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A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-
shifted feedback, is studied experimentally and numerically in a chaotic regime. Precise control of
the reinjection strength and detuning permits to isolate a parameter region of bounded-phase chaos,
where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase
and intensity oscillations. Robust experimental evidence of this synchronization regime is found
and phase noise spectra allows to compare phase-locking and bounded-phase chaos regimes. In
particular, it is found that the long-term phase stability of the master oscillator is well transferred
to the opto-RF oscillator even in the chaotic regime.

Dual-frequency lasers (DFL) are convenient systems
for the generation of continously tunable, high spec-
tral purity, optically carried radiofrequency (RF) sig-
nals. Driven by applications such as microwave-photonic
links, from radio-over-fibre to antenna feeds [1, 2], or
highly monochromatic THz generation [3], many solid-
state DFLs have been investigated recently. This includes
for instance diode-pumped solid-state lasers [4, 5], laser
diodes [6, 7], vertical external-cavity surface-emitting
lasers (VECSEL) [8], fiber lasers [9, 10], or dual-axis cav-
ities [11, 12]. A general issue concerning DFL-based opto-
RF oscillators is the stabilization of their beat frequency,
and it has been shown that an optical feedback loop con-
taining a frequency-shifting element can be successfully
used to this end [13, 14]. In particular, the DFL beat-note
can be phase-locked to a master RF oscillator, so that the
frequency stability of the master is transferred to the op-
tically carried signal. In this context, an interesting syn-
chronization regime called bounded-phase has been iso-
lated [15, 16], where the phase-locked state loses stability
via a Hopf bifurcation. After the bifurcation, the system
displays sustained amplitude and phase oscillations. The
master and slave oscillators are not phase-locked any-
more, yet they maintain frequency-locking [17, 18]. Be-
ing linked to the existence of a Hopf bifurcation, this
behavior is rather generic [19–21].

In the present work, we consider a DFL submitted
to frequency-shifted feedback, i.e., an opto-RF oscilla-
tor, driven in a parameter region where it undergoes a
subcritical bifurcation leading directly to a chaotic state,
and investigate whether this situation is compatible with
bounded-phase dynamics. Synchronization of chaotic
lasers has already been studied, e.g. in spatially cou-
pled [22, 23] and injection locked [24] Nd:YAG, injection-
locked Nd:YVO4 [25], injection-locked diode [26–28], as
well as gas [29], lasers. In those systems each laser’s out-
put was chaotic per se, and the coupling had a regular-
izing effect, by inducing either phase or complete chaos
synchronization. The case studied here is different in that
our opto-RF oscillator is not, in itself, a chaotic oscilla-
tor. In the free-running regime, it has a regular behavior;

it is the coupling that is responsible for the outbreak of
chaos. Furthermore, in the cited previous studies, the au-
thors were mostly interested in showing that synchroniza-
tion occurred, without characterizing and discriminating
phase-locking and bounded-phase regimes. In the present
case, the heterodyne nature of our source readily offers
experimental access to the phase difference, while in the
previous works the phase had to be retrieved numeri-
cally from intensity time series [23, 24, 27]. By measur-
ing phase noise spectra, in DFLs it is possible to obtain a
precise experimental characterization and a quantitative
comparison of the different synchronization regimes. The
aim of this letter is to show a regime characterized by
chaotic oscillations not only of the amplitude, but also
of the phase, and to demonstrate experimentally that
frequency-locking can be maintained, i.e., that bounded-
phase synchronization is possible also in the presence of
chaos. Furthermore, we show that, in spite of the chaotic
phase oscillations, the beat-note signal still keeps a good
spectral purity at low offset frequencies.

FIG. 1. Experimental setup. The two polarization modes of
a dual-frequency laser produce an optically-carried RF beat-
note, which is locked to a master oscillator using frequency-
shifted optical feedback. See text for details.

The experimental setup is similar to the one used
in [17] and is described in Fig. 1. We study a solid-
state Nd3+:YAG laser oscillating simultaneously on two
orthogonally-polarized modes. An intra-cavity tunable
birefringence, realized using two quarter-wave plates
(QWP), generates a frequency difference δν = νy − νx.
The interference of the two polarization modes after
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FIG. 2. Map of different regimes of the system. Light gray:
bounded phase (existence of at least a stable limit cycle for
which φ is bounded), black: existence of at least one un-
bounded chaotic attractor, red: existence of bounded chaos.
Dashed line Γ = 0.91 is the line along which the bifurcation
diagram of Fig. 3 is computed.

a polarizer P produces an optically-carried RF beat-
note, which we choose to tune around 180 MHz. We
then add an external coupling between the two modes,
through a reinjection of the field Ex on the other one Ey,
achieved using an external arm containing a QWP. Fur-
thermore, the reinjected field is frequency-shifted using
an acousto-optic modulator AO driven at the frequency
fAO ≈ 90 MHz by a master RF oscillator. Provided that
νx + 2fAO ≈ νy, injection from Ey into Ex can be ne-
glected because the frequency difference between νx and
νy + 2fAO is much larger than the cavity bandwith. The
optical coupling between the two modes is characterized
by its strength (related to diffraction efficiency of the
modulator, spatial mode-matching of the external cav-
ity and other experimental factors) and by the detuning
δν−2fAO between the RF source and the laser beat-note.
The laser exhibits relaxation oscillations at a frequency
fR = 65 kHz, which allows to ignore delay effects in
all optical paths, as this time scale is much longer than
the round-trip time in the feedback arm, whose length is
70 cm.

We describe the system using the following rate equa-
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FIG. 3. (a) Simulated bifurcation diagram of phase extrema
for Γ = 0.91. Final state at each point is taken as the initial
conditions for the next point, as ∆ is increased. The largest
Lyapunov exponent is computed for each point and plotted
as the solid black line. (b) Projection of the phase space
trajectory on the {<(ey),=(ey)} = {|ey| cosφ, |ey| sinφ} plane
for different regimes encountered (dark: 50000 time units,
light: 2000).

tions for the electric fields and populations [30]:

dex
ds

=
mx + βmy

1 + β

ex
2

(1a)

dey
ds

=
my + βmx

1 + β

ey
2

+ i∆ey + Γex (1b)

dmx,y

ds
= 1− (|ex,y|2 + β|ey,x|2)

− εmx,y[1 + (η − 1)(|ex,y|2 + β|ey,x|2)]

(1c)

Here ex,y are the normalized amplitudes of the
two complex fields Ex = ex exp(2iπνxt) and Ey =
ey exp(2iπ(νx+2fAO)t). According to these equations, ex
has a constant phase, and can thus be considered without
loss of generality as a real quantity, so that only the phase
φ of ey corresponds to the relative phase between the
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two oscillators. The normalized population inversions are
mx,y, and the normalized time s = 2πfRt is in units of the
relaxation oscillations fR. β accounts for cross-saturation
due to the spatial overlap in the gain medium, ε for the
gain medium losses, η is the pump factor, Γ quantifies
the self-injection strength, and ∆ = (νy− νx− 2fAO)/fR
is the detuning between the laser beat-note and the RF
driver. Without loss of generality, we consider ∆ > 0.

Eqs. 1 are numerically integrated using an implicit
Runge-Kutta method of order 5. Control parameters are
∆ and Γ while the others are fixed to β = 0.6, η = 1.2
and ε = 0.097. These values have been previously mea-
sured [30] and allow good model-experiment agreement.
A mapping of the behavior of this dynamical system
has been computed, unraveling chaotic, periodic, phase-
bounded and phase-unbounded attractors, sometimes ex-
hibiting multistability and fractal attraction basins.

Figure 2 shows some of these features in a rich region
of interest. Between the locking range ∆ < Γ, where the
system reaches an equilibrium, and the unlocked region
for ∆ � Γ, where the system settles on a limit cycle,
various attractors exist and co-exist. It can be noted
from this mapping that the domains of bounded phase
behavior and of stability of any attractor other than fixed
point are neither simple rednor connected. It can also be
noted that bounded-phase chaos, corresponding to the
red points, is present only in small regions of the param-
eter space; nevertheless, as we will see, it can be clearly
isolated experimentally.

Figure 3 shows a higher definition slice of the map at
Γ = 0.91. On this phase bifurcation diagram, bounded
phase regions are clearly seen, and different types of at-
tractors are encountered as ∆ changes. Starting from
the right, for ∆ > 1.02, the system settles on a stable
periodic orbit, which corresponds to the bounded phase
regime (B). As ∆ decreases and approaches the resonance
with the relaxation oscillations, a Neimark-Sacker bifur-
cation leads to a torus, which is destabilized by other
bifurcations in the multistable 0.97 < ∆ < 1.01 region,
where periodic and chaotic (C) attractors can be found.
When ∆ is further decreased away from resonance, the
torus (T) is restored, before its chaotic break-up near the
locking limit ∆ = Γ. In this particular region the phase
remains bounded for a small range of detuning, where
we witness a robust bounded-phase chaos regime (BC).
Ultimately at the locking point, a subcritical Hopf bi-
furcation changes the stability of the fixed point, which
becomes the only attractor in the phase space.

Knowing the parameters where it is supposed to arise,
the previously unobserved bounded phase chaos could
be investigated experimentally. Reinjection strength has
been adjusted so that unlocking happens for δν−2fAO =
0.9fR, thus ensuring Γ = 0.9. Then detuning has been
carefully set just after unlocking point, so that ∆ ' Γ.
Time series of length 100 ms were recorded at a sam-
pling rate of 10 MHz with a Rohde & Schwarz FSV sig-

FIG. 4. (a) Experimental phasor plot in the chaotic bounded
phase regime (light: 100ms, dark: 10ms). (b) Correspond-
ing time series of the intensity (

√
I2 +Q2, blue lower trace)

and phase (φ, top red). I and Q are the two quadra-
tures of the beat signal Ixy = |Ex + Ey|2 = |ex|2 + |ey|2 +
2|exey| cos(2fAOt + φ), demodulated at the reference fre-
quency 2fAO, so that I = 2|exey| cosφ and Q = 2|exey| sinφ.
The phase φ has the same meaning as the one in Fig 3b.

nal analyzer, performing IQ demodulation at 2fAO, thus
allowing for a direct measurement of the quadratures of
the beat-note signal, and of the relative phase. Results
are shown in figure 4, where we see a complicated tra-
jectory in the IQ plane, corresponding to the projection
of a strange attractor. The important point is that the
trajectory never makes a loop around the origin, so that
the phase variations, albeit chaotic, are relatively small.

Fig. 4 (b) presents a small portion of the measured
time series, showing a spiking behavior, similar to the
one expected from numerical simulations. The repetition
rate looks quite regular, but the amplitude of the spikes
is erratic. The phase, quickly increases during the spike
then decreases before the next one, but as it remains
bounded, the mean frequency of the opto-RF oscillator
remains synchronized to the external RF source.

But it is worth asking if we still have a good oscilla-
tor. For instance, it has been previously shown that even
in the bounded phase regime, the quality and long-term
stability of the master reference was transferred on the
optical carrier [17]. This can be quantified by computing
the power spectral density (PSD) of the relative phase.
Experimental phase spectra extracted from the quadra-
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FIG. 5. Experimental phase noise for different regimes at
Γ ≈ 0.9 (black: unlocked, blue: locked, green: bounded, red:
bounded chaos).

ture time series are presented in Fig. 5. It can be seen
that the onset of chaos results in a broadening of the spec-
tral peak around 50 kHz, corresponding to the value of
∆, and of its harmonic at 100 kHz. A broad peak at low
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FIG. 6. Simulated phase noise spectrum for different regimes
at Γ = 0.9 (black: drifting ∆ = 1.8, blue: locked ∆ = 0.8,
green: bounded ∆ = 1.1, red: bounded chaos ∆ = 0.91).
Computed by replacing η with η(1 + 0.03ξ(s)), ∆ by ∆(1 +
0.03ξ(s)) and Γ by Γ(1 + 0.03ξ(s)) where ξ(s) is the same
stochastic Gaussian process.

frequency, around 5 kHz, also appears. Comparing with
the time series in Fig. 4, it can be seen that this peak cor-
responds to the average repetition rate of the spikes. In
this part of the phase spectrum, bounded chaos features
a higher phase noise level than all other curves, but it
still outperforms clearly the free running laser at low fre-
quency. In particular, we see that the low frequency part
of the spectrum is flat, leading to a phase noise at 100 Hz
from the carrier which is comparable to the level of the
phase-locking regime, and at least 30 dB lower than the
unlocked regime. Comparing with the free-running case,
it appears clearly that in bounded-phase chaos the long-
term synchronization of the mean value of the phase is
well preserved.

For a qualitative comparison, the phase noise spectrum

was computed from the numerical model, by introducing
arbitrary gaussian white noise in the parameters η, ∆
and Γ. The results, shown in Fig. 6, are in good qual-
itative agreement with experiments. At 100 Hz from
the carrier, the simulated phase noise is lower for the
phase-locking than for bounded-phase chaos, contrary to
the experiments. This suggests that we have reached
the noise floor of the experimental detection system. In
any case, the simulations confirm the main features of
the phase noise spectrum in the bounded-phase chaotic
regime: a broadening of the peak corresponding to the
detuning frequency, and of its harmonics; the appearance
of a large, continuous component in the region between
around 1 kHz and 20 kHz, corresponding to the chaotic
oscillations; and, most importantly, a flat spectrum in
the 100 Hz−1 kHz region, with a noise level that is quite
close to the phase-locking level, and in any case much
lower than for the unlocked case. In short, it is confirmed
that, when bounded-phase chaos occurs, synchronization
is well preserved. A more quantitative agreement with
the experiment would require a precise characterization
of the noise sources of the experimental setup, beyond
the scope of this work.

In summary, we have presented experimental evidence
of bounded-phase chaos in a driven opto-RF oscillator
destabilized by optical feedback. By measuring the phase
noise spectra, we have shown that, in spite of this, the
long-term phase stability of the master oscillator is still
well transferred to the slave opto-RF oscillator. These
features are well reproduced using a rate equation model.
As it is the case for the non-chaotic bounded-phase
regime [17], we can expect these features to be common
to a large class of systems. In particular, the effects of the
Henry factor and of the feedback delay on this regime de-
serve to be investigated in opto-RF oscillators using semi-
conductor lasers [31], for which chaotic sensing has been
widely demonstrated [32]. The so-called chaotic lidar [33]
takes advantage of broadband chaos to achieve position
sensing with a high resolution. Bounded-phase chaos, by
imposing a good phase coherence to the chaotic wave-
form, will allow to combine this precise position sensing
with the high resolution velocimetry allowed by phase
coherence [34], i.e. to realize a chaotic lidar-radar.
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