Lower prevalence but similar fitness in a parasitic fungus at higher radiation levels near Chernobyl

To cite this version:
Gabriela Aguileta, Helene Badouin, Michael E Hood, Anders Pape Møller, Stephanie Le Prieur, et al.. Lower prevalence but similar fitness in a parasitic fungus at higher radiation levels near Chernobyl. Molecular Ecology, Wiley, 2016, 10.1111/mec.13675. hal-01332154

HAL Id: hal-01332154
https://hal.archives-ouvertes.fr/hal-01332154
Submitted on 16 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lower prevalence but similar fitness in a parasitic fungus at higher radiation levels near Chernobyl

GABRIELA AGUILETA,*† HELENE BADOUIN,*† MICHAEL E. HOOD,† ANDERS P. MØLLER,* STEPHANIE LE PRIEUR,* ALODIE SNIRC,* SOPHIE SIGUENZA,‡ § TIMOTHY A. MOUSSEAU,¶ JACQUI A. SHYKOFF,* CHRISTINA A. CUOMO,** and TATIANA GIRAUD*

*Ecologie Systématicque Evolution, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France, †Biology Department, Amherst College, Amherst, MA 01002, USA, ‡INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan F-31326, France, §CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan F-31326, France, ¶Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA, **Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

Abstract

Nuclear disasters at Chernobyl and Fukushima provide examples of effects of acute ionizing radiation on mutations that can affect the fitness and distribution of species. Here, we investigated the prevalence of *Microbotryum lychnidis-dioicae*, a pollinator-transmitted fungal pathogen of plants causing anther-smut disease in Chernobyl, its viability, fertility and karyotype variation, and the accumulation of nonsynonymous mutations in its genome. We collected diseased flowers of *Silene latifolia* from locations ranging by more than two orders of magnitude in background radiation, from 0.05 to 21.03 μGy/h. Disease prevalence decreased significantly with increasing radiation level, possibly due to lower pollinator abundance and altered pollinator behaviour. Viability and fertility, measured as the budding rate of haploid sporidia following meiosis from the diploid teliospores, did not vary with increasing radiation levels and neither did karyotype overall structure and level of chromosomal size heterozygosity. We sequenced the genomes of twelve samples from Chernobyl and of four samples collected from uncontaminated areas and analysed alignments of 6068 predicted genes, corresponding to 1.04 × 10^7 base pairs. We found no dose-dependent differences in substitution rates (neither dN, dS, nor dN/dS). Thus, we found no significant evidence of increased deleterious mutation rates at higher levels of background radiation in this plant pathogen. We even found lower levels of nonsynonymous substitution rates in contaminated areas compared to control regions, suggesting that purifying selection was stronger in contaminated than uncontaminated areas. We briefly discuss the possibilities for a mechanistic basis of radio resistance in this nonmelanized fungus.

Keywords: bumblebees, butterflies, genomic degeneration, melanin, *Microbotryum violaceum*, positive selection, red pigment

Received 14 December 2015; revision received 4 April 2016; accepted 15 April 2016

Introduction

Natural levels of radioactivity on Earth vary by more than 1000-fold, and such spatial heterogeneity suffices to create highly contrasting exposure rates to organisms across environmental conditions. Levels of background ionizing radiation (hereafter radiation) have decreased by a factor of ten since terrestrial life first originated in the pre-Cambrian (Karam & Leslie 2005). Fluctuations in natural levels of radiation due to solar flares, supernovae and gamma ray bursts, and large meteor impacts in Mexico, India, Russia and other sites likely caused...
the release of vast amounts of radioactive material on Earth (e.g. Alvarez et al. 1980). Such fluctuations may have contributed to current levels of resistance to radiation damage in free-living organisms. Today, typical background radiation dose rates vary from low values of only 0.01 to 0.10 μSv/h, with the natural level in Chernobyl before the nuclear accident being 0.01–0.03 μSv/h (Ramzaev et al. 2006). There are many high-radiation sites in the oceans, with thermal vents being a well-known example (e.g. Fiala-Méndioni et al. 1986; Cherry et al. 1992; Jollivet et al. 1995). Maximum terrestrial levels of radioactivity reach 29.7 μSv/h in Ramsar, Iran (Ghiassi-Nejad et al. 2002).

Mutations are changes in genomic sequences of DNA that may occur as a consequence of imperfect repair of single or double strand breaks (Lehman 2006; von Sonntag 2010). Radiation was first shown to be a powerful mutagen in classical laboratory experiments almost a century ago (Nadson & Philippov 1925; Muller 1954; UNSCEAR 1988; National Academy of Sciences – Natural Resources Council. Committee on the Biological Effects of Ionizing Radiation. BEIR V. 1990). However, it is less well known how natural variation in levels of background radiation influence mutation rates in nature (e.g. Forster et al. 2002; meta-analysis in Møller & Mousseau 2013). Such naturally occurring mutations are an important source of novel genetic variation that forms the raw material for evolution (Hartl 1988), but both germline and somatic mutations may also cause genetic diseases, including cancer, and impose a ‘genetic load’ on fitness (Lynch & Gabriel 1990).

Fungi show extraordinary abilities to cope with ionizing radiation. For example, microfungi associated with thermal vents can live under extremely high-radiation levels (e.g. Shravage et al. 2007; Charmasson et al. 2009). Several microfungi from irradiated areas are directly attracted by radionuclides (positive radiotropism), being able to grow on ‘hot particles’ and even degrade them (Zhdanova et al. 2004). Furthermore, ionizing radiation may have a positive stimulatory effect on spore germination (Tugay et al. 2006). Indeed, ionizing radiation promotes growth of some fungi that produce the polymer melanin, transferring electrons to melanin and potentially even exploiting redox properties to transduce energy for cell metabolism (Dadachova et al. 2007; Dadachova & Casadevall 2008). Thus, most radio-resistant fungi have been found so far to differ from non-radio-resistant species in their level of accumulation of intracellular melanin (Dadachova et al. 2007; Khajo et al. 2011; Tugay et al. 2011).

The nuclear accident at Chernobyl on 26 April 1986 was followed by research providing extensive evidence of somatic and germline mutations in plants (e.g. Kovalchuk et al. 2000) and animals (e.g. Ellegren et al. 1997). However, because Chernobyl was a single event, comparing current Chernobyl populations with nonirradiated nearby populations is insufficient to attribute any difference to radiation. For statistical tests of the effect of radiation, one has either (i) to correlate traits with radiation levels in the field across a range of radiation severities or (ii) to show that a trait has changed in Chernobyl after the nuclear disaster but has not changed in nonirradiated areas nearby (Møller & Mousseau 2006). Genetic damage from 45 studies of 30 species revealed a mean effect size of 0.67 measured as Pearson’s product-moment correlation coefficient, with radiation level accounting for 44.3% of the variation in mutation rate (Møller & Mousseau 2015). This effect size is one of the largest ever recorded in ecological sciences. Although there was consistency within species in effect size (i.e. significant repeatability), there was significant heterogeneity among species, with no evidence of phylogenetic signal nor any clear ecological predictors of effect size variation (Møller & Mousseau 2015).

The predicted effects of radiation exposure include chromosomal aberrations (Wang et al. 1990; Møller & Mousseau 2013), an increased substitution rate due to damaged DNA (Martincorena & Campbell 2015) and, as a probable consequence, an increased rate of deleterious mutations (Premi et al. 2009; Møller & Mousseau 2013). Karyotype analysis is one way to assess chromosomal damage. Several studies have reported chromosomal aberrations following exposure to high-radiation levels (Kochupillai et al. 1976; Wang et al. 1990; Chen & Wei 1991; Cheriyann et al. 1999; Jiang et al. 2000; Hayata et al. 2004; Møller & Mousseau 2013). Such changes in genome structure commonly lead to irregularities of chromosome pairing and segregation during the meiotic divisions, with consequences for the viability of the haploid, gametic stage of the life cycle (Gillies 1989). Computational analysis of genes and genomes of organisms exposed to excessive radiation, typically as a result of a nuclear disaster, such as those experienced in Chernobyl and Fukushima, is another way to reveal signatures of increased mutation rates (looking at dS, the synonymous substitution rate) or of amino-acid substitution rates (dN, the nonsynonymous substitution rate), the latter often having deleterious effects (Møller & Mousseau 2013, 2015). In addition, increased rates of deleterious substitutions (i.e. genomic degeneration) can be expected, in particular in organisms showing decreased effective population sizes due to high mortality rates in irradiated areas (Woolfit & Bromham 2005). Increased rates of deleterious substitutions can be detected by increased ratios of nonsynonymous to synonymous rates of substitutions, represented as dN/dS (Anisimova & Liberles 2012; Fontanillas et al. 2015). On
the other hand, selection may be stronger in irradiated areas if radiation is a source of physiological stress (Møller 1993, 2002; Ellegren et al. 1997; Møller & Mousseau 2001, 2003; Møller et al. 2005a,b, 2012, 2013), thereby purging deleterious mutations and reducing detected ratios of nonsynonymous to synonymous rates of substitutions (i.e. lower dN/dS ratios). Some cases of possible adaptation to radiated conditions in Chernobyl have even been reported (Moller & Mousseau 2016).

Although radionuclide accumulation has been investigated in fungi, in particular in edible and mycorrhizal fungi (Mascanzoni 2001; Mietelski et al. 2010; Gwynn et al. 2013), few studies have investigated the effect of contamination in Chernobyl on the abundance and fitness of fungi from the contaminated environments (Moller & Mousseau 2013, 2015), with a few exceptions (Tugay et al. 2006; Dadachova & Casadevall 2008). Certain fungi were found to cope very well with these high-radiation levels, some even thriving in the defunct Chernobyl nuclear reactor (Zhdanova et al. 2000; Dadachova & Casadevall 2008). Fungi are good models for studying genomic consequences of radiation because they have small genomes that can easily be fully sequenced (Gladieux et al. 2014), and some are easy to grow in vitro, allowing viability and fertility measures. In addition, they play important ecological roles as pathogens, mutualists or decomposers.

Here we investigated consequences of the Chernobyl disaster on a plant pathogenic fungus. Microbotryum lychnidis-dioicae is a fungus causing anther-smut disease on the dioecious white campion, Silene latifolia. The pathogen castrates the plant by producing its spores in place of pollen in anthers of male flowers while aborting ovaries and inducing spore-bearing anthers in female flowers. Spores are transmitted to healthy flowers by pollinators (Roche et al. 1995), and insect abundance has been shown to decrease dramatically with radiation level in Chernobyl (Moller & Mousseau 2009). Microbotryum lychnidis-dioicae is highly selfing, undergoing mostly intratrad mating (Hood & Antonovics 2000; Giraud et al. 2005; Zakharov 2005), and is therefore highly homozygous (Giraud 2004; Vercken et al. 2010). Microbotryum lychnidis-dioicae is a model organism in ecology and evolution (Antonovics et al. 2002; Bernasconi et al. 2009), and a reference genome has been published recently (Badouin et al. 2015; Perlin et al. 2015). Previous studies based on microsatellite markers and gene sequences revealed a strong population structure in M. lychnidis-dioicae at the European scale, with three main clusters corresponding to glacial refugia, in Western Europe, the Italian peninsula and Central–Eastern Europe, respectively (Vercken et al. 2010; Gladieux et al. 2011). Therefore, we used fungal strains from the Central–Eastern European genetic cluster but not near the Chernobyl area as control strains from noncontaminated areas to avoid biases due to population structure.

The objectives of this study were to (i) assess anther-smut disease prevalence in S. latifolia in relation to pollinator abundance and radiation levels in the field; (ii) estimate deleterious effects of radiation in M. lychnidis-dioicae samples from Chernobyl, in terms of spore viability and fertility, karyotype variation and nonsynonymous substitution rates; and (iii) test whether some genes evolve under positive selection specifically in Chernobyl populations. For the second goal of estimating deleterious effects of radiation, we estimated rates of haploid cell viability following meioses from diploid teliospores, karyotypic variation and genomewide ratio of nonsynonymous to synonymous mutations. Mutation rates were estimated by sequencing the genomes of twelve strains from irradiated areas, and the genomes of four strains from the same Central–Eastern European genetic cluster from uncontaminated areas (Vercken et al. 2010; Gladieux et al. 2011). More specifically, we tested whether dN, dS or dN/dS were significantly higher in contaminated regions and whether a significant correlation between dN, dS or dN/dS and radiation level in the field could be detected. Given the huge effect size of Chernobyl radiation on mutation rates (Moller & Mousseau 2015), elevated mutation rates should be detectable in whole genome sequences.

Materials and methods

Data sampling in Chernobyl

We recorded pollinator abundance (butterflies and bumblebees) and anther-smut disease prevalence in Silene latifolia in Chernobyl during fieldwork at 16 different sites inside and just outside the Chernobyl exclusion zone during 2010–2015 (Table S1, Supporting information, Fig. 1). We surveyed more than 30 study sites across the Chernobyl exclusion zone and the surroundings. Each study site was checked for the presence of caryophyllaceous plants including S. latifolia. When S. latifolia was present, the total number of plants and the number of infected plants, that is those with smut spores produced in the anthers, was counted in the immediate vicinity and the number of butterflies and bumblebees seen during an observation period of 5 min at each site was recorded. In large populations of S. latifolia, we then moved 100 m to a new site within the S. latifolia population where the number of healthy and diseased plants, butterflies and bumblebees were again recorded for 5 min. This process continued until there were no more plants of S. latifolia recorded (Møller et al. 2012). The abundance of butterflies and bumblebees was subsequently standardized to numbers per
5 min of observation. We collected flower samples in paper bags to bring to the laboratory for further analyses. All surveys and collections were only made on days without rain or strong wind.

Postmeiotic viability measures

We spread teliospores of *Microbotryum lycnidis-dioicae* on Potato Dextrose Agar (PDA) plates for 12 strains from the Chernobyl area without prior knowledge of the level of background radiation of the sample (Table S1, Supporting information). On nutritive media in vitro, the fungus undergoes meiosis upon germination of diploid teliospores, and the postmeiotic cells replicate clonally as haploid yeast-like sporidia. On the plant, pairs of sporidia conjugate and produce an infectious hypha. The accumulation of sporidia following spore germination is thus a measure of fertility, in the form of meiotic success and haploid viability, for the diploid individual present in a given flower. After 48 h at 22 °C, the haploid cells derived from spore germination were photographed. In the photographs, we counted the number of sporidia for 100 separate teliospore germinations per sample. Similar counts were performed for three strains from outside the Chernobyl area, but belonging the Central–Eastern European genetic cluster, for comparison with unirradiated areas; teliospore collections of these strains were the same age as the Chernobyl strains (Table S1, Supporting information).

Karyotypes

Haploid cultures were isolated from meiotic tetrads by micromanipulation such that cells of a1 and a2 mating types were selected for each of six samples from the Chernobyl region and subjected to pulsed field gel electrophoresis as described previously (Hood et al. 2003). Briefly, a CHEF-DR II system (Bio-Rad) was used to generate karyotypes by pulsed field gel electrophoresis using switch times of 200 s (initial) and 1100 s (final) in a 0.8% chromosomal grade agarose for 96 h at 14 °C and 2.7 V/cm. These run conditions optimize visualization of the chromosomes in the genome of *M. lycnidis-dioicae* by separation in the range of 0.90–3.00 million base pairs (mbp). Gel images (stained with SYBR Safe) were acquired by a digital camera.

Strains, DNA extraction and sequencing

The genomes of 18 strains of *M. lycnidis-dioicae* collected on *S. latifolia* were sequenced. For this goal, diploid spores from one anther were spread on petri dishes on PDA medium at 23 °C for a few days. A...
given flower bears diploid spores from a single individual (Lopez-Villavicencio et al. 2007). Therefore, the harvested haploid sporidia on PDA represented thousands of meiotic products of a single diploid individual. Harvested haploid cells were stored at -20 °C until use. DNA was extracted using the Macherey-Nagel NucleoSpin Soil kit #740780.250 following manufacturer’s instructions and resuspended in deionized water (100 µL). DNA purity was assessed by measuring ratio of 230 of 260 and 280 of 260 nm with a NanoDrop 2000 spectrophotometer (Thermo Scientific), and double-stranded DNA concentration was measured with a Qubit 2.0 fluorometer.

Paired-end libraries of 2 × 100 bp fragments with an insert size of 300 bp were prepared with Illumina TrueSeq Nano DNA Library Prep Kits, and sequencing was performed on a HiSeq2000 Illumina sequencer, at a depth of coverage of 100× on average. We checked that the strains belonged to M. lychnidis-dioicae by building a phylogenetic tree using orthologous genes of other Microbotryum species; two strains that clustered together in the tree with Microbotryum species other than M. lychnidis-dioicae, thus representing spillover from other host plant species, were discarded (not shown). The genomes of 16 M. lychnidis-dioicae strains were thus retained (Table S1, Supporting information). Of these, the first 12 corresponded to strains sampled in the area of Chernobyl (Fig. 1, hereafter referred to as Chernobyl group), while the remaining four were sampled from different nonradiated locations corresponding to the Central–Eastern genetic cluster in Europe (hereafter referred to as the reference group).

Sequence analyses

Accession numbers of the genomes of the 16 M. lychnidis-dioicae strains analysed are included in Table S1 (Supporting information). The complete genomes (predicted genes and corresponding proteins) of the 16 M. lychnidis-dioicae strains and the reference genome (Perlin et al. 2015) were used. For each genome, the total collection of predicted gene sequences was used as queries in the OrthoMCL analysis, which implements a sequential bioinformatics pipeline based on blast searches and clustering methods for the prediction of orthologous relationships. The script ORTHOMCL.PL version 1.4 (Li et al. 2003) was used with default settings, allowing us to retrieve the full set of shared orthologs that are present as a single copy in all analysed strains (1:1 orthologs). We therefore obtained alignments of alleles among strains.

Initially, OrthoMCL predicted 6145 single-copy orthologous protein-coding genes shared among the 16 analysed strains. However, in 77 cases, no matching protein sequence was found, so all subsequent analyses were conducted with the remaining 6068 genes. For each of these, the predicted genes and the corresponding protein sequences were extracted. First, the protein sequences were aligned and those alignments were subsequently used to guide the predicted gene alignments, taking codons into account, with the PAL2NAL v.14 software (Suyama et al. 2006). Next, the program gestimator from the Libsequence library (Thornton 2003) was implemented to obtain all possible pairwise rate estimates of synonymous (dS), non-synonymous (dN) and the corresponding dN/dS ratio, removing those with no synonymous differences (i.e. cases for which dN/dS is estimated to be infinity). To calculate an average dN/dS ratio for each of the 12 Chernobyl strains, we first calculated four independent dN/dS ratios for each strain by comparing it to each of the four reference strains. These four values were then averaged. We calculated the dN/dS ratio of each reference strain compared to the three other reference strains. Diversity estimates were computed using ECLIB (de Mita & Siol 2012). We checked using a larger genome data set (T. Giraud, H. Badouin & G. Aguilera, unpublished data) that all the reference strains belonged to the genetic Central–Eastern European cluster as previously identified based on microsatellite data (Vercken et al. 2010) and that no further population subdivision was found within this cluster (not shown).

To examine the capacity for melanin production, genes involved in three melanin pathways in fungi were examined: the DHN-melanin (Wheeler et al. 2008), DOPA melanin (Langfelder et al. 2003) and L-tyrosine degradation (Schmaler-Ripcke et al. 2009; Keller et al. 2011). Genes for each pathway in M. lychnidis-dioicae were identified by identifying orthologs using OrthoMCL as above with the gene set of Aspergillus niger. Whenever orthologs were not identified, the most similar sequences based on blastp were examined; in all cases, this did not identify any additional orthologs, that is for the multicopper oxidases (MCOs) involved in DHN-melanin synthesis this identified only ascomycete laccase MCOs.

Formal statistical tests for detecting dN/dS variability and positive selection

In order to assess the statistical support for differences in dN/dS between strains from Chernobyl and reference strains, we used the CODEML program (Yang 2007) in the PAML package to obtain the nonsynonymous to synonymous substitution ratio (dN/dS). For these tests, a tree of the strains was reconstructed, using the Italian
reference genome as the outgroup (Badouin et al. 2015; Perlin et al. 2015). First, we tested whether each gene evolved with different dN/dS rates in Chernobyl strains compared to other strains. A branch-specific analysis was thus used to compare two models representing different dN/dS variability patterns: the null model assumed that all branches in the tree evolved under the same dN/dS ratio and the alternative model assumed that the branches grouping the Chernobyl strains were subject to a different dN/dS ratio from those grouping the Eastern reference strains. We compared the two models with a likelihood ratio test (LRT), with twice the difference in the log likelihood score of the two models being approximated to a chi-square distribution and degrees of freedom equal to the difference in model parameters.

A second test was performed to identify genes under positive selection in strains from Chernobyl. In this test, we used the genes that were found in the first test to evolve with significantly higher dN/dS rates in strains from Chernobyl compared to other strains, and with the largest differences. Two nested models, M1a and M2a, were compared by means of a LRT. Model M1a assumed that the sites in the alignment fell into either of two classes of sites, one where dN/dS can take values between 1 and 0 and another class of sites where dN/dS is fixed at 1. On the other hand, model M2a allows for an extra class of sites where dN/dS is >1, thereby identifying the sites that may have evolved positive selection. A LRT was used to compare the two nested likelihood models, as described.

Statistical analyses

ANOVA, mean comparisons and correlations were performed using JMP (SAS Institute) and power analysis using the Z transformation method (Lachin 1981) at http://www.cct.cuhk.edu.hk/stat/other/correlation.htm. Radiation and abundance data were log-transformed to improve the normality of their distributions.

<table>
<thead>
<tr>
<th>d.f.</th>
<th>Sum of squares</th>
<th>F</th>
<th>P</th>
<th>Estimate (SE)</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td>4.452</td>
<td>0.05</td>
<td>0.097 (0.046)</td>
<td></td>
</tr>
<tr>
<td>Log radiation</td>
<td></td>
<td>1.665</td>
<td>8.582</td>
<td>0.009</td>
<td>1.899</td>
</tr>
<tr>
<td>Log abundance butterflies</td>
<td></td>
<td>3.167</td>
<td>1.633</td>
<td>0.22</td>
<td>1.983</td>
</tr>
<tr>
<td>Log radiation x log butterflies</td>
<td></td>
<td>2.543</td>
<td>13.105</td>
<td>0.002</td>
<td>1.093</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>3.298</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Prevalence data of the disease

Among the 30 study sites surveyed across the Chernobyl exclusion zone (Fig. 1) and the surroundings, there were 14 sites, all having high levels of background radiation, where no Silene latifolia plants were recorded. In the sites with S. latifolia plants, we explored the effect of the abundance of butterflies, bumblebees and radiation level on anther-smut disease prevalence in S. latifolia (Table 1). Disease prevalence increased with pollinator abundance and significantly so with log-transformed butterfly abundance [Fig. 2; analysis weighted by sample size: $F_{1,19} = 15.15, r^2 = 0.41, P = 0.001$, slope (SE) = 0.426 (0.109)]. Log-transformed butterfly abundance decreased with log radiation levels [Fig. 3; analysis weighted by sample size: $F_{1,19} = 15.48, r^2 = 0.42, P = 0.0009$, slope (SE) = −0.107 (0.027)]. Therefore, we included pollinator abundance (numbers of both butterflies and bumblebees) in the model testing for an effect of radiation levels on disease prevalence and carried out a stepwise model construction procedure to minimize the AIC criterion, weighting by total sample size. The best model included only radiation level and butterfly abundance and their interaction. Disease prevalence significantly decreased with radiation level (Table 1, Fig. 4), but did not change significantly with the abundance of butterflies. However, we found a significant interaction, such that disease prevalence increased with butterfly abundance at low radiation levels but decreased somewhat with increasing butterfly abundance at high radiation levels (Fig. 5). Similarly, disease prevalence decreased strongly with increasing radiation levels, but only at high butterfly abundance (Table 1, Fig. 5). Not only the prevalence but also the number of infected plants significantly decreased with the level of radiation ($r = −0.58, d.f. = 29, P = 0.0011$), indicating lower population size for Microbotryum S. latifolia.
lychnidis-dioicae, which may lessen the efficacy of natural selection.

Postmeiotic viability measures

Fertility measures in the form of meiotic success and haploid viability following spore germination, assessed for 12 M. lychnidis-dioicae samples from the Chernobyl area (Table S1, Supporting information, Fig. 6), showed no significant correlation between cells counted (log-transformed) and radiation level at the source of the samples ($r = 0.19$, $n = 12$, $P = 0.55$, Fig. 6). With this weak positive correlation coefficient, a sample size of more than 105 strains would be required to detect a significant effect of radiation level. There was no significant difference in the average postmeiotic cell number between strains from radiated and nonradiated areas (Table S1, Supporting information; $t_{13} = 2.18$, $P = 0.82$; Fig. 6). The fertility measures suggested high viability for all samples except from location 1161 (Table 1, Supporting information), which has less than seven cells per germination after 48 h of incubation, indicating either the failure of meiosis or the inability of the four meiotic products to complete a single mitotic division of the yeast-like cells. All other samples had cell counts indicating multiple rounds of mitotic divisions in the same time period.

Karyotypes

Chromosome profiles of samples from the Chernobyl region (Fig. 7) showed no abnormalities that would be distinct from prior karyotype studies of this species (Hood 2002; Hood et al. 2003; Hood & Antonovics 2004). The distribution of chromosome sizes ranged from 1 to 4 Mbp, with chromosome numbers of ca. 12 per haploid genome. The genomes contained the large dimorphic mating-type chromosomes (ca. 3.3–4 Mbp) that have been shown to occur throughout the species (Hood 2002). In the size, range of the
mating-type chromosomes is a large autosome, while the other autosomes span sizes below 2.6 Mbp. The \(a_1 \) and \(a_2 \) pairs of haploid genomes displayed karyotypes with high levels of autosome homomorphism (equally sized homologues segregating in meiosis), even in samples such as 1161 with the poorest postmeiotic growth ability. Some minor variability among strains and some autosomal size heteromorphism were observed between karyotypes (with some dimorphic homologous chromosomes segregating in meiosis, Fig. 7). However, this was within the range of previously quantified variation in \(M. \) lychnids-dioicae in unirradiated areas including two sample locations from the Eastern cluster that were also examined here for most meiotic fertility (DA00 and CZ00 in Table S1 (Supporting information); Hood & Antonovics 2004).

Genome sequences

A total of 6068 predicted genes corresponding to \(1.04 \times 10^7 \) base pairs (bp) were analysed, with an average of \(1.71 \times 10^3 \) bp per gene alignment. Of these base pairs, a total of \(1.94 \times 10^5 \) corresponded to polymorphic sites, with an average of 83.28 polymorphic sites per analysed gene alignment. Other diversity indicators yielded averages per site for \(\pi \) of 0.0010 for Chernobyl strains and 0.0017 for the reference strains, and for \(\theta \) of 0.0005 for Chernobyl strains and 0.0008 for the reference strains.

We detected no significant correlation between either synonymous or nonsynonymous substitution rates and the radiation measurements at the various sampling sites in Chernobyl (for \(d_S \), \(r = 0.25 \), \(n = 12 \), \(P = 0.44 \), Fig. S1 (Supporting information) for \(d_N \), \(r = 0.37 \),
n = 12, P = 0.23, Fig. S2, Supporting information). The average pairwise dN/dS ratios ranged between 0.336 and 0.359. We detected no sign of genomic degeneration in the Chernobyl area from the nonsynonymous substitution rates. Indeed, we found no significant correlation between the average pairwise dN/dS values and the radiation measurements at the different sampling sites in Chernobyl (r = 0.068, n = 12, P = 0.83, Fig. 8, Table S1, Supporting information). With this correlation, a sample size of more than 830 genomes would be required to detect a significant weak correlation. The mean dN/dS values were even significantly lower in the Chernobyl strains (mean dN/dS = 0.346) than in the reference group (mean dN/dS = 0.353) (Student’s t-test, t = 2.16, d.f. = 14, P = 0.004; Fig. 8).

Formal tests using PAML confirmed these results. Out of 6068 individually tested gene alignments, 575 showed significant differences in their dN/dS rates between Chernobyl strains and other strains. Among these, most (441, i.e. 77%) had a lower dN/dS in Chernobyl strains than in other strains.

The 15 genes with the highest ratio of dN/dS in Chernobyl strains compared to other strains were further analysed with a site-specific test looking for genes that would evolve under positive selection in Chernobyl strains. Indicating positive selection at these genes in Chernobyl strains. Two of these five genes had assigned putative functions, one involved in cell division and another in protein degradation.

Because we found no deleterious effect of radiation on M. lychnidis-dioicae and considering that melanin has frequently been invoked as a mechanism of radioresistance in bacteria and fungi (Dadachova et al. 2007; Khajo et al. 2011; Tugay et al. 2011), we searched for homologs to genes known to be involved in melanin synthesis in genome sequences. Very few homologs to genes involved in the melanin biosynthesis pathway could be found in the M. lychnidis-dioicae genome (Table 2).

Discussion

Environmental levels of ionizing radiation are shown here to have a strong albeit complex influence on the distribution of a fungal plant pathogen that may be mediated by alterations of the larger biological community. The prevalence of anther-smut disease caused by the fungus M. lychnidis-dioicae was indeed much lower in more contaminated areas, likely influenced by an interaction with pollinators, in particular butterflies. Indeed, in areas with little radioactive contamination, anther-smut prevalence increased with abundance of butterflies, as expected given that spores are transmitted by pollinators (Roche et al. 1995; Altizer et al. 1998). At highly contaminated sites, the opposite pattern was found, with disease prevalence decreasing slightly with greater butterfly abundance. Indeed, the parameter set leading to the lowest disease prevalence was highest radiation coupled with highest butterfly abundance, suggesting that at very contaminated sites even high opportunity for spore transmission results in little infection. The stress associated with high-radiation levels may increase resistance to this pathogen in plants, as abiotic and biotic stresses may interact in complex ways, in some cases one enhancing resistance to the other (Atkinson & Urwin 2012). However, previous studies have found low overall resistance of plants to biotic stress in Chernobyl (Dmitriev et al. 2011). Alternatively, changes in developmental or behavioural traits of the organisms in high-radiation environments could have a large influence on the dynamics of disease transmission. In particular, butterflies could be poorer spore vectors at high-radiation level, as previous studies of birds, spiders, plants and insects have shown more behavioural abnormalities at higher radiation levels (Moller & Mousseau 2013). If the hosts’ flowering behaviour is altered at high-radiation levels, it may avoid the disease because plants that shed their flowers more rapidly become infected less often despite receiving infectious spores (Kaltz & Shykoff 2001). Further investigations should pursue the individual-level variation in traits of the host and pollinators that are likely to impact disease transmission rates.

We found no evidence of genomic or genetic changes in the fungal pathogen that may have been expected under conditions of high ionizing radiation levels. For karyotypes, fertility in terms of meiotic success, viability of the haploid stage, or frequencies of nucleotide or amino-acid substitutions, there was no evidence of deleterious effects on M. lychnidis-dioicae as a function of radiation level at the site of

Fig. 8 Mean nonsynonymous substitution rate over synonymous substitution rate (dN/dS) for Microbotryum lychnidis-dioicae strains from the Chernobyl area as black dots and for reference strains from uncontaminated regions as grey squares, plotted against log radiation level.
Our analyses suggested that this was not due to a low statistical power. The magnitude of the correlation observed here ($r = 0.07$) was an order of magnitude below the mean estimate for effects of ionizing radiation on mutations at Chernobyl from a meta-analysis of 30 plant and animal species ($r = 0.67$, 95% confidence intervals 0.59–0.73, Møller & Mousseau 2015). We even found lower mean values of dN/dS in Chernobyl, which may be due to stronger selection in contaminated areas against individuals bearing mildly deleterious mutations, as previous studies have found evidence for more intense selection against inferior phenotypes in Chernobyl (i.e. stronger purifying selection) (Møller 1993, 2002; Ellegren et al. 1997; Møller & Mousseau 2001, 2003, 2016; Møller et al. 2005a,b, 2012, 2013).

The lower abundance of pollinators in contaminated areas is unlikely to have biased dN/dS values by inducing higher selfing rates. Indeed, *M. lychnidis-dioica* is highly automictic (Giraud et al. 2008), so the low disease prevalence in Chernobyl is unlikely to lead to increased selfing rates, which could result in higher accumulation of deleterious mutations in itself. In any case, this effect should lead to an increase in the dN/dS values in contaminated areas, while we observed the opposite.

Table 2 Orthologs of the three main melanin synthesis pathways detected in the genomes of *Aspergillus fumigatus*, *Aspergillus niger* and *Microbotryum lychnidis-dioica*

<table>
<thead>
<tr>
<th>Gene name</th>
<th>A. fumigatus</th>
<th>A. niger</th>
<th>M. lychnidis-dioicae</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHN-melanin pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abr2</td>
<td>Afu2g17530 (Abr2)</td>
<td>An01g13660 (McoB)</td>
<td>No ortholog</td>
<td>Fungal pigment MCO</td>
</tr>
<tr>
<td></td>
<td>Afu1g15670</td>
<td>An01g14010 (McoA)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afu4g14280</td>
<td>An03g03750 (McoC)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An04g10400 (McoO)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An05g02540 (McoP)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An14g05370 (BrnA)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An01g11120 (McoE)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td>Abr1</td>
<td>Afu2g17540 (Abr1)</td>
<td>An01g08960 (McoH)</td>
<td>No ortholog</td>
<td>Fungal ferroxidase</td>
</tr>
<tr>
<td></td>
<td>Afu5g03790 (FetC)</td>
<td>An15g05520 (McoK)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td>Ayg1</td>
<td>Afu2g17550 (Ayg1)</td>
<td>An14g05350 (Ayg1)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afu2g17560 (Ayg2)</td>
<td>An02g00220</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,3,6,8-Tetrahydroxynaphthalene reductase</td>
</tr>
<tr>
<td>Arp1</td>
<td>Afu2g17580 (Arp1)</td>
<td>An08g09920</td>
<td>No ortholog</td>
<td>Scytalone dehydratase</td>
</tr>
<tr>
<td></td>
<td>Afu2g17600 (Pks1)</td>
<td>An03g05440</td>
<td>No ortholog</td>
<td>Polyketide synthase</td>
</tr>
<tr>
<td>PKS1</td>
<td>Afu4g02010 (EncA)</td>
<td>An04g09530</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afu4g14560</td>
<td>An09g05730 (FwnA)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afu7g00160</td>
<td>An11g07310</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td>DOPA melanin pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>melC2</td>
<td>Afu3g01070</td>
<td>An01g09220 (MelC2)</td>
<td>No ortholog</td>
<td>Tyrosinase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An03g00280</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td>melO</td>
<td>Afu2g13630</td>
<td>An12g01670</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An09g02980</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An12g05810 (McoJ)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An16g02020 (McoM)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laccase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arp2</td>
<td>Afu2g17580 (Arp1)</td>
<td>An08g09920</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afu2g17600 (Pks1)</td>
<td>An03g05440</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Polyketide synthase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKS1</td>
<td>Afu4g02010 (EncA)</td>
<td>An04g09530</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afu4g14560</td>
<td>An09g05730 (FwnA)</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afu7g00160</td>
<td>An11g07310</td>
<td>No ortholog</td>
<td></td>
</tr>
<tr>
<td>L-Tyrosine degradation pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tat</td>
<td>Afu2g13630</td>
<td>An02g05540</td>
<td>MVLG_06370</td>
<td>Tyrosine aminotransferase</td>
</tr>
<tr>
<td></td>
<td>Afu2g04200</td>
<td>An11g02200</td>
<td>No ortholog</td>
<td>4-Hydroxymandelate dioxygenase</td>
</tr>
<tr>
<td>hppD</td>
<td>Afu2g04200</td>
<td>An11g02200</td>
<td>No ortholog</td>
<td>Homogentisate dioxygenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fumarylacetoacetate hydrolase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maleylacetate isomerase</td>
</tr>
</tbody>
</table>

Aspergillus fumigatus genes that belong to the DHN-melanin gene cluster (Tsai et al. 1999) are in bold; other genes share sequence similarity with the DHN-melanin genes.
Melanin has frequently been invoked as a mechanism of radio resistance in bacteria and fungi (Dadachova et al. 2007; Khajo et al. 2011; Tugay et al. 2011), but a broader survey of radiation effects on melanin-free microbes from natural communities that may reveal alternative resistance mechanisms is lacking from the literature. The presence of melanin is, as yet, unreported in Microbotryum, and very few homologs to genes known to be involved in melanin synthesis could be found in its genome. However, red pigments have been described in M. lychnidis-dioicae (which was named Ustilago violacea at that time; Will et al. 1984; Will & Reppe 1984). Some other red-pigmented organisms are radio resistant (Asker et al. 2007; Yuan et al. 2009; Copeland et al. 2012; Su et al. 2014), although red pigmentation is more generally considered as protection against UV radiation, including in M. lychnidis-dioicae (Will & Reppe 1984; Will et al. 1984). Possibly, red pigmentation that had been selected to confer UV resistance also implies radio resistance, a hypothesis that should be explored in future studies.

A number of studies have found evidence of adaptation to low-dose radiation at Chernobyl, particularly in fungi. These range from proteomic analyses (Danchenko et al. 2003 to other physiological mechanisms (Kovalchuk et al. 2004; Klubicova et al. 2012). There is also evidence consistent with adaptation through the intracellular antioxidant glutathione (GSH; Galván et al. 2014). Perhaps the most clear-cut evidence of adaptation concerns resistance to radioactivity in generalist bacteria that are widely distributed across Europe (Ruiz-González et al. 2016).

In conclusion, our study reinforces the view that fungi, even nonmelanized species, can cope well with the potential direct effects of high-radiation levels, while indirect effects mediated through biological interactions (host plants and pollinators) may limit pathogen distributions. A previous study reported the emergence of a more virulent crop pathogen population in Chernobyl, and this could be a consequence of selection for resistance to radiation (Dmitriev et al. 2011), although reduced host plant fitness may also play a role. Finally, our findings also suggest the existence of strong purifying selection in radiated areas, and possibly positive selection on some pathways involved in cell division and abnormal protein degradation.

Acknowledgements

We thank Sylvain Glémin and Stéphane de Mita for helpful comments on a previous version of this manuscript.

Melissa Sheth for help with spore cultures and spore counts. We thank Sylvain Glémin and Stéphane de Mita for helpful comments on a previous version of this manuscript.

References

Gladieux P, Vercken E, Fontaine M et al. (2011) Maintenance of fungal pathogen species that are specialized to different hosts: allopatric divergence and introgression through secondary contact. Molecular Biology and Evolution, 28, 459–471.

Keller S, Macheleidt J, Scherlach K et al. (2011) Fomyelina formation in Aspergillus fumigatus requires HmgX and the transcriptional activator HmgR but is dispensable for virulence. PLoS ONE, 6, e26604.

Klubicova K, Danchenko M, Skultety L et al. (2012) Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism. PLoS ONE, 7, e48169.

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the

T.G. and A.P.M. designed research; A.P.M. and T.M. collected data and strains in Chernobyl; G.A. and H.B. analysed the genomes; H.B., S.L.P., T.G. and A.S. performed strain cultivation and DNA extractions; S.G. and C.A.C. helped with genome analyses; M.E.H. performed experiments of viability and fertility and of karyotypes; T.G., A.P.M. and J.A.S. analysed data; T.G. and A.P.M. wrote the study with contributions by all authors.

Data accessibility

Data and genome Accession nos are provided in Table S1 (Supporting information).

Supporting information

Additional supporting information may be found in the online version of this article.

Fig. S1 Mean synonymous substitution rate (dS) for *Microbotryum lychnidis-dioicae* strains from the Chernobyl area, plotted against log radiation level (µGy/h).

Fig. S2 Mean non-synonymous substitution rate (dN) for *Microbotryum lychnidis-dioicae* strains from the Chernobyl area, plotted against log radiation level (µGy/h).

Table S1 Information on *Microbotryum lychnidis-dioicae* strains for which genomes have been analysed: strain ID, GPS coordinates of the nearest town, prevalence of the disease in the population, date of collection, spore viability and fertility (mean number of haploid sporidia germinating from 100 diploid teliospores after 48 h), radiation level measure (µSv/h) at the very collection site (radiation level vary at distances of 10 m) and mean non-synonymous substitution rate over synonymous substitution rates (dN/dS) in its genome compared to reference strains from uncontaminated areas belonging to the same Eastern genetic cluster.