matter, C, N, and ergosterol, the sporulation activity
of aquatic hyphomycetes, and the structure and composition of leaf-associated aquatic hyphomycetes
and macroinvertebrates. Both leaf species decomposed rapidly (k 5 0.0651 and 0.0235/d, respec-
tively); Croton lost 95% of its initial mass within 4 wk compared to 54% for Clidemia. These high
rates were probably related to the stable and moderately high water temperature (198C), favoring
strong biological activity. Up to 2300 and 1500 invertebrates per leaf bag were found on Croton and
Clidemia leaves after 10 and 16 d, respectively. Shredders accounted for ,5% of the total numbers
and biomass. Fungal biomass peaked at 8.4 and 9.6% of the detrital mass of the 2 leaf species,
suggesting that fungi contributed considerably to leaf mass loss. The difference in breakdown rates
between leaf species was consistent with the earlier peaks in ergosterol and sporulation rate in Croton
(10 d vs 16 d in Clidemia) and the faster colonization of Croton by macroinvertebrates. The softer
texture, lower tannin content, and higher N content were partly responsible for the faster breakdown
of Croton leaves. The rapid breakdown of leaf litter, combined with a low influence by shredders, is
in accordance with previous findings. The high fungal activity associated with rapid leaf breakdown
appears to be characteristic of leaf processing in tropical streams.

Key words: tropical, decomposition, macroinvertebrates, shredders, aquatic hyphomycetes.

Allochthonous detritus, including leaf litter, is
a main source of energy for woodland stream
ecosystems (Wallace et al. 1997). Once in the
stream, this detritus is subject to breakdown,
i.e., a combination of physical and biological
processes leading to size reduction, chemical
transformation, and incorporation into the food
web (Petersen and Cummins 1974, Webster and
Benfield 1986, Maltby 1992). In temperate
streams, both microfungi and shredders are im-
portant leaf decomposers (Maltby 1992, Gessner
et al. 1999) because they convert a major part of
plant detritus to CO2, dissolved organic matter,
fine particulate organic matter (FPOM), and liv-
ing biomass. Some of these particulate fractions
are further used by other macroinvertebrates, so
they play an important role in the trophic dy-
namics of streams (Egglishaw 1964).

The abundant literature on leaf litter break-
down in temperate streams contrasts with the
scarce information available from tropical rivers.
Studies in low-order tropical streams generally
report rapid breakdown of leaf litter compared
to temperate rivers (Stout 1980, Dudgeon 1982,
Benstead 1996). However, little is known about
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the absolute and relative importance of different

decomposer types in the tropics, and the avail-

able literature leads to diverging conclusions.

Pearson and Tobin (1989) in tropical Australia

and Petersen (1984) in Jamaica attributed the

rapid breakdown to a high activity of shred-

ders. In contrast, Dudgeon (1982) observed that

the higher invertebrate densities on a fast-de-

composing leaf species were related to the high-

er abundance of the leaf-associated microflora,

and thus shredders were of secondary impor-

tance. Aquatic hyphomycetes played a signifi-

cant role in leaf litter breakdown in a Puerto

Rican stream (Padgett 1976). Similarly, Dudgeon

(1989) and Dudgeon and Wu (1999) in Hong

Kong and Benstead (1996) in Costa Rica noted

an under-representation of shredders in leaf-as-

sociated assemblages in comparison with their

occurrence in temperate streams. In a regional

comparison, Irons et al. (1994) suggested that

shredding invertebrates were more important in

leaf breakdown at high latitudes, whereas the

contribution of microorganisms prevailed at low

latitudes. These trends remain largely hypo-

thetical, however, essentially because of the lack

of substantial data on microbial processing. Ad-



TABLE 1. Physical characteristics of the study site
and chemical composition of the stream water (range
determined on 6 occasions between March 1997 and
August 1998).

Parameter Range

Width (m)
Depth (cm)
Discharge (m3/s)
Suspended solids (mg/L)
Temperature (8C)
Dissolved oxygen (mg/L)
pH
Conductivity (mS/cm)
Alkalinity (CaCO3) (mg/L)
N-NO3

2 (mg/L)
N-NO2

2 (mg/L)
P-PO4

32 (mg/L)

3–5
5–25

0.14–0.86
4.5–31.4
18–27.5
6.6–7.2
6.0–7.1
34–59

15.8–31.5
0.08–0.17

,0.0003–0.01
,0.001–0.0442

ditional data are needed using comparable
methods to quantify both types of decomposers.
The quantification of microbial, especially fun-
gal, processing using specific methods has led
to considerable progress in the understanding
of the relative importance of different leaf de-
composers in temperate woodland streams
(Gessner et al. 1999), but these methods have, so
far, not been applied to tropical stream ecosys-
tems.

The aims of our study were to 1) compare the
breakdown of 2 tree species differing in texture
and chemical composition in a tropical upland
forest stream, 2) characterize the leaf-associated
assemblages of aquatic hyphomycetes and mac-
roinvertebrates, and 3) gain insights into the rel-
ative importance of both types of decomposers
in this stream.

Methods

Study site

The study was conducted in the Cabuyal, a
4th-order neotropical stream located in the Cau-
ca region in southwestern Colombia, ; 100 km
south of Cali (altitude: 1500 m, lat 2879‘N, long
76853‘W). The stream is a tributary of the Ove-
jas, which flows into the Cauca River. The av-
erage annual rainfall at the study site is ; 1900
mm (De Fraiture et al. 1997). The stream drains
a 3200-ha watershed covered by a secondary
forest and cultivated fields of manioc, plantain,
coffee, maize, and red bean. This watershed is
representative of forested hill land areas pre-
vailing in Colombia. The riparian vegetation at
the study site is dominated by Bambusa vulgaris
Schrad. Ex J. C. Wendl, Casearia arborea (Rich.)
Urb., Clidemia sp., Coffea arabica L., Croton gos-
sypifolius Vahl, Heliocarpus sp., Ocotea sp., Sac-
charum officinarum L., and Saurauia sp. The
stream bed, mostly made up of cobbles, leaf lit-
ter, and some large boulders, was shaded by ri-
parian vegetation. Aquatic macrophytes were
absent.

Average stream width and depth were deter-
mined over a 50-m long riffle. Discharge was
measured using an HP 302 flow meter. The
chemical composition of stream water was de-
termined using standard procedures (APHA
1989). The water chemistry and physical char-
acteristics of the study site are presented in Ta-
ble 1.

Experimental setup

A litter breakdown study was conducted dur-
ing the dry season from 1 August to 14 Septem-
ber 1999. Leaves of 2 contrasting tree species
were used: Croton gossypifolius (Euphorbiaceae)
with thin, soft, and hairy leaves and Clidemia sp.
(Melastomataceae) with thick, tough, and gla-
brous leaves. Freshly fallen leaves of both spe-
cies were collected from the riparian forest floor.
Color and texture were used to distinguish
fresh leaves from old ones. Leaf petioles were
removed and leaves enclosed in nylon mesh
bags (15 3 20 cm, 7-mm-mesh openings) the
same day as collection. Forty-two bags, each
containing 7 6 0.01 g of fresh leaves, were
placed in the stream within a 50-m long 3 4-m
wide riffle. Leaf bags were individually tied to
iron rods driven into the substratum and placed
under similar conditions of current velocity and
turbulence. Three replicate samples of each spe-
cies were randomly removed after 3, 10, 16, 23,
29, 36, and 43 d. Upon collection, each leaf bag
was placed into a plastic bag containing stream
water and put into an icebox. In addition, 3 sam-
ples per species were collected on day 0 for de-
termination of initial leaf dry mass and chemical
composition.

Macroinvertebrate sampling and determination

In the laboratory, the leaf material was care-
fully rinsed in running tap water, with the as-
sociated macroinvertebrates retained on a 300-



mm-mesh screen. Macroinvertebrates were pre-
served in 2% formalin, and later sorted using a
dissecting microscope and identified mostly to
genus with the help of identification keys (e.g.,
Roldán 1996). Chironomidae and Oligochaeta
were identified only to family and class levels,
respectively. All individuals were counted,
grouped by taxa, dried at 1058C for 24 h and
weighed to the nearest 0.1 mg. Taxa were as-
signed to functional-feeding groups (FFG) ac-
cording to Merritt and Cummins (1996). Chi-
ronomids were considered to be collectors be-
cause most of the individuals identified from
subsamples belonged to this FFG. Oligochaeta
contain various FFG, but because they were not
further identified they were not placed into any
particular group.

Fungal determinations

A total of 23 leaf discs was cut from the leaf
material of each bag with a 1-cm diameter cork
borer. Ten discs were incubated statically at 208C
in Erlenmeyer flasks containing 30 mL of fil-
tered stream water to induce sporulation. After
48 h, discs were removed and the conidial sus-
pension preserved with formalin (final concen-
tration: 2%). Aliquots of the conidial suspension
were filtered on Whatman cellulose nitrate
membrane filters (5 mm porosity). Each filter
was stained with a 60% lactic acid: 0.1% Trypan
blue solution (Iqbal and Webster 1973) and ex-
amined microscopically (3 200 magnification)
to determine the total number of conidia pro-
duced per mg of leaf ash-free dry mass (AFDM)
and identify the aquatic hyphomycetes. Ten oth-
er leaf discs were used for ergosterol analysis as
an indicator of fungal biomass (Gessner and
Schmitt 1996). These leaf discs were preserved
in vials containing 10 mL of methanol and
stored in a freezer until analyzed. Ergosterol
was extracted by 30 min refluxing in alcoholic
base, purified by solid-phase extraction, and
quantified by high pressure liquid chromatog-
raphy (Gessner and Schmitt 1996). The remain-
ing 3 leaf discs were dried at 1058C for 24 h and
weighed to determine the dry mass of the 23
leaf discs.

Determination of leaf mass loss and chemical
composition

The remaining leaf material was dried at
1058C for 24 h and weighed. This mass was add-

ed to that of the corresponding 23 leaf discs to
calculate the total leaf mass loss of each sample.
The leaf material was then ground in a mortar
and the organic matter content was determined
on aliquots by ignition for 2 h at 5508C. Carbon
and N contents of leaves were determined using
a NA2100 Thermoquest CHN analyzer.

The initial tannin content was estimated as
protein-precipitating potential using a radial
diffusion assay described in Hagerman (1987)
as modified in Gessner and Chauvet (1994). Ini-
tial leaf cellulose and lignin content was deter-
mined gravimetrically following the procedure
of Goering and Van Soest (1970). All determi-
nations were done on 3 replicate samples.

Data analysis

The loss in leaf AFDM through time was fit-
ted to an exponential model mt/mo5e-kt where
mt is the mass remaining at time t, mo is the
initial mass, and k is the breakdown rate con-
stant (Boulton and Boon 1991). Breakdown rates
were estimated by nonlinear regression (k 6 as-
ymptotic SE) and slopes, calculated by linear re-
gression on log-transformed data, were com-
pared using ANCOVA (Zar 1984). Numbers and
biomass of macroinvertebrates, fungal biomass,
and conidial production over the first 29 d were
tested for normality (those not normally distrib-
uted were log transformed) and compared us-
ing ANOVA. Statistical analyses were conducted
using Systat 5.2.1 (L. Wilkinson. 1990. Systat:
the system for statistics, Systat Inc., Evanston,
Illinois).

Results

Leaf chemical composition

The initial percentages of leaf C for Croton
and Clidemia were similar (Table 2). Nitrogen
content of Croton was initially higher than Cli-
demia. Both leaf species exhibited a pronounced
N increase (Fig. 1), which resulted in consistent
decreases in C:N ratios (data not shown). Initial
cellulose and lignin contents were higher in Cro-
ton than in Clidemia. In contrast, the initial tan-
nin content was higher in Clidemia than in Cro-
ton (Table 2).



TABLE 2. Initial content of C, N, cellulose, lignin,
and tannins (% of dry mass 6 SE), and the C:N ratio
of Croton and Clidemia leaves.

Constituent Croton Clidemia

C
N
C:N
Cellulose
Lignin
Tannins

46.4 6 0.3
1.91 6 0.05
24.3 6 0.8
22.1 6 0.9
26.4 6 0.5
1.13 6 0.04

45.2 6 0.3
1.25 6 0.04
36.3 6 1.3
12.4 6 1.4

16 6 0.2
1.88 6 0.11

FIG. 2. Mass loss (mean % ash-free dry mass
[AFDM] 6 SE) of Croton and Clidemia leaves during
breakdown in the Cabuyal.

FIG. 1. Nitrogen content (mean % ash-free dry
mass [AFDM] 6 SE) of Croton and Clidemia leaves.

FIG. 3. Mean (6 SE) concentration of ergosterol (A)
and mean (6 SE) conidial production (B) in Croton
and Clidemia leaves.

Leaf breakdown

A rapid mass loss occurred within the first 3
d of immersion (14 and 25% for Clidemia and
Croton, respectively) (Fig. 2). The subsequent
mass loss slowed down for Clidemia during the
following 13 d and then increased. Breakdown
continued to be rapid for Croton. Only 5% of the
AFDM of Croton and 46% of Clidemia remained
after 29 d of immersion. Croton (k 5 0.0651 6

0.0083/d) exhibited a significantly (ANCOVA, p
, 0.001) higher breakdown rate than Clidemia (k
5 0.0235 6 0.0027/d).

Leaf-associated fungi

At the beginning of the study, both leaf spe-
cies contained low amounts of ergosterol (0.12
and 0.06 mg/mg in Croton and Clidemia, respec-
tively) (Fig. 3A). Concentrations then increased
rapidly with peak values of 0.46 and 0.53 mg/
mg AFDM at 10 and 16 d in Croton and Clidemia,



FIG. 4. Mean (6 SE) density (A) and mean (6 SE)
biomass (B) of macroinvertebrates, and cumulative
number of macroinvertebrate taxa (C) colonizing Cro-
ton and Clidemia leaves.

respectively. Peaks in ergosterol occurred at rel-
atively low leaf mass loss (Fig. 2), and were fol-
lowed by rapid ergosterol decreases concomi-
tantly with high leaf mass loss for both species.
Sixteen taxa of aquatic hyphomycetes were
identified from sporulating Croton and Clidemia
leaves (Table 3). Nine of them each contributed

.1% of the total conidial production cumulated
over the study period. Flagellospora curvula In-
gold on Croton and Alatospora acuminata Ingold
and Lunulospora curvula Ingold on Clidemia con-
tributed to .½ of the produced conidia (Table
3). Conidial production on both leaf species fol-
lowed the same temporal pattern as ergosterol,
although with more marked initial increases
and subsequent decreases (Fig. 3B). Peaks of 0.8
and 1.1 conidia mg leaf AFDM21 d21 were
reached on Croton and Clidemia after 10 and 16
d, respectively.

Leaf-associated macroinvertebrates

Both leaf species were rapidly colonized by
macroinvertebrates, reaching 862 and 567 indi-
viduals per leaf bag on Croton and Clidemia, re-
spectively, after only 3 d (Fig. 4A). Peaks of 2290
and 1528 individuals occurred after 10 and 16
d. Both species exhibited the same pattern with
a strong decrease after the early peak in colo-
nization. The average number of individuals
was always higher, although nonsignificantly,
on Croton than on Clidemia (Fig. 4A). Croton sup-
ported the highest biomass of macroinverte-
brates (p 5 0.03), peaking at 78 mg per leaf bag
after 10 d (Fig. 4B). The biomass of organisms
associated with Clidemia showed less variation,
with values ranging from 22 mg after 3 d to 43
mg after 36 d.

Croton had a lower number of taxa than Cli-
demia (Fig. 4C). Macroinvertebrate taxa and their
relative abundances are listed in Table 4. The
assemblage structure of macroinvertebrates on
both leaf types was broadly similar, being com-
posed of Diptera (78.8% on Croton, 64.7% on Cli-
demia), Ephemeroptera (6.6 and 14.9%), Oligo-
chaeta (5.4 and 7.8%), Trichoptera (5.3 and
5.9%), and Coleoptera (3.2 and 5.4%). These 5
taxa represented ;90% of the total numbers.
Chironomidae were predominant at 75.2% and
61.2%, respectively, followed by Leptohyphes (5.8
and 12.8%), Oligochaeta (5.4 and 7.8%), Heter-
elmis (2.9 and 4.9%), and Simulium (2.5 and
2.2%). Figure 5 shows changes in individual
numbers of these 8 dominant taxa during the
course of the study. The number of chironomids
was high by day 3; it then increased to 1870
ind./bag after 10 d on Croton and 1179 ind./bag
after 16 d on Clidemia, and declined thereafter
(Fig. 5F). Simuliids colonized both leaf types
very rapidly; maximum densities were found on



TABLE 3. Relative abundance of identified taxa of aquatic hyphomycetes sporulating on Croton and Clidemia
leaves (% of total conidial production cumulated over the study period).

Taxon Croton Clidemia

Alatospora acuminata Ingold 2.8 27.9
Anguillospora longissima? (Sacc. and Syd.) Ingold ,0.1 ,0.1
Articulospora atra? Descals
Campylospora chaetocladia Ranzoni
Flagellospora curvula Ingold
Heliscella stellata (Ingold and Cox) Marvanová and S. Nilsson
Heliscus submersus Hudson
Heliscus tentaculus Umphlett

,0.1
0.8

48.4
,0.1
10.7

,0.1

,0.1
1.1
4.5

,0.1
7.0

,0.1
Lunulospora curvula Ingold
Mycocentrospora sp.
Nawawia filiformis Nawawi (Marvanová)
Tetracladium marchalianum de Wildeman
Phalangispora constricta? Nawawi and Webster
Tripospermum camelopardus Ingold, Dann and McDougall
Tripospermum sp.
Triscelophorus konajensis? Sridhar and Kaveriappa

13.4
,0.1

2.1
2.0
4.6

13.3
,0.1
,0.1

31.6
,0.1

0.1
0.7

15.5
–

,0.1
,0.1

day 3, and numbers decreased thereafter (Fig.
5H).

The overall functional composition of inver-
tebrate assemblages on Croton and Clidemia was
similar (data not shown). Both leaf types were
dominated by collectors (96 and 93%, respec-
tively) and, to a lesser extent, predators (3.9 and
5%). Shredders represented only 0.2 and 0.8%
on Croton and Clidemia, respectively. On a mass
basis, the same dominance of collectors (71.7
and 69.2% on Croton and Clidemia, respectively),
followed by predators (27.1 and 23.2%), and a
low biomass of both shredders and scrapers
(,5% on both leaf types) were observed.

Discussion

Leaf breakdown

Both leaf species decomposed very rapidly in
the Cabuyal. The breakdown rate of Croton
(0.0651/d) is amongst the highest rates reported
in the literature. Breakdown rates in the Cabuy-
al were generally higher than those reported
from previous studies conducted under com-
parable conditions in other tropical streams
(Dudgeon 1982, Benstead 1996, Dudgeon and
Wu 1999, O’Connor et al. 2000). Similar or even
higher rates have been reported for various tree
leaf species decomposing in Costa Rican
streams (Stout 1980), but these rates were cal-
culated using % leaf area loss, which probably

overestimates mass loss. Our results are thus
consistent with previous observations that leaf
breakdown rates are typically higher in tropical
streams than in temperate ones (Irons et al.
1994, Benstead 1996).

There is some evidence that the high temper-
ature (198C) in our stream played a role in con-
trolling leaf-associated biological activity. When
calculated on a degree-day basis, i.e., eliminat-
ing the effect of temperature, breakdown rates
(0.0034 and 0.0012/degree-day on Croton and
Clidemia, respectively) were similar, although
still slightly higher, to those reported for other
leaf species from mid latitudes (Irons et al. 1994;
EC, unpublished data).

Leaf quality

The fast leaf breakdown observed in our
study may have been caused by differences in
leaf quality related to the initial chemical com-
position and texture of the leaves. Initial mass
loss of both leaf species was higher than that
commonly reported from colder, high-latitude
streams, and is generally attributed to the leach-
ing of soluble compounds. Leaching seems to be
enhanced in tropical streams (Covich 1988).
However, unlike in the present work, previous
studies in tropical streams often used predried
instead of fresh leaves, which can greatly en-
hance leaching (Gessner 1991, Taylor and Bär-



TABLE 4. Relative abundance of macroinvertebrate
taxa associated with Croton and Clidemia leaves (% of
total numbers cumulated over the study period). Co
5 collectors, Shr 5 shredders, Pr 5 predators, Scr 5

scrapers, Pi 5 piercers, ? 5 functional-feeding group
(FFG) unknown, * 5 FFG not determined, – 5 absent.

Taxon Croton Clidemia FFG

TURBELLARIA

Dugesiidae ,0.1 0.2 Pr

OLIGOCHAETA 5.4 7.8 *

MOLLUSCA

Aroapyrgus?
Ancylidae
Physa

,0.1
–

,0.1

0.1
0.2
0.2

Scr
Scr
Scr

ACARINA

Hydracarina 0.7 0.6 Pr

EPHEMEROPTERA

Lachlania
Thraulodes
Leptohyphes
Haplohyphes
Tricorythodes
Americabaetis
Baetodes

0.1
0.1
5.8

–
,0.1

0.4
0.2

0.2
0.4

12.8
,0.1
,0.1

1.0
0.5

Co
Co
Co
Co
Co
Co
Scr

ODONATA

Hetaerina
Brechmorhoga

,0.1
–

0.1
,0.1

Pr
Pr

PLECOPTERA

Anacroneuria 0.1 0.2 Pr

COLEOPTERA

Dryops
Heterelmis
Microcylloepus
Cylloepus
Hexanchorus
Macrelmis
Phanocerus
Xenelmis
Anchytarsus

–
2.9
0.2

–
,0.1

–
–
–
–

,0.1
4.9
0.4

,0.1
,0.1
,0.1
,0.1
,0.1
,0.1

Shr
Co
Co
Co
?
Co
Co
Co
Shr

TRICHOPTERA

Helicopsyche
Atopsyche
Mortoniella
Nectopsyche
Oecetis
Metrichia
Leptonema

–
1.3

,0.1
0.2
0.4

,0.1
0.8

,0.1
1.0

,0.1
0.7
1.0

,0.1
0.8

Scr
Pr
Scr
Shr
Pr
Pi
Co

Smicridea 2.4 2.1 Co

LEPIDOPTERA ,0.1 – Shr

TABLE 4. Continued.

Taxon Croton Clidemia FFG

DIPTERA

Limoniidae
Chironomidae
Ceratopogonidae
Simulium
Chelifera
Hemerodromia
Wiedemannia
Suragina

–
75.2

,0.1
2.5
0.5
0.6

,0.1
–

,0.1
61.2

–
2.2
0.3
1.0

–
,0.1

Pr
Co
Pr
Co
Pr
Pr
Pr
Pr

Total number of taxa
Total number of

organisms
30

17,325
39

14,965

locher 1996). In our study, therefore, processes
other than leaching better explain the mass loss
during the initial stages of leaf breakdown. The
faster breakdown of Croton relative to Clidemia
was correlated with a higher initial N content,
which translates into a lower C:N ratio and fast-
er colonization by fungi. Such relationships
were also noted by Kaushik and Hynes (1971),
Suberkropp et al. (1976), Pearson and Tobin
(1989), and Stout (1989).

Tannins, which are considered to be defensive
compounds against microbial colonization
(Stout 1989), were initially lower in the Croton
leaves. Although questionable in some situa-
tions (Campbell and Fuchshuber 1995), an in-
hibitory effect of tannins has commonly been
reported (e.g., Cameron and LaPoint 1978). Dif-
ferences in tannin concentrations of 10 leaf spe-
cies decomposing in a Costa Rican stream were
apparently responsible for differences in leaf
breakdown rates that spanned one order of
magnitude (table 2 in Irons et al. 1994). The tan-
nin content of Clidemia and Croton was relatively
low when compared with other tropical leaf
species (Stout 1989), which suggests that tan-
nins played a minor role in the observed differ-
ence in breakdown of these 2 species.

The higher lignin content of Croton relative to
Clidemia did not translate into a slower break-
down for this species, although lignin is one of
the best indicators of leaf breakdown (Gessner
and Chauvet 1994). Despite their higher lignin
content, Croton leaves had thinner cuticles and
a softer texture, which led to a mode of leaf dis-
integration contrasting to that of Clidemia. The
rapid maceration of Croton leaves, combined



with the turbulent water flow, continuously re-
leased FPOM. In Clidemia, the epidermis peeled
off and the leaf tissue was divided into layers,
and thus was retained longer within the leaf
bags.

Contribution of fungi

Fungal biomass and activity associated with
decomposing leaves has rarely been assessed in
tropical streams. Our study showed that leaf lit-
ter was rapidly colonized by fungi, attaining a
biomass (as ergosterol) as high as in temperate
streams (Gessner 1997, Gessner et al. 1997). The
conidial production of aquatic hyphomycetes
also was high and followed the same temporal
pattern as reported for temperate streams (Ges-
sner 1997). This result suggests that aquatic hy-
phomycetes dominated fungal assemblages in
the present tropical stream as they do in tem-
perate ones. Consequently, the ergosterol-to-bio-
mass conversion factor determined for this
group of fungi (5.5 mg/g fungal dry mass; Ges-
sner and Chauvet 1993) is applicable to our
study. Calculations showed that fungal biomass
attained 8.4 and 9.6% of the detrital mass of Cro-
ton and Clidemia leaves, respectively, falling
within the range determined for medium- to
fast-decomposing leaf species in temperate
streams (Gessner 1997).

Croton exhibited peaks in fungal biomass and
sporulation after only 10 d, i.e., by the time ⅓

of the leaf mass had disappeared, a finding sim-
ilar to those reported for other fast-decompos-
ing leaf species such as alder in temperate
streams (Gessner 1997). The peak for Croton
may have occurred even earlier because of the
rapid mycelial development by these fungi
(Suberkropp 1991) and may have been missed
by our sampling schedule, explaining why at 10
d fungal biomass was slightly lower for Croton
than Clidemia. Calculations based on an average
fungal growth efficiency of 0.35 (net production
efficiency from table 3 in Suberkropp 1991) in-
dicated that fungal biomass at 10 d on Croton
and 16 d on Clidemia contributed from 72% to
. 100% of leaf mass loss, respectively. The latter
estimate obviously indicates some imprecision
in our determinations or the growth efficiency
coefficient, or the use of non-leaf organic matter
by fungi. Overall, these high values suggest that
fungi incorporated a major part of the leaf litter
during early breakdown. The pronounced in-

crease in leaf-associated N is an indication that
fungi also were involved in N immobilization.

Overall, the composition of the fungal assem-
blage was similar to that found in Puerto Rico
(Padgett 1976, Santos-Flores and Betancourt-Ló-
pez 1997) and, to a lesser extent, southern Asia
(Sridhar and Kaveriappa 1988, Au et al. 1992).
Leaf-associated fungal assemblages of our study
included several aquatic hyphomycete species
with typical tropical distributions (Hyde 1997).
In terms of conidial production, fungal assem-
blages, however, were dominated by 3 wide-
spread species commonly found in temperate
streams: Alatospora acuminata, Flagellospora cur-
vula, and Lunulospora curvula (Webster and Des-
cals 1981). Apart from the tropical species, the
fungal assemblages were thus close to those
found in subtropical southeastern North Amer-
ica (Suberkropp and Chauvet 1995) and sum-
mer assemblages in temperate lowland rivers
(Chauvet 1991). The stable and moderately high
water temperature prevailing in the Cabuyal
was close to that occurring in these subtropical
and temperate regions, at least in some seasons,
suggesting that temperature may influence
aquatic hyphomycete assemblages in a similar
way among different geographic regions. This
finding provides further indication that temper-
ature is a prime factor in the spatial and tem-
poral dynamics of these aquatic fungi (Suberk-
ropp 1984, Gessner et al. 1993).

Role of macroinvertebrates

In contrast to fungi, macroinvertebrates ap-
peared to play a minor role in leaf breakdown
in our study stream. Although numerically
abundant, they represented a moderate biomass
that never exceeded 40 mg/g leaf mass. They
colonized leaf litter rapidly, however, which is
in accordance with observations made by Dud-
geon (1982) in Hong Kong and Stewart (1992)
in South Africa. The high initial occurrence of
aquatic invertebrates appeared associated with
leaf fungal dynamics. For instance, Croton
leaves, which exhibited the fastest breakdown
and fungal colonization and the highest N ac-
cumulation, also supported the fastest and high-
est colonization by macroinvertebrates. This re-
sult indicates that Croton was probably more
palatable than Clidemia. However, Clidemia, re-
quiring a longer breakdown time and thus pro-
viding a more durable substrate for the benthic
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FIG. 5. Mean (6 SE) density of dominant macroinvertebrate taxa colonizing Croton and Clidemia leaves. A.—
Atopsyche. B.—Nectopsyche. C.—Oecetis. D.—Leptohyphes. E.—Heterelmis. F.—Chironomidae. G.—Simulium. H.—
Oligochaeta.

fauna, supported a more diverse macroinverte-
brate assemblage. Four of the 5 dominant taxa
(i.e., Chironomidae, Leptohyphes, Heterelmis, and
Simulium), which constituted 86.4 and 81.1% of
the total fauna colonizing Croton and Clidemia
leaves, respectively, belong to the collector feed-
ing group. Shredders, mainly represented by the
genus Nectopsyche, accounted for only 0.2 and
0.8% of the total macroinvertebrate assemblage
on Croton and Clidemia, respectively. The same
patterns have been reported in other studies in
tropical streams (Benstead 1996, Pringle and Ra-
mı́rez 1998, Rosemond et al. 1998, Dudgeon and
Wu 1999).

Collectors, which feed on FPOM, are not able
to directly participate in the rapid breakdown
of leaves. They use leaf litter as a substratum
and leaf fragments as a food resource. Using ar-
tificial and natural leaf packs, Richardson (1992)
and Dudgeon and Wu (1999) concluded that
leaves are principally used as a food source, al-
though some collectors colonized artificial
leaves. In our study, Simulium clearly used
leaves as a substratum. Leptohyphes, Heterelmis,
and Americabaetis collected fine suspended sol-
ids retained on leaf surfaces together with leaf
decomposition products. Similarly, scrapers
such as gastropods, which feed on biofilm, used
leaves as traps for algae and FPOM. Leaves in
this tropical stream thus have a triple function,
depending on the invertebrate taxa and the state
of leaf breakdown: they acted as a substratum,
a trap for drifting FPOM and sediment, and a
source of C and nutrients.

The low proportion of shredders indicated
that these animals only weakly influenced the
breakdown of both leaf species. Assuming a rel-
atively high consumption rate of 1.0/d (e.g.,
Hieber and Gessner 2002) and applying it to the
peak shredder biomass, i.e., 2.6 and 3.0 mg/g
leaf mass for Clidemia at 43 d and Croton at 29
d, respectively, the contribution of shredder
feeding activity would be 0.26 to 0.30% of leaf
mass loss per day. Such a low rate, i.e., 0.0026
to 0.0030/d, explains a minor part of total leaf
mass loss (0.0235–0.0651/d), even during late
stages of breakdown. Predators like Brechmor-

hoga (Odonata), Oecetis (Trichoptera), and Ana-
croneuria (Plecoptera) may have influenced leaf
breakdown indirectly by affecting shredders
(Oberndorfer et al. 1984, Malmqvist 1993), but
this effect was probably limited because of the
low abundance of predators (,5% of total num-
ber of macroinvertebrates).

Given that the food base of many tropical
macroinvertebrates remains partly unknown,
we cannot preclude that several invertebrates
presently categorized as collectors or scrapers
may actually behave as shredders during some
stages or periods. Such opportunistic feeding
behavior and shifts in food regime are not typ-
ical of tropical streams, but they appear to be
in line with Covich’s (1988) conclusions about
the dominance of generalized consumers in
food webs of small neotropical streams. Several
chironomids that accumulated on the leaves had
a visible mining influence and, although not
considered to be shredders, may have partici-
pated in leaf fragmentation (Rosemond et al.
1998). A similar exploitation of decomposing
leaves by tubificid Oligochaeta has been report-
ed from a temperate river (Chauvet et al. 1993).

In conclusion, our results suggest that inver-
tebrate-mediated leaf breakdown in our tropical
study stream was low, especially in comparison
with that occurring in streams at higher lati-
tudes. In contrast, aquatic hyphomycetes devel-
oped abundantly on leaves, suggesting that
these fungi were important in litter breakdown,
similar to temperate streams. These observa-
tions partially support previous hypotheses and
findings regarding latitudinal patterns in leaf
litter breakdown (Irons et al. 1994), i.e., both low
shredder involvement and high microbial pro-
cessing at low latitude. Whether the only mod-
erately high temperature related to the high el-
evation of our study stream limited fungal de-
velopment (peak fungal biomass , 10%) is un-
known. However, even at the high temperatures
prevailing in lowland tropical streams, we ex-
pect fungal biomass not to exceed the high val-
ues reported for fast-decomposing leaf species
in cold, high-latitude streams (e.g., 16% of leaf
detrital mass; Gessner 1997). Future research



should examine the specific effect of tempera-
ture on microbial leaf decomposition. In this re-
spect, the role of bacteria, which could be more
sensitive to temperature than fungi, deserves
particular attention.
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