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aUniversité d’Angers, LARIS (EA 7315), 62 avenue Notre Dame du Lac, 49000 Angers, France
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Abstract

Electric vehicle routing problems (E-VRPs) extend classical routing problems to consider
the limited driving range of electric vehicles. In general, this limitation is overcome by intro-
ducing planned detours to battery charging stations. Most existing E-VRP models assume
that the battery-charge level is a linear function of the charging time, but in reality the
function is nonlinear. In this paper we extend current E-VRP models to consider nonlinear
charging functions. We propose a hybrid metaheuristic that combines simple components
from the literature and components specifically designed for this problem. To assess the im-
portance of nonlinear charging functions, we present a computational study comparing our
assumptions with those commonly made in the literature. Our results suggest that neglect-
ing nonlinear charging may lead to infeasible or overly expensive solutions. Furthermore,
to test our hybrid metaheuristic we propose a new 120-instance testbed. The results show
that our method performs well on these instances.

Keywords: Vehicle routing problem, Electric vehicle routing problem with nonlinear
charging function, Iterated local search (ILS), Matheuristic

1. Introduction

In the last few years several companies have started to use electric vehicles (EVs) in
their operations. For example, La Poste operates at least 250 EVs and has signed orders
for an additional 10,000 (Kleindorfer et al. 2012); and the French electricity distribution
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company ENEDIS runs 2,000 EVs, accounting for 10% of their fleet in 20161. Despite these
developments, the large-scale adoption of EVs for service and distribution operations is
still hampered by technical constraints such as battery charging times and limited battery
capacity. For the most common EVs used in service operations, the minimum charging time
is 0.5 h and the battery capacity is around 22 kWh. The latter leads to a nominal driving
range of 142 km (Pelletier et al. 2014). In reality, the driving range could be significantly
lower because the energy consumption increases with the slope of the road, the speed, and the
use of peripherals (De Cauwer et al. 2015). For instance, Restrepo et al. (2014) documented
that the heating and air conditioning respectively reduce the driving range of an EV by
about 30% and 8% per hour of use.

Automakers and battery manufacturers are investing significant amounts of capital and
effort into the development of new technology to improve EV autonomy and charging time.
For instance, General Motors (GM) reinvested USD 20 million into the GM Global Battery
Systems Lab to help the company developing new battery technology for their vehicles (Mar-
cacci 2013). The results of these efforts, however, are transferred only slowly to commercially
available EVs. In the meantime, companies using EVs in their daily operations need fleet
management tools that can take into account limited driving ranges and slow charging times
(Felipe et al. 2014). To respond to this challenge, around 2012 the operations research com-
munity started to study a new family of vehicle routing problems (VRPs): the so-called
electric VRPs (E-VRPs) (Afroditi et al. 2014, Pelletier et al. 2016). These problems con-
sider the technical limitations of EVs. Because of the short driving range, E-VRP solutions
frequently include routes with planned detours to charging stations (CSs). The need to
detour usually arises in rural and semi-urban operations, where the distance covered by the
routes on a single day is often higher than the driving range.

As has been the case for other optimization problems inspired by practical applications,
research in E-VRPs started with primarily theoretical variants and is slowly moving toward
problems that better capture reality. In general, E-VRP models make assumptions about
the EV energy consumption, the charging infrastructure ownership, the capacity of the
CSs, and the battery charging process. Most E-VRPs assume that energy consumption is
directly and exclusively related to the traveled distance. However, as mentioned before, the
consumption depends on a number of additional factors. To the best of our knowledge only
Goeke & Schneider (2015) and Lin et al. (2016) use consumptions computed over actual
road networks taking into account the EV parameters and their loads.

Similarly, most E-VRP models implicitly assume that the charging infrastructure is pri-
vate. In this context, the decision-maker controls access to the CSs, so they are always
available. However, in reality, mid-route charging is often performed at public stations and
so the availability is uncertain. To our knowledge only Sweda et al. (2015) and Kullman
et al. (2016) deal with public infrastructure and consider uncertainty in CS availability.

CS capacity is another area in which current E-VRP models are still a step behind reality.
All existing E-VRP research that we are aware of assumes that the CSs can simultaneously
handle an unlimited number of EVs. In practice, each CS is usually equipped with only

1http://www.avere-france.org/Site/Article/?article_id=5644. Last accessed 11/16/2016.
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a few chargers. In some settings this assumption may be mild (e.g., a few geographically
distant routes and private CSs). However, in most practical applications CS capacity plays
a restrictive role.

Finally, in terms of the battery charging process, E-VRP models make assumptions about
the charging policy and the charging function approximation. The former defines how much
of the battery capacity can (or must) be restored when an EV visits a CS, and the latter
models the relationship between battery charging time and battery level. In this paper, we
focus on these assumptions.

In terms of the charging policies, the E-VRP literature can be classified into two groups:
studies assuming full and partial charging policies. As the name suggests, in full charging
policies, the battery capacity is fully restored every time an EV reaches a CS. Some studies
in this group assume that the charging time is constant (Conrad & Figliozzi 2011, Erdoğan
& Miller-Hooks 2012, Montoya et al. 2015). This is a plausible assumption in applications
where the CSs replace a (partially) depleted battery with a fully charged one. Other re-
searchers, including Schneider et al. (2014), Goeke & Schneider (2015), Schneider et al.
(2015), Desaulniers et al. (2016), Hiermann et al. (2016), Lin et al. (2016), and Szeto &
Cheng (2016), consider full charging policies with a linear charging function approximation
(i.e., the battery level is assumed to be a linear function of the charging time). In their
models, the time spent at each CS depends on the battery level when the EV arrives and on
the (constant) charging rate of the CS. In partial charging policies, the level of charge (and
thus the time spent at each CS) is a decision variable. To the best of our knowledge, all
existing E-VRP models with partial charging consider linear function approximations (Fe-
lipe et al. 2014, Sassi et al. 2015, Bruglieri et al. 2015, Schiffer & Walther 2015, Desaulniers
et al. 2016, Keskin & C̆atay 2016).

In general, the charging functions are nonlinear, because the terminal voltage and current
change during the charging process. This process is divided into two phases. In the first
phase, the charging current is held constant, and thus the battery level increases linearly
with time. The first charging phase continues until the battery’s terminal voltage increases
to a specific maximum value (see Figure 1). In the second phase, the current decreases
exponentially and the terminal voltage is held constant to avoid battery damage. The
battery level then increases concavely with time(Pelletier et al. 2015).
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Figure 1: Typical charging curve, where i, u, and SoC represent the current, terminal voltage, and state of
charge respectively. The SoC is equivalent to the battery level. (Source: Hõimoja et al. 2012).

Although the shape of the charging functions is known, devising analytical expressions to
model them is complex because they depend on factors such as current, voltage, self-recovery,
and temperature (Wang et al. 2013). The battery level is then described by differential
equations. Since such equations are difficult to incorporate into E-VRP models, researchers
rely on approximations of the actual charging functions. Bruglieri et al. (2014) use a linear
approximation that considers only the linear segment of the charging function, i.e., between
0 and (around) 0.8Q, where Q represents the battery capacity. This approximation avoids
dealing with the nonlinear segment of the charging function (i.e., from (around) 0.8Q to Q).
He henceforth refer to this approximation as FS. Felipe et al. (2014), Sassi et al. (2014),
Bruglieri et al. (2015), Desaulniers et al. (2016), Schiffer & Walther (2015), and Keskin &
C̆atay (2016) approximate the whole charging function using a linear expression. They do
not explain how the approximation is calculated, but two options can be considered. In the
first (L1) the charging rate of the function corresponds to the slope of its linear segment (see
Figure 2b). This approximation is optimistic: it assumes that batteries charge to the level
Q faster than they do in reality. In the second approximation (L2) the charging rate is the
slope of the line connecting the first and last observations (see Figure 2c) of the charging
curve. This approximation tends to be pessimistic: over a large portion of the curve, the
charging rate is slower than in reality.
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Figure 2: Linear approximations in the literature vs. real data provided by Uhrig et al. (2015)2.

In this paper, we study a new E-VRP that captures the nonlinear behavior of the charging
process using a piecewise linear approximation. The main contributions of this research are
fivefold. First, we introduce the electric vehicle routing problem with nonlinear charging
functions (E-VRP-NL). Second, we propose a hybrid metaheuristic, which combines simple
components from the literature and components specifically designed for this new problem.
Third, we propose a set of realistic and publicly available instances. Fourth, we demonstrate
through extensive computational experiments the importance of better approximating the
actual battery charging function. Fifth, we analyze our solutions and provide some insight
into the characteristics of good E-VRP-NL solutions.

The remainder of this paper is organized as follows. Section 2 formally introduces the
E-VRP-NL. Section 3 describes our hybrid metaheuristic, and Section 4 presents the compu-
tational experiments. Finally, Section 5 concludes the paper and discusses future research.

2. Electric vehicle routing problem with nonlinear charging function

2.1. Problem description

Let I be the set of nodes representing the customers, F the set of CSs, and 0 a node
representing the depot. Each customer i ∈ I has a service time pi. The E-VRP-NL is defined

2Uhrig et al. (2015) conducted experiments to estimate the charging time for different charge levels with
two types of EVs and three types of CSs.

5



on a directed and complete graph G = (V,A), where V = {0} ∪ I ∪ F ′ and F ′ contains the
set F and β copies of each CS (i.e., |F ′| = |F | × (1 + β)). The value of 1 + β corresponds to
the number of times that each CS can be visited. Let A = {(i, j) : i, j ∈ V, i 6= j} be the set
of arcs connecting vertices of V . Each arc (i, j) has two associated nonnegative values: a
travel time tij and an energy consumption eij. The customers are served using an unlimited
and homogeneous fleet of EVs. All the EVs have a battery of capacity Q (expressed in
kWh) and a maximum tour duration Tmax. It is assumed that the EVs leave the depot
with a fully charged battery, and that all the CSs can handle an unlimited number of EVs
simultaneously. Feasible solutions to the E-VRP-NL satisfy the following conditions: each
customer is visited exactly once; each route satisfies the maximum-duration limit; each route
starts and ends at the depot; and the battery level when an EV arrives at and departs from
any vertex is between 0 and Q.

Since the traveled distance is directly related to the energy consumption, most work on
E-VRPs with a homogeneous fleet focuses on minimizing the total distance (Schneider et al.
2014, Desaulniers et al. 2016, Hiermann et al. 2016, Keskin & C̆atay 2016). However, this
objective function neglects the impact of charging operations. This may lead to solutions
that charge the batteries more than needed or charge them even when their level is high.
These decisions directly affect the battery’s long-term degradation cost (which according to
Becker et al. (2009) can be three times the energy cost) and the charging fees at CSs (Bansal
2015). To better capture the impact of charging operations, in the E-VRP-NL we minimize
the total travel and charging time. This objective function was studied by Zündorf (2014)
and Liao et al. (2016) for related routing problems.

2.2. Modeling of battery charging functions

Each CS i ∈ F ′ has a charging mode (e.g., slow, moderate, fast) that is associated with a
charging function gi(qi,∆i). This function maps the charge level when the vehicle arrives at
i (qi) and the time spent charging at i (∆i) to the charge level when the vehicle leaves i. To
avoid handling a two-dimensional function, we use the transformation proposed by Zündorf
(2014). Let ĝi(l) be the charging function when qi = 0 and the battery is charged for l time
units; gi(qi,∆i) is estimated as ĝi(∆i + ĝ−1(qi)). Note that ∆i = ĝi

−1(oi) − ĝi−1(qi), where
oi is the charge level when the vehicle leaves i.

The function ĝi(l) is concave (Bruglieri et al. 2014, Hõimoja et al. 2012, Pelletier et al.
2015) with an asymptote at Q. Similarly to Zündorf (2014), we argue that ĝi(l) can be
accurately approximated using piecewise linear functions. We support our claim using the
data provided by Uhrig et al. (2015). We fit piecewise linear functions to their data and
obtain approximations with an average relative absolute error of 0.90%, 1.24%, and 1.90%
for CSs of 11, 22, and 44 kW, respectively. Figure 3 shows the piecewise linear approximation
for a CS i of 22 kW charging a vehicle equipped with a battery of 16 kWh. In the plot, cik
and aik represent the charging time and the charge level for the breakpoint k ∈ B of the CS
i ∈ F ′, where B = {0, .., b} is the set of breakpoints of the piecewise linear approximation.
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Figure 3: Real data vs. piecewise linear approximation for a CS with 22 kW charging a battery of 16 kWh.

2.3. Illustrative example

Figure 4 presents a numerical example illustrating the E-VRP-NL. The figure depicts a
solution to an instance with 7 customers and 3 CSs. The CSs have different technologies
(slow and fast), and each technology has a specific piecewise-linear charging function. The
charging function maps the battery levels qi and oi to the charging times si and di to estimate
the time spent at the CS i ∈ F (∆i). In this example, Route 1 does not visit any CS, because
its total energy consumption is less than the battery capacity. Route 2 visits CS 8: the EV
arrives at the CS with a battery level q8 = 1.0, and it charges the battery to a level o8 = 6.0.
To estimate the time spent at the CS, we use the piecewise-linear charging function: the
charging times associated with q8 and o8 are si = 0.8 and di = 6.0, so the time spent at CS
8 is ∆8 = 6.0 − 0.8 = 5.2. The duration of Route 2 is the sum of the travel time (13.0),
the charging time (5.2), and the service time (1.0), i.e., 19.2, which is less than Tmax. The
cost of this route is 18.2 (travel time + charging time). Finally, Route 3 visits CSs 10 and
9, and it spends ∆10 = 7.2 and ∆9 = 1.6 time units charging in these CSs, respectively.
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Figure 4: Example of a feasible E-VRP-NL solution.

2.4. Mixed-integer linear programming formulation

To help the reader understand the E-VRP-NL, we now provide a mixed integer linear
programming (MILP) formulation of the problem. The MILP uses the following decision
variables: variable xij is equal to 1 if an EV travels from vertex i to j, and 0 otherwise.
Variables τj and yj track the time and charge level when the EV departs from vertex j ∈ V .
Variables qi and oi specify the charge levels when an EV arrives at and departs from CS
i ∈ F ′, and si and di are the associated charging times. Variable ∆i = di− si represents the
time spent at CS i ∈ F ′. Variables zik and wik are equal to 1 if the charge level is between
ai,k−1 and aik, with k ∈ B \ {0}, when the EV arrives at and departs from CS i ∈ F ′

respectively. Finally, variables αik and λik are the coefficients of the breakpoint k ∈ B in
the piecewise linear approximation, when the EV arrives at and departs from CS i ∈ F ′

respectively. The MILP formulation follows:

min
∑
i,j∈V

tijxij +
∑
i∈F ′

∆i (1)

subject to

∑
j∈V,i 6=j

xij = 1, ∀i ∈ I (2)

∑
j∈V,i 6=j

xij ≤ 1, ∀i ∈ F ′ (3)
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∑
j∈V,i 6=j

xji −
∑

j∈V,i 6=j

xij = 0, ∀i ∈ V (4)

eijxij − (1− xij)Q ≤ yi − yj ≤ eijxij + (1− xij)Q, ∀i ∈ V,∀j ∈ I (5)

eijxij − (1− xij)Q ≤ yi − qj ≤ eijxij + (1− xij)Q, ∀i ∈ V,∀j ∈ F ′ (6)

yi ≥ ei0xi0, ∀i ∈ V (7)

yi = oi, ∀i ∈ F ′ (8)

y0 = Q (9)

qi ≤ oi, ∀i ∈ F ′ (10)

qi =
∑
k∈B

αikaik, ∀i ∈ F ′ (11)

si =
∑
k∈B

αikcik, ∀i ∈ F ′ (12)∑
k∈B

αik =
∑
k∈B

zik, ∀i ∈ F ′ (13)∑
k∈B

zik =
∑
j∈V

xij , ∀i ∈ F ′ (14)

αik ≤ zik + zi,k+1, ∀i ∈ F ′,∀k ∈ B \ {b} (15)

αib ≤ zib, ∀i ∈ F ′ (16)

oi =
∑
k∈B

λikaik, ∀i ∈ F ′ (17)

di =
∑
k∈B

λikcik, ∀i ∈ F ′ (18)∑
k∈B

λik =
∑
k∈B

wik, ∀i ∈ F ′ (19)∑
k∈B

wik =
∑
j∈V

xij , ∀i ∈ F ′ (20)

λik ≤ wik + wi,k+1, ∀i ∈ F,′ ∀k ∈ B \ {b} (21)

λib ≤ wib, ∀i ∈ F ′ (22)

∆i = di − si, ∀i ∈ F ′ (23)

τi + (tij + pj)xij − Tmax(1− xij) ≤ τj , ∀i ∈ V,∀j ∈ I (24)

τi + ∆j + tijxij − (Smax + Tmax)(1− xij) ≤ τj , ∀i ∈ V,∀j ∈ F ′ (25)

τj + tj0 ≤ Tmax, ∀j ∈ V (26)

τ0 ≤ Tmax (27)

xij = 0, ∀i, j ∈ F ′ : mij = 1 (28)

τi ≥ τj , ∀i, j ∈ F ′ : mij = 1, j ≤ i (29)

τj ≤ Tmax
∑
i∈V

xij , ∀j ∈ F ′ (30)∑
i∈V

xih ≥
∑
j∈V

xjf , ∀h, f ∈ F ′ : mhf = 1, h ≤ f (31)

xij ∈ {0, 1}, ∀i, j ∈ V (32)

τi ≥ 0, yi ≥ 0 ∀i ∈ V (33)

zik ∈ {0, 1}, wik ∈ {0, 1}, αik ≥ 0, λik ≥ 0, ∀i ∈ F ′,∀k ∈ B (34)
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qi ≥ 0, oi ≥ 0, si ≥ 0, di ≥ 0,∆i ≥ 0, ∀i ∈ F ′ (35)

The objective function (1) seeks to minimize the total time (travel times plus charging
times). Constraints (2) ensure that each customer is visited once. Constraints (3) ensure
that each CS copy is visited at most once. Constraints (4) impose the flow conservation.
Constraints (5) and (6) track the battery charge level at each vertex. Constraints (7) ensure
that if the EV travels between a vertex and the depot, it has sufficient energy to reach its
destination. Constraints (8) reset the battery tracking to oi upon departure from CS i ∈ F ′.
Constraint (9) ensures that the battery charge level is Q at the depot. Constraints (10)
couple the charge levels when an EV arrives at and departs from any CS. Constraints (11)–
(16) define the charge level (and its corresponding charging time) when an EV arrives at CS
i ∈ F ′ (based on the piecewise linear approximation of the charging function). Similarly, con-
straints (17)–(22) define the charge level (and its corresponding charging time) when an EV
departs from CS i ∈ F ′. Constraints (23) define the time spent at any CS. Constraints (24)
and (25) track the departure time at each vertex, where Smax = maxi∈F ′{cib}. Constraints
(26) and (27) ensure that the EVs return to the depot no later than Tmax. Constraints (28)
and (31) help to avoid the symmetry generated by the copies of the CSs. Parameter mij is
equal to 1 if i and j ∈ F ′ represent the same CS. Finally, constraints (32)–(35) define the
domain of the decision variables.

3. Solving the E-VRP-NL

Lenstra & Kan (1981) demonstrated that the classical VRP, commonly known as the
CVRP, is NP-hard. Since the CVRP is a special case of our E-VRP-NL, the latter is also NP-
hard. We therefore propose a metaheuristic approach. Like many metaheuristics for other
VRPs, our approach explores new solutions by building new routes or applying changes
(moves) to existing ones. In this process, the algorithm makes sequencing and charging
decisions. The former fix the order in which the route visits its assigned customers, while
the latter determine where and how much to charge the EV serving the route. Sequencing
and charging decisions can be made either simultaneously or in two phases (sequencing first,
charging second). We use the latter option. To make charging decisions, we solve what we
call the fixed route vehicle charging problem, or simply FRVCP. In a nutshell, the problem
consists in i) inserting charging stations into a fixed sequence of customers and ii) deciding
how much to charge at each inserted station. Since the FRVCP plays a key role in our
approach, we discuss it in the next subsection before introducing our metaheuristic.

3.1. The fixed-route vehicle-charging problem

The FRVCP is a variant of the well-known fixed-route vehicle-refueling problem (FRVRP).
The FRVRP seeks the minimum-cost refueling policy (which fuel stations to visit and the
refueling quantity at each station) for a given origin-destination route (Suzuki 2014). Most
of the research into the FRVRP and its variants applies only to internal combustion vehicles
(which have negligible refueling times), but a few extensions to EVs have been reported.
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Most of these extensions assume full charging policies (Montoya et al. 2015, Hiermann et al.
2016, Liao et al. 2016). To our knowledge, only Sweda et al. (2014) assume a partial charging
policy. Their problem differs from ours in three fundamental ways: i) they do not take into
account the charging times (because their objective is to minimize the energy and degra-
dation costs), ii) they do not deal with maximum route duration constraints, and iii) their
CSs are already included in the fixed route and no detours are to be planned.

In the FRVCP the objective is to find the charging decisions (where and how much
to charge) that minimize the sum of the charging times and detour times while satisfying
the following conditions: the level of the battery when the EV arrives at any vertex is
nonnegative; the charge in the battery does not exceed its capacity; and the route satisfies
the maximum-duration limit. Since the FRVRP is NP-hard (Suzuki 2014) and the FRVCP
generalizes the FRVRP, we can conclude that the FRVCP is also NP-hard.

Let Π = {π(0), π(1), ..., π(i), ..., π(j), ...π(nr − 1), π(nr)} be the fixed route, where π(0)
and π(nr) represent the depot and π(1), · · · , π(i), · · · , π(j), · · · , π(nr − 1) the customers.
The fixed route has a total time t, which is the sum of the travel times plus the service
times. Note that by definition i) Π does not visit CSs, and ii) it is energy infeasible (i.e.,
requires more than one full battery to complete)3. The feasibility of Π may be restored by
inserting visits to CSs. As mentioned in Section 3, each CS j ∈ F has a piecewise-linear
charging function defined by a set of breakpoints B. Each segment of the piecewise linear
function is defined between breakpoints k − 1 and k ∈ B, has a slope ρjk (representing a
charging rate), and is bounded by the battery levels ajk−1 and ajk. The values eπ(i−1)π(i) and
tπ(i−1)π(i) represent the energy consumption and the travel time between vertices π(i−1) and
π(i) ∈ Π. Similarly, eπ(i−1)j and tπ(i−1)j represent the energy consumption and the travel
time between vertex π(i − 1) ∈ Π and CS j ∈ F , and ejπ(i) and tjπ(i) represent the energy
consumption and the travel time between CS j ∈ F and vertex π(i) ∈ Π.

Figure 5 presents an example illustrating the FRVCP using the fixed route corresponding
to Route 3 in the example introduced in Section 2. Figure 5a shows the fixed route with 3
customers. Figure 5b shows all the possible CS insertions into the fixed route (the arcs in
bold correspond to the FRVCP solution). Figure 5c shows the energy-feasible route resulting
from solving the FRVCP.

3The optimal solution to an FRVCP solved over an energy-feasible fixed route is trivial: the original fixed
route itself.
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Figure 5: Example of a fixed-route vehicle-charging problem.

We formulate the FRVCP as an MILP using the following decision variables: variable
επ(i)j is equal to 1 if the EV charges at CS j ∈ F before visiting vertex π(i) ∈ Π. Variable
φπ(i) tracks the battery level. If επ(i)j = 0, φπ(i) is the battery level when the EV arrives
at vertex π(i). If επ(i)j = 1, φπ(i) is the battery level when the EV arrives at CS j ∈ F
immediately before visiting vertex π(i). Variable θπ(i)jk is equal to 1 if the EV charges on
the segment defined by breakpoints k − 1 and k ∈ B at CS j ∈ F before visiting vertex
π(i) ∈ Π. Finally, variables δπ(i)jk and µπ(i)jk are (respectively) the amount of energy charged
and the battery level when the charging process finishes on the segment between breakpoints
k − 1 and k ∈ B at CS j ∈ F before the visit to vertex π(i) ∈ Π. The MILP formulation of
the FRVCP follows:
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min
∑

π(i)∈Π\{π(0)}

∑
j∈F

∑
k∈B\{0}

δπ(i)jk

ρjk
+

∑
π(i)∈Π\{π(0)}

∑
j∈F

επ(i)j(tπ(i−1)j + tjπ(i) − tπ(i−1)π(i)) (36)

subject to

φπ(1) = Q−
∑
j∈F

επ(1)jeπ(0)j − eπ(0)π(1)

1−
∑
j∈F

επ(1)j

 (37)

φπ(i) = φπ(i−1) +
∑
j∈F

∑
k∈B\{0}

δπ(i−1)jk −
∑
j∈F

επ(i−1)jejπ(i−1)−

∑
j∈F

επ(i)jeπ(i−1)j − eπ(i−1)π(i)

1−
∑
j∈F

επ(i)j

 ∀π(i) ∈ Π \ {π(0), π(1), π(nr)} (38)

φπ(nr) = φπ(nr−1) +
∑
j∈F

∑
k∈B\{0}

δπ(nr−1)jk+

∑
j∈F

∑
k∈B\{0}

δπ(nr)jk −
∑
j∈F

επ(nr−1)jejπ(nr−1)−

∑
j∈F

επ(nr)j(eπ(nr−1)j + ejπ(nr))− eπ(nr−1)π(nr)

1−
∑
j∈F

επ(nr)j

 (39)

φπ(nr−1) +
∑
j∈F

∑
k∈B\{0}

δπ(nr−1)jk −
∑
j∈F

ejπ(nr−1)επ(nr−1)j−

∑
j∈F

eπ(nr−1)jεπ(nr)j

)
≥ 0 (40)

µπ(i)j1 = φπ(i) + δπ(i)j1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (41)

µπ(nr)j1 = φπ(nr−1) +
∑
l∈F

∑
k∈B\{0}

δπ(nr−1)lk−∑
l∈F

elπ(nr−1)επ(nr−1)l − επ(nr)jeπ(nr−1)j + δπ(nr)j1 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (42)

µπ(i)jk = µπ(i)j,k−1 + δπ(i)jk ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0, 1} (43)

µπ(i)jk ≥ ajk−1θπ(i)jk ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0, 1} (44)

µπ(i)jk ≤ ajkθπ(i)jk + (1− θπ(i)jk)Q ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (45)∑
j∈F

επ(i)j ≤ 1, ∀π(i) ∈ Π \ {π(0)} (46)

θπ(i)jk ≤ επ(i)j ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (47)

δπ(i)jk ≤ θπ(i)jkQ ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (48)

t+
∑

π(i)∈Π\{π(0)}

∑
j∈F

∑
k∈B\{0}

δπ(i)jk

ρjk
+

∑
π(i)∈Π

∑
j∈F

επ(i)j(tπ(i−1)j + tjπ(i))− tπ(i−1)π(i)) ≤ Tmax (49)

φπ(i) ≥ 0, ∀πi ∈ Π \ {π(0)} (50)

επ(i)j ∈ {0, 1}, ∀π(i) ∈ Π \ {π(0)},∀j ∈ F (51)
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θπ(i)jk ∈ {0, 1} ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (52)

δπ(i)jk ≥ 0 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (53)

µπ(i)jk ≥ 0 ∀π(i) ∈ Π \ {π(0)},∀j ∈ F,∀k ∈ B \ {0} (54)

The objective function (36) seeks to minimize the total route time (including charging
and detour times). Constraints (37)–(40) define the battery level when the EV arrives at
vertex π(i) ∈ Π if επ(i)j = 0; or at CS j ∈ F before visiting vertex π(i) ∈ Π, if επ(i)j = 1.
Constraints (41)–(43) define the battery level when the EV finishes charging at CS j ∈ F
in the segment between breakpoints k − 1 and k ∈ B before visiting vertex π(i) ∈ Π.
Constraints (44)–(45) ensure that if the EV charges on a given segment, the battery level
is between the values of its corresponding break points (aj,k−1 and ajk). Constraints (46)
state that only one CS is visited between any two vertices of the fixed route. Constraints
(47) ensure that the EV uses only segments of the visited CSs. Likewise, constraints (48)
ensure that the EV charges only at the selected segments of the visited CSs. Constraint
(49) represents the duration constraint of the route. Finally, constraints (50)–(54) define
the domain of the decision variables.

Our metaheuristic for the E-VRP-NL solves the FRVCP at various steps. It uses two
different approaches: a commercial solver running on the MILP formulation introduced
above (boosted by tailored preprocessing strategies) and a greedy heuristic. For the sake of
brevity, these approaches are not discussed in the main body of the paper; full details can
be found in AppendixA.

3.2. Hybrid metaheuristic

To solve the E-VRP-NL we developed a hybrid metaheuristic combining an iterated
local search (ILS) and a heuristic concentration (HC). The former is a metaheuristic that
starts by generating an initial solution (with a constructive heuristic). This solution is then
improved by a local search procedure. At each iteration of the ILS, the best current solution
is perturbed, and a new ILS iteration starts from the perturbed solution. More details of
the ILS can be found in Lourenço et al. (2010). The HC is an approach that tries to build
a global optimum using parts of the local optima found during a heuristic search procedure
(Rosing & ReVelle 1997).

Our ILS+HC starts from an initial solution generated using a sequence-first split-second
approach. The latter uses a nearest-neighbor heuristic (Rosenkrantz et al. 1977) to build
a TSP tour visiting all the customers and a splitting procedure to find an E-VRP-NL so-
lution. Then, at each iteration of the ILS we improve the current solution using a variable
neighborhood descent (VND; Mladenović & Hansen 1997) with three local search operators:
relocate, 2-Opt, and global charging improvement (GCI). At the end of each ILS iteration,
we update the best solution and add the routes of the local optimum to a pool of routes
Ω ⊂ R, where R is the set of all feasible routes. To diversify the search, we concatenate the
routes of the local optimum to build a new TSP tour, and then perturb the new TSP tour.
We start a new ILS iteration by splitting the perturbed TSP tour. After K iterations the
ILS ends, and we carry out the HC. In this phase, we solve a set partitioning problem over
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the set of routes Ω to obtain an E-VRP-NL solution. In the remainder of this section, we
describe the main components of our method.

3.3. Split

To extract a feasible solution from a TSP tour, we use an adaptation of the splitting
procedure introduced by Prins (2004). The splitting procedure builds a directed acyclic
graph G∗ = (V ∗, A∗) composed of the ordered vertex set V ∗ = (v0, v1, ..., vi, ..., vn) and the
arc set A∗. Vertex v0 = 0 is an auxiliary vertex, and each vertex vi represents the customer
in the ith position of the TSP tour. Arc (vi, vi+nr) ∈ A∗ represents a feasible route rvi,vi+nr

with a travel time trvi,vi+nr
, starting and ending at the depot and visiting customers in the

sequence vi+1 to vi+nr .
Note that since the TSP tour includes only customers, route rvi,vi+nr

may be energy-
infeasible; in that case, we try to repair it by solving an FRVCP. If inserting CSs into rvi,vi+nr

increases the duration of the route beyond Tmax, we do not include the arc associated with
the route in A∗. Finally, to obtain a feasible E-VRP-NL solution, the splitting procedure
finds the set of arcs (i.e., routes) along the shortest path connecting 0 and vn in G∗.

Figure 6 illustrates the tour splitting procedure using the example from Section 2. Fig-
ure 6a shows the TSP tour. Figure 6b shows the auxiliary graph G∗, where the arcs in
bold correspond to the shortest path. Figure 6c shows the solution found by the splitting
procedure.
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Figure 6: Splitting a TSP tour into an E-VRP-NL solution.

3.4. Variable neighborhood descent

To improve the solution generated by the splitting procedure we use a VND based on
three local search operators. The first two operators, namely, relocate and 2-Opt4, focus
on the sequencing decisions. In other words, these two operators alter only the sequence of
customers and do not insert, remove, or change the position of CSs. To update the charging
times after a relocate or 2-Opt move we use the rule proposed by Felipe et al. (2014): when
visiting a CS, charge the strict minimum amount of energy needed to continue to the next
CS (or the depot if there is no CS downstream). If reaching the next CS (or the depot) is
impossible, even with a fully charged battery, the move is deemed infeasible. Similarly, if
after updating the charging times the resulting route is infeasible in terms of the maximum-
duration limit, the move is discarded. It is worth noting that the Felipe et al. (2014) rule is
optimal when all the CSs are homogeneous; however, this is not the case in our E-VRP-NL.

As its name suggests, the third operator, GCI, focuses on the charging decisions. GCI
is applied to every route visiting at least one CS. First, it removes from the route all CS

4In our implementation we use intra-route and inter-route versions with best-improvement selection.
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visits. If the resulting route is energy-feasible, it stops. If the route is energy-infeasible, it
solves an FRVCP to optimize the charging decisions for that route.

3.5. Perturb

To diversify the search, we concatenate the routes of the current best solution to build
a TSP tour. Then, we perturb the resulting tour with a randomized double bridge operator
(Lourenço et al. 2010) and apply the split procedure to obtain a new E-VRP-NL solution.
The randomized double bridge operator cuts four arcs and introduces four new ones. Figure
7 illustrates the steps of the perturbation procedure.
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Figure 7: Perturbation procedure example using double bridge operator.

3.6. Heuristic concentration

Finally, the HC component solves a set partitioning formulation over the pool of routes

Ω:
(
minR⊆Ω

{∑
r∈R tr : ∪r∈R = V ; ri ∩ rj = 0 ∀ri, rj ∈ R

})
. The objective is to select the

best subset of routes from Ω to build the set of routes R (i.e., the final solution) guaranteeing
that each customer will be visited by exactly one route.
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4. Computational experiments

In this section, we present three computational studies. The first study assesses the
benefits of better approximating the battery charging function. The second study evaluates
the performance of our ILS+HC. The third study analyzes the characteristics of the best
known solutions (BKSs) found by our ILS+HC. The goal of this analysis is to provide
researchers with insight that may be useful in the design of new solution methods for the
E-VRP-NL.

4.1. Test instances for the E-VRP-NL

We generated a new 120-instance testbed built using real data for EV configuration and
battery charging functions. To ensure feasibility, we opted to generate our instances instead
of adapting existing datasets from the literature. To build the instances we first generated 30
sets of customer locations with {10, 20, 40, 80, 160, 320} customers. For each instance size,
we generated 5 sets of customer locations. We located the customers in a geographic space
of 120 x 120 km using either a random uniform distribution, a random clustered distribution,
or a mixture of both. For each of the 30 sets of locations we chose the customer location
strategy using a uniform probability distribution. Our main motivation for choosing the 120
x 120 km area was to build instances representing a semi-urban operation.

For each of the 30 sets of locations we built 4 instances varying the level of charging
infrastructure availability and the strategy used to locate the CSs. We considered two
levels of charging infrastructure availability: low and high. To favor feasibility, for each
combination of number of customers and infrastructure availability level we handpicked the
number of CSs as a proportion of the number of customers. We located the CSs either
randomly or using a simple p-median heuristic. Our p-median heuristic starts from a set of
randomly generated CS locations and iteratively moves those locations trying to minimize
the total distance between the CSs and the customers. We included three types of CSs: slow,
moderate, and fast. For each CS we randomly selected the type using a uniform probability
distribution.

The EVs in our instances are Peugeot iOns. This EV has a consumption rate of
0.125 kWh/km, and a battery of 16 kWh. As mentioned in Section 1, the energy con-
sumption on an arc (eij) depends on various factors. For simplicity we followed the classical
approach in the literature and assumed that this consumption is simply the EV’s consump-
tion rate multiplied by the arc’s length. To generate the charging functions we fit piecewise
linear functions to the real charging data provided by Uhrig et al. (2015). Figure 8 depicts
our piecewise linear approximations. Finally, we set the maximum route duration for every
instance to 10 h. Our 120 instances are publicly available at www.vrp-rep.org 5.

5The instances will be made available after the completion of the reviewing process.
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4.2. Benefits of better approximating the charging function

To assess the value of a charging function approximation that captures the nonlinear
behavior of the process, we conducted an experiment comparing our approximation with
those commonly used in the literature. The experiment consists in solving a subset of
instances with four charging function approximations (i.e., FS, L1, L2, and our piecewise
linear – hereafter called PL) and comparing the solutions in terms of objective function
and feasibility. Since PL generalizes FS, L1, and L2, any method for the E-VRP-NL can
be adapted to work with the other three approximations by a manipulation of the input
data. To avoid the bias introduced by the solution method, we compare only optimal
solutions delivered by the MILP introduced in Section 2 (running on Gurobi 5.6). This
choice restricted the size of the instances used in the experiment to 10 customers and 3 CSs.
We believe, however, that our conclusions hold for any instance size. All the experiments
were run on a computing cluster with 2.33 GHz Inter Xeon E5410 processors with 16 GB of
RAM running under Linux Rocks 6.1.1.

As mentioned in Section 3, the MILP formulation uses β copies of the CSs to model
multiple visits to the same CS. Although several authors have used this strategy (Conrad &
Figliozzi 2011, Erdoğan & Miller-Hooks 2012, Schneider et al. 2014, Sassi et al. 2014, Goeke
& Schneider 2015, Hiermann et al. 2016), they do not explain how the value of β is set. It
is worth noting that β plays an important role in the definition of the solution space, and
therefore it restricts the optimal solution of the model. For instance, an optimal solution
found with β = 3 may not be optimal for β = 4. In practice, there is no restriction on the
number of times that a CS can be visited, but large values of β result in models that are
computationally intractable. To overcome this difficulty, we designed an iterative procedure
to solve the MILP formulation for increasing values of β. Starting with β = 0, at each
iteration our procedure (i) tries to solve the MILP formulation to optimality with a time
limit of 100 h, and (ii) sets β = β + 1. The procedure stops when the time limit is reached
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or an iteration ends with a solution sβ satisfying f(sβ) = f(s∗β−1), where f(·) denotes the
objective function and ∗ an optimal solution.

Table 1 presents the results. Since the PL approximation is the closest to reality, the
results obtained using the other approximations are compared with reference to the results
of the PL. For each charging function approximation, we give the objective function value
(of), the percentage gap between of and the PL solution (G), the number of routes in the
solution (r), and the value of β. Since in practice the charging time is controlled by the
nonlinear charging function, we evaluate the charging decisions of the L1 and L2 solutions
a posteriori using the PL approximation. The last rows of Table 1 summarize the results.
We present, for each approximation, the average and maximum percentage gap, the number
of solutions employing more EVs than in the PL solution, and the number of infeasible
solutions.

In the FS approximation EVs can charge their batteries to only around 80% of the
actual capacity. Artificially constraining the capacity may force the EVs to detour to CSs
more often than necessary when traveling to distant customers. Because the maximum route
duration is limited, the time spent detouring and recharging the battery reduces the number
of customers that can be visited. Consequently, more routes may be needed to service the
same number of customers. Our results confirm this intuition: in 3 of the 20 instances the
FS approximation increases the number of routes. Furthermore, in practice some distant
customers may not be included in routes unless the EVs can fully use their battery capacity.
In our experiments, 9 instances become infeasible with the FS approximation. In conclusion,
although the FS approximation simplifies the problem (avoiding the nonlinear segment of
the charging function) it may lead to solutions that are infeasible or have larger fleets and
are (on average) 2.70% more expensive.

As mentioned before, L1 assumes that batteries charge faster than they do in reality
(Figure 2b). As a consequence, routes based on L1 may in practice need more time to reach
the planned charge levels. The extra time may make a route infeasible if there is little slack
in the duration constraint. Indeed, the post-hoc evaluation shows that for 14 instances,
the L1 solutions are infeasible in practice. On the other hand, L2 assumes that batteries
charge slower than in reality (Figure 2c). Overestimating the charging times does not lead
to feasibility issues, but the resulting routes may be overly conservative. For instance, in
our experiments L2 leads to solutions that are (on average) 1.45% more expensive, and it
increases the number of routes in two instances.
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Table 1: Comparison of our charging function approximation (piecewise linear approximation) with charging
function approximations from the literature

Instance PL FS L1 L2

Solution Evaluation Solution Evaluation

ofofof rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ ofofof rrr βββ ofofof G(%)G(%)G(%) rrr βββ

tc0c10s2cf1 19.75 3 2 NFS NFS NFS NFS 19.61 3 2 NFE NFE NFE NFE 20.50 3 2 20.22 2.38 3 2
tc0c10s2ct1 12.30 2 0 12.61 2.52 3 0 12.22 2 0 12.42 0.98 2 0 12.46 2 0 12.30 0.00 2 0
tc0c10s3cf1 19.75 3 2 NFS NFS NFS NFS 19.61 3 2 NFE NFE NFE NFE 20.50 3 2 20.22 2.38 3 2
tc0c10s3ct1 10.80 2 0 10.80 0.00 2 0 10.79 2 0 11.03 2.13 2 0 10.97 2 0 10.80 0.00 2 0
tc1c10s2cf2 9.03 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s2cf3 16.37 3 2 NFS NFS NFS NFS 15.99 3 1 NFE NFE NFE NFE 16.89 3 2 16.37 0.00 3 2
tc1c10s2cf4 16.10 3 2 NFS NFS NFS NFS 15.66 3 2 NFE NFE NFE NFE 16.43 3 2 16.23 0.81 3 2
tc1c10s2ct2 10.75 3 1 10.75 0.00 3 1 10.75 3 0 10.76 0.09 3 0 10.94 3 0 10.78 0.28 3 0
tc1c10s2ct3 13.17 2 2 15.98 21.34 3 2 13.06 2 2 NFE NFE NFE NFE 13.60 2 2 13.17 0.00 2 2
tc1c10s2ct4 13.83 2 1 NFS NFS NFS NFS 13.34 2 1 NFE NFE NFE NFE 14.17 2 1 14.17 2.46 2 1
tc1c10s3cf2 9.03 3 0 9.03 0.00 3 0 9.03 3 0 9.12 1.00 3 0 9.14 3 0 9.03 0.00 3 0
tc1c10s3cf3 16.37 3 1 NFS NFS NFS NFS 15.99 3 1 NFE NFE NFE NFE 16.89 3 2 16.37 0.00 3 2
tc1c10s3cf4 14.90 3 1 NFS NFS NFS NFS 14.56 2 1 NFE NFE NFE NFE 15.18 3 0 15.18 1.88 3 0
tc1c10s3ct2 9.20 3 0 9.20 0.00 3 0 9.19 3 0 NFE NFE NFE NFE 10.80 3 0 10.57 14.89 3 0
tc1c10s3ct3 13.02 2 0 13.07 0.38 2 1 12.98 2 0 13.16 1.08 2 0 13.60 2 0 13.02 0.00 2 0
tc1c10s3ct4 13.21 2 0 13.58 2.80 3 1 12.92 2 1 NFE NFE NFE NFE 13.71 2 0 13.21 0.00 2 0
tc2c10s2cf0 21.77 3 3 NFS NFS NFS NFS 14.53 2 2 NFE NFE NFE NFE 22.78 4 4 22.15 1.75 4 4
tc2c10s2ct0 12.45 3 2 12.45 0.00 3 2 12.44 3 3 NFE NFE NFE NFE 12.93 3 2 12.45 0.00 3 2
tc2c10s3cf0 21.77 3 2 NFS NFS NFS NFS 14.53 2 2 NFE NFE NFE NFE 23.02 4 3 22.20 1.98 4 3
tc2c10s3ct0 11.51 3 0 11.51 0.00 3 0 11.50 3 0 NFE NFE NFE NFE 11.92 3 0 11.54 0.26 3 0

Avg. Difference (%) 2.70 1.04 1.45
Max. Difference (%) 21.34 2.13 14.89
Solutions with larger fleet 3 0 2
Infeasible solutions 9 14 0

NFS: Infeasible solution, NFE: Infeasible evaluation
G(%) = (of − ofPL)/ofPL × 100

4.3. Results of our ILS+HC on E-VRP-NL instances

4.3.1. Experimental environment

We implemented our ILS in Java (jre V.1.8.0) and used Gurobi Optimizer (version 5.6.0)
to solve the FRVCP and the set partitioning problem in the HC component. We set a time
limit of 800 s in Gurobi to control the running time of the HC phase. All the experiments
were run on a computing cluster with 2.33 GHz Inter Xeon E5410 processors with 16 GB of
RAM running under Linux Rocks 6.1.1. The results of our ILS+HC are computed over 10
runs. Each replication of the experiments was run on a single processor.

4.3.2. Parameter settings

Three main parameters define the configuration of our ILS+HC: the number of iterations
(K) and the methods used to solve the FRVCP in i) the split procedure (Split(·)) and ii)
the GCI neighborhood (GCI(·)). We conducted a computational study to fine-tune these
parameters. Table 2 sumarizes the values tested for each parameter.

To avoid overfitting, we conducted the parameter tuning on a training instance set.
The latter is made up of 24 additional instances of 6 different sizes (in terms of number of
customers): 10, 20, 40, 80, 160, 320. For each size we generated 4 instances.
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Table 2: Values of the parameters evaluated in the experiment

Parameter Values
K {40, 60, 80, 100, 120}

Split(·) {S, H}
GCI (·) {S, H}

S stands for commercial solver (see AppendixA.1)

H stands for greedy heuristic (see AppendixA.2)

Figure 9 presents the results of our parameter tuning. The X coordinate represents K,
the Y coordinate represents the CPU time, the circle diameter represents the average gap6

with respect to the BKS, and the color represents the combination of methods used to solve
the FRVCP.

As expected, with higher values of K the algorithm achieves better results: between the
best configuration with K = 40 and that with K = 120 there is a difference of more than
1.1% in the average gap. To simplify the discussion, we will focus on the results obtained with
K = 120, but the conclusions are valid for any K. Not surprisingly, with {Split(S), GCI(S)}
our ILS delivers the best results but also consumes the most CPU time. The opposite is true
with {Split(H), GCI(H)}: the algorithm is fast, but it delivers poor solutions. This result
highlights the importance of making optimal charging decisions when solving the E-VRP-NL
(and E-VRPs in general). With {Split(H), GCI(S)} the method obtains better results than
with {Split(S), GCI(H)}. This result was expected and is consistent with the notion that an
aggressive local search is more important than an excellent initial solution generator. After
analyzing our results, we decided that {K = 80, Split(H), GCI(S)} is the configuration that
offers the best trade-off between solution accuracy and computational performance. The
experiments reported in the remainder of the paper used this configuration.

6G(%) = (of − ofBKS)/ofBKS × 100
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Figure 9: Results of the parameter tuning: testing 20 possible configurations.

4.3.3. Performance of the hybrid metaheuristic

Since the E-VRP-NL is a new problem, there are no results or algorithms to benchmark
against. To get an idea of the quality of the solutions delivered by our ILS+HC, we compared
its results with the results obtained by Gurobi using the MILP formulation introduced in
Section 2. Gurobi reported integer solutions for 45 of the 120 instances; 27 of those solutions
are proven optima. The instances with proven optima are the twenty 10-customer instances
and seven 20-customer instances. Table 3 summarizes the results of our ILS+HC on the
instances with proven optima using five metrics: the number of optimal solutions found, the
average and maximum gap with respect to the optimal solution, the average best gap7, and
the average computing time. The results suggest that our ILS+HC is able to deliver high-

7The best gap is the gap between the best solution found over 10 runs and the optimal solution.
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quality solutions for the E-VRP-NL. It matched the 27 optimal solutions, and the average
and maximum gaps show that our method is stable.

Table 4 summarizes the results of our ILS+HC on the 18 instances in which Gurobi
found an integer solution but did not prove optimality. We use the metrics introduced above,
replacing the number of optimal solutions by the number of BKSs found and computing the
average and maximum gaps with respect to the BKSs. On these instances, our ILS+HC
found all the BKSs (18/18) and reported an average gap of 1.09.

Since we do not have benchmark solutions for the remaining 93 instances, we do not
discuss in this section the results of our ILS+HC on those instances. To allow future com-
parisons with our method, we report in AppendixB detailed results for each of the 120
instances. These results are also available at http://www.vrp-rep.org.

Table 3: Summary results of our ILS+HC on instances with proven optima

Metric ILS + HC

Number of optimal solutions 27/27
Avg. Gap (%) 0.29
Max. Gap (%) 1.87
Avg. Best Gap (%) 0.00
Avg. Time (s) 6.31

Table 4: Summary results of our ILS+HC on instances without proven optima

Metric ILS + HC

Number of BKSs 18/18
Avg. Gap (%) 1.09
Max. Gap (%) 2.95
Avg. Best Gap (%) 0.00
Avg. Time (s) 17.17

4.3.4. Characteristics of good E-VRP-NL solutions

We analyze in this section the characteristics of the BKSs found in our experiments. We
aim to provide the reader with insight that may be useful for the design of new solution
methods for the E-VRP-NL.

In total, our BKSs are made up of 1,426 routes. Our first analysis concerns the fraction
of those routes that exploit mid-route charging. Figure 10 presents the percentage of routes
with and without visits to CSs, grouped by instance size. The data shows that on average
71.47% of the routes in the BKSs visit at least one CS. This percentage is roughly the same
for each instance size. This figure provides two insights. First, mid-route charging is a key
element of good E-VRP-NL solutions (probably because it gives algorithms flexibility in
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assigning the customers to the routes). Second, since charging decisions affect most of the
routes making up a good solution, they play a critical role in its quality.
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Figure 10: Percentage of the routes with/without visits to CSs by instance size.

The second analysis concerns the number of mid-route charges per route. Figures 11a
and 11b present histograms of the number of mid-route charges per route and the maximum
number of mid-route charges per route in a solution. Figure 11a shows that for those routes
performing mid-route charging, 58.58% charge once, 40.00% twice, and 1.43% three times.
Although a large proportion of the routes perform a single mid-route charge, 85.83% of
the solutions contain at least one route with more than one mid-route charge (Figure 11b).
These figures suggest that models and methods for the E-VRP-NL can benefit from relaxing
the upper bound of one visit to a CS per route that is sometimes used in the literature.
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(a) Histogram of number of visits to CS per route.
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(b) Histogram of the maximum number of visited CSs
in the routes of each solution.

Figure 11: Analysis of the number of visits to CSs.
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The third analysis concerns the energy recovered through mid-route charges. Figure 12
presents a histogram of the average battery level (in % of the total battery capacity) after
a mid-route charge. The numbers show that over 90% of the mid-route charges are partial
charges (i.e., they do not fully charge the battery). This figure indicates the importance
of embedding components capable of making partial charging decisions into E-VRP-NL
solution methods8. A second interesting observation from the data displayed in Figure 12
is the percentage (around 12%) of mid-route charges that restore the battery to above 80%
of its capacity. As mentioned in Section 2, a common assumption in the E-VRP literature
is that the battery can be charged only in the linear segment of the charging curve (which
ends at roughly 80% of the capacity). Our data suggests that good E-VRP-NL solutions
often include routes with mid-route charges that take the battery level into the nonlinear
part of the charging function.
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Figure 12: Histogram of the average battery level (in % of total battery capacity) after a mid-route charge.

5. Conclusion and future work

In this paper, we have introduced a new E-VRP that captures the nonlinear charging
behavior of the charging process using a piecewise linear approximation: the electric vehicle
routing problem with nonlinear charging function (E-VRP-NL). To solve the problem we
proposed an ILS enhanced with HC. At the heart of our method is a neighborhood scheme
that solves a new variant of the FRVCP. This problem consists in optimizing the charging

8Note that until 2016 this was the exception rather than the rule in the E-VRP literature.
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decisions (where and how much to charge) of a route serving a fixed sequence of customers.
We conducted an experiment comparing our charging function approximation to those in the
literature. Our results show that neglecting the nonlinear nature of the charging function
may lead to infeasible or overly expensive solutions. To assess the performance of our
ILS+HC, we ran it on a new set of instances. We compared its solutions with the solutions
obtained by Gurobi using the MILP formulation of the E-VRP-NL. The results suggest
that our ILS+HC is able to deliver high-quality solutions for the E-VRP-NL. Finally, we
analyzed the solutions delivered by our method to provide fellow researchers with insight
into the characteristics of good E-VRP-NL solutions. Our analysis concluded that good
solutions tend to use multiple mid-route charges, exploit partial recharges, and employ the
nonlinear segment of the battery charging function.

Interesting research directions include designing alternative E-VRP-NL methods (both
exact and heuristic) to give a better basis for comparison with our results. Another in-
teresting possibility would be to develop approaches for the FRVCP that offer a different
trade-off between accuracy and efficiency than those of the two approaches proposed in this
paper. Last but not least, it would be interesting to extend the E-VRP-NL to consider
capacitated CSs. To adapt our ILS+HC to this new variant two components would need
to be re-designed: the GCI neighborhood and the HC. The former would need to solve the
FRCVP simultaneously for all routes ensuring that CS capacity constraints are satisfied.
The latter would need to guarantee that CS capacities are satisfied in the set-partitioning
formulation. In ongoing research, we are working on these extensions.

Acknowledgement

The authors would like to thank the Universidad EAFIT scientific computing center
(APOLO) for its support for the computational experiments. This research was partly
funded in Colombia by Universidad EAFIT, Programa de Movilidad Doctoral hacia Francia
(Colfuturo - Emb. de Francia - ASCUN - Colciencias - Min. de Educación), Programa Enlaza
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AppendixA. Solution approaches for the fixed-route vehicle-charging problem

As mentioned above, we propose two approaches for the FRVCP. The first solves an
MILP formulation using a commercial solver, and the second solves the problem using a
greedy heuristic adapted from the literature. This appendix describes these approaches.

AppendixA.1. MILP formulation running on commercial solver

The model introduced in Section 2.4 may seem too complex to be efficiently solved using
out-of-the-box software. However, in practice the number of customers per route and the
number of available CSs tend to be low, so the resulting MILP formulations are within the
scope of commercial solvers. For instance, on a problem with 8 CSs, the MILP formulation
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for a fixed route serving 10 customers has 539 continuous variables, 352 integer variables,
and 1,263 constraints9. We optimally solved this problem using Gurobi Optimizer (version
5.6.0) in 0.06 s. We therefore decided to embed into our ILS+HC a component that uses a
commercial solver for the FRVCP.

To further reduce the size of the MILP formulation and improve the solver’s performance,
we propose four preprocessing strategies that eliminate infeasible CS insertions. Our strate-
gies rely on the following two premises: (i) the energy consumption and the travel time
between vertices satisfy the triangular inequality; and (ii) since the piecewise-linear charg-
ing function is concave (i.e., ρj,k−1 ≥ ρjk), the first segment has the fastest charging rate.

We propose four strategies. The first three filter CS insertions that are infeasible inde-
pendently of how the customers are sequenced in the routes. These strategies are applied
only once before running the ILS+HC. The fourth strategy filters CS insertions that are
infeasible for a specific fixed route.

Strategy 1: This strategy estimates the minimum time τ needed to visit CS j ∈ F between
two vertices i and h ∈ I ∪ {0}. This time is defined as the sum of a lower bound on
the travel time (u) and a lower bound on the charging time (v) of any route serving
customers i and h. Note that in any route serving customer i, t0i is a lower bound on
the route’s duration from the start to customer i. Similarly, note that in any route
serving customer h, th0 is a lower bound on the time to complete a route from vertex
h. From these two observations we can compute the minimum duration of a route
visiting CS j between vertices i and h as u = t0i + tij + tjh + th0 + pi + ph. To compute
the minimum charging time v, we need to compute the minimum amount of energy
(ec) that an EV coming from vertex i and traveling to vertex h must charge at CS j.
This amount is the charge needed to recover the energy consumed to make the detour
to j, i.e., ec = eij +ejh−eih. Because the battery level when the EV arrives at i in any
E-VRP-NL solution is unknown a priori, we consider that the battery is charged at j
using the fastest charging rate (ρ0j). Then v = ec

ρ0j
. It is clear that if τ = u+ v > Tmax

then any route visiting CS j between customers i and h is infeasible. We therefore
forbid this insertion in our MILP.

Strategy 2: This strategy computes a lower bound on the remaining energy that an EV
must have on arrival at customer i to be able to visit CS j next. Note that in terms of
energy remaining, the best way to reach vertex i is to visit it immediately after fully
charging at CS c(i) = arg minl∈F∪{0} eli. If Q − ec(i)i < eij any route visiting j after i
is energy-infeasible and we can safely forbid this insertion in our MILP.

Strategy 3: Note that o = Q− eji is a lower bound on the energy remaining when an EV
arrives at customer i immediately after charging at CS j. Note also that o must be
enough to at least close the route (reach the depot) or reach the closest CS in terms
of energy consumption. If o < eic(i), where c(i) = arg minl∈F∪{0} eil, any route visiting
j before i is energy-infeasible and we can safely forbid this insertion.

9We randomly picked the route from the best solution found for a randomly selected instance.
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Strategy 4: This strategy estimates a lower bound on the new duration of a given fixed
route if CS j ∈ F is inserted between vertices π(i) and π(i + 1) ∈ Π, i 6= nr. This
bound, t′, is defined as the sum of the new travel time (u) and a lower bound on the
charging time (v). It is easy to see that u = t+ tπ(i)j + tjπ(i+1)− tπ(i)π(i+1). Similarly to
Strategy 1, to estimate v, we consider that the battery is charged at j using the fastest
charging rate. Therefore, v = ec

ρ0j
, where ec = eπ(i)j + ejπ(i+1) − eπ(i)π(i+1) is the charge

needed to recover the energy consumed in the detour to j. If t′ = (u + v) > Tmax,
inserting j between vertices π(i) and π(i + 1) leads to an infeasible route, so we can
safely forbid this insertion.

Applying our preprocessing strategies to the MILP formulation for the 10-customer route
of the example above, we reduce the model to 71 continuous variables, 40 integer variables,
and 165 constraints. We solved the model in Gurobi in 0.02 s.

AppendixA.2. Greedy heuristic

Existing metaheuristics for E-VRPs use various approaches to make charging decisions.
One popular approach is the recharge relocation operator proposed by Felipe et al. (2014) for
the green vehicle routing problem with multiple technologies and partial recharges (GVRP-
MTPR). This approach considers the insertion of only one CS per route. Starting from
an energy-feasible fixed-route the procedure first deletes the current CS. Then, it tries to
improve the charging decisions by inserting each CS into each arc of the fixed-route. To
decide how much energy to charge at the inserted CS, the algorithm applies a simple rule:
charge the minimum amount of energy needed to reach the depot (i.e., to complete the
route). We propose here a heuristic to solve the FRVCP based on this approach.

Our heuristic has two phases: location of CSs and setting of the charge. In the first phase,
it iteratively inserts CSs into the arcs of the fixed-route Π to ensure feasibility in terms of en-
ergy. In the second phase, it improves the charging decisions by adjusting the energy charged
at each visited CS. Algorithm 1 describes our heuristic. The approach uses four important
procedures: trackBattery(·), sumNegative(·), totalTime(·), and copyAndInsert(·). Pro-
cedure trackBattery(·) computes the battery level Yi at each vertex i ∈ Π, assuming that
the EV fully charges its battery at each visited CS. Note that Yi may take negative values.
Procedure sumNegative(·) computes the sum of the battery levels with negative values (i.e.,
s =

∑
i∈Πmin{0, Yi}). Procedure totalTime(·) computes the total time t of the route (as-

suming a full charging policy). Finally, procedure copyAndInsert(·) takes as input a fixed
route, a CS, and a position in the route; it returns a copy of the fixed route with the CS
inserted at the given position.

The heuristic starts with the location phase (lines 2–27). After computing s for the
current fixed-route Π, it enters the outer loop (lines 7–27). In each pass through the inner
loop (lines 8–25), the heuristic i) evaluates the insertion of a CS into each arc of Π assuming
that the EV fully charges its battery, and ii) selects the insertion that maximizes s (lines
14–18). If s = 0 (i.e., the route is energy-feasible), it selects the insertion that minimizes t
(lines 19–23). Then, it performs the selected insertion (line 26). If the route Π is still energy-
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infeasible (i.e., s < 0), the heuristic starts again at line 8 and tries to insert additional CSs
until feasibility in terms of energy is reached.

In the charge-setting phase (line 28), the heuristic invokes procedure ruleMinEnergy(Π)

to set the energy charged at each CS according to the Felipe et al. (2014) rule. Finally, it
evaluates if the route satisfies the maximum-duration constraint (lines 29–33). It returns a
boolean variable indicating whether or not the fixed-route is feasible (f) and the route Π
with the newly inserted CSs.
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Algorithm 1 Greedy heuristic

1: function GreedyHeuristic(Π0,F )
2: Π←− Π0

3: Y ←− trackBattery(Π)

4: s←− sumNegative(Y )
5: t←−∞
6: f ←− false
7: while s < 0 do
8: for j = 1 to |F | do
9: for i = 0 to nr − 1 do

10: Π′ ←− copyAndInsert(Π, Fj, i)
11: Y ′ ←− trackBattery(Π′)
12: s′ ←− sumNegative(Y ′)
13: t′ ←− totalTime(Π′)
14: if s′ > s then
15: s←− s′

16: u←− j
17: v ←− i
18: end if
19: if s′ = 0 and t′ < t then
20: t←− t′

21: u←− j
22: v ←− i
23: end if
24: end for
25: end for
26: Π←− copyAndInsert(Π, Fu, i)
27: end while
28: 〈t,Π〉 ←− RuleMinEnergy(Π)

29: if t ≤ Tmax then
30: f ←− true
31: else
32: Π←− Π0

33: end if
34: return f , Π
35: end function

AppendixB. Detailed results of the hybrid metaheuristic

Table B.5 gives the results reported by our ILS+HC on the E-VRP-PNL instances. We
compare our results with the results obtained by Gurobi running the MILP introduced in
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Section 2. For each instance, we give the problem name10 and the BKS reported by Gurobi
or ILS+HC.

For the results obtained with Gurobi, we report the best solution (Best) and the gap
with respect to the BKS (G). For the results obtained with the ILS+HC, we report the best
solution, the average solution (Avg.), and the average computing time (CPU) in seconds
over ten runs. For the ILS+HC, we provide the gap of the average solution and best solution
with reference to the BKS. The last rows of the table summarize the average and maximum
gaps with respect to the BKSs, the number of times each method found the BKS, and the
average and maximum running times. Values in bold indicate that a method found the
BKS.

Table B.5: Results of ILS+HC on the 120 instances

Gurobi ILS+HC

Instance BKS Best G (%) Best G (%) Avg. G (%) t (s)

tc2c10s2cf0 21.77 21.77 0.00 21.77 0.00 21.77 0.00 8.53
tc0c10s2cf1 19.75 19.75 0.00 19.75 0.00 20.12 1.87 3.86
tc1c10s2cf2 9.03 9.03 0.00 9.03 0.00 9.07 0.44 2.43
tc1c10s2cf3 16.37 16.37 0.00 16.37 0.00 16.37 0.00 5.63
tc1c10s2cf4 16.10 16.10 0.00 16.10 0.00 16.10 0.00 4.79
tc2c10s2ct0 12.45 12.45 0.00 12.45 0.00 12.45 0.00 5.38
tc0c10s2ct1 12.30 12.30 0.00 12.30 0.00 12.34 0.33 3.99
tc1c10s2ct2 10.75 10.75 0.00 10.75 0.00 10.75 0.00 4.21
tc1c10s2ct3 13.17 13.17 0.00 13.17 0.00 13.18 0.08 7.56
tc1c10s3ct4 13.21 13.21 0.00 13.21 0.00 13.21 0.00 6.01
tc2c10s3cf0 21.77 21.77 0.00 21.77 0.00 21.77 0.00 8.90
tc0c10s3cf1 19.75 19.75 0.00 19.75 0.00 20.12 1.87 4.41
tc1c10s3cf2 9.03 9.03 0.00 9.03 0.00 9.06 0.33 2.36
tc1c10s3cf3 16.37 16.37 0.00 16.37 0.00 16.37 0.00 6.06
tc1c10s3cf4 14.90 14.90 0.00 14.90 0.00 14.90 0.00 6.72
tc2c10s3ct0 11.51 11.51 0.00 11.51 0.00 11.54 0.26 6.81
tc0c10s3ct1 10.80 10.80 0.00 10.80 0.00 10.80 0.00 4.83
tc1c10s3ct2 9.20 9.20 0.00 9.20 0.00 9.34 1.52 5.33
tc1c10s3ct3 13.02 13.02 0.00 13.02 0.00 13.02 0.00 9.77
tc1c10s2ct4 13.83 13.83 0.00 13.83 0.00 13.83 0.00 4.84
tc2c20s3cf0 24.68 24.73 0.20 24.68 0.00 24.68 0.00 13.86
tc1c20s3cf1 17.50 17.55 0.29 17.50 0.00 17.53 0.17 12.32
tc0c20s3cf2 27.60 28.54 3.41 27.60 0.00 27.66 0.22 11.77
tc1c20s3cf3 16.63 16.81 1.08 16.63 0.00 16.78 0.90 8.41
tc1c20s3cf4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 3.77
tc2c20s3ct0 25.79 25.79 0.00 25.79 0.00 25.79 0.00 14.66
tc1c20s3ct1 18.95 19.38 2.27 18.95 0.00 19.38 2.27 15.25

Continued on next page

10tcαcβsµcε#, where ααα is the method used to place the customers (i.e., 0: randomization, 1: clustering,
2: mixture of both), βββ is the number of customers, µµµ is the number of the CSs, εεε is ‘t’ if we use a p-median
heuristic to locate the CSs and ‘f’ otherwise, and ### is the number of the instance for each combination of
parameters (i.e., # = 0, 1, 2, 3, 4).
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Table B.5 – continued from previous page
Gurobi ILS+HC

Instance BKS Best G (%) Best G (%) Avg. G (%) t (s)

tc0c20s3ct2 17.08 17.11 0.18 17.08 0.00 17.13 0.29 8.49
tc1c20s3ct3 12.65 12.68 0.24 12.65 0.00 12.72 0.55 8.86
tc1c20s3ct4 16.21 16.21 0.00 16.21 0.00 16.25 0.25 5.16
tc2c20s4cf0 24.67 25.36 2.80 24.67 0.00 24.69 0.08 14.63
tc1c20s4cf1 16.39 16.40 0.06 16.39 0.00 16.40 0.06 13.47
tc0c20s4cf2 27.48 - - 27.48 0.00 27.61 0.47 12.81
tc1c20s4cf3 16.56 16.80 1.45 16.56 0.00 16.80 1.45 8.69
tc1c20s4cf4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 4.17
tc2c20s4ct0 26.02 - - 26.02 0.00 26.02 0.00 15.25
tc1c20s4ct1 18.25 18.25 0.00 18.25 0.00 18.32 0.38 16.14
tc0c20s4ct2 16.99 17.21 1.29 16.99 0.00 17.10 0.65 9.33
tc1c20s4ct3 14.43 14.43 0.00 14.43 0.00 14.5 0.49 7.99
tc1c20s4ct4 17.00 17.00 0.00 17.00 0.00 17.00 0.00 6.08
tc0c40s5cf0 32.67 - - 32.67 0.00 33.25 1.78 23.85
tc1c40s5cf1 65.16 - - 65.16 0.00 66.03 1.34 44.01
tc2c40s5cf2 27.54 38.93 41.36 27.54 0.00 27.67 0.47 31.64
tc2c40s5cf3 19.74 21.04 6.59 19.74 0.00 20.18 2.23 16.85
tc0c40s5cf4 30.77 36.47 18.52 30.77 0.00 31.49 2.34 33.33
tc0c40s5ct0 28.72 - - 28.72 0.00 29.35 2.19 24.50
tc1c40s5ct1 52.68 - - 52.68 0.00 53.36 1.29 58.52
tc2c40s5ct2 26.91 - - 26.91 0.00 27.02 0.41 22.85
tc2c40s5ct3 23.54 - - 23.54 0.00 23.77 0.98 26.48
tc0c40s5ct4 28.63 - - 28.63 0.00 28.72 0.31 32.55
tc0c40s8cf0 31.28 - - 31.28 0.00 32.02 2.37 33.59
tc1c40s8cf1 40.75 - - 40.75 0.00 42.33 3.88 69.99
tc2c40s8cf2 27.15 29.19 7.51 27.15 0.00 27.31 0.59 28.92
tc2c40s8cf3 19.66 22.01 11.95 19.66 0.00 20.24 2.95 19.46
tc0c40s8cf4 29.32 - - 29.32 0.00 29.86 1.84 43.05
tc0c40s8ct0 26.35 30.29 14.95 26.35 0.00 26.89 2.05 28.54
tc1c40s8ct1 40.56 - - 40.56 0.00 41.19 1.55 70.50
tc2c40s8ct2 26.33 - - 26.33 0.00 26.71 1.44 25.64
tc2c40s8ct3 22.71 23.51 3.52 22.71 0.00 23.23 2.29 25.25
tc0c40s8ct4 29.20 - - 29.20 0.00 29.27 0.24 47.46
tc0c80s8cf0 39.43 - - 39.43 0.00 39.86 1.09 56.41
tc0c80s8cf1 45.23 - - 45.23 0.00 45.73 1.11 121.27
tc1c80s8cf2 30.81 - - 30.81 0.00 31.83 3.31 50.99
tc2c80s8cf3 32.44 - - 32.44 0.00 32.60 0.49 64.05
tc2c80s8cf4 49.29 - - 49.29 0.00 49.69 0.81 99.84
tc0c80s8ct0 41.90 - - 41.90 0.00 42.76 2.05 54.35
tc0c80s8ct1 45.27 - - 45.27 0.00 45.85 1.28 129.66
tc1c80s8ct2 31.74 - - 31.74 0.00 32.36 1.95 59.73
tc2c80s8ct3 32.31 - - 32.31 0.00 32.55 0.74 65.15
tc2c80s8ct4 44.83 - - 44.83 0.00 46.61 3.97 111.24
tc0c80s12cf0 34.64 - - 34.64 0.00 35.59 2.74 57.24
tc0c80s12cf1 42.90 - - 42.90 0.00 44.07 2.73 74.58
tc1c80s12cf2 29.54 - - 29.54 0.00 30.73 4.03 61.34
tc2c80s12cf3 31.97 - - 31.97 0.00 32.70 2.28 75.64
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Table B.5 – continued from previous page
Gurobi ILS+HC

Instance BKS Best G (%) Best G (%) Avg. G (%) t (s)

tc2c80s12cf4 43.89 - - 43.89 0.00 44.97 2.46 131.13
tc0c80s12ct0 39.31 - - 39.31 0.00 39.83 1.32 65.54
tc0c80s12ct1 41.94 - - 41.94 0.00 43.03 2.60 73.32
tc1c80s12ct2 29.52 - - 29.52 0.00 30.66 3.86 58.85
tc2c80s12ct3 30.83 - - 30.83 0.00 31.59 2.47 57.57
tc2c80s12ct4 42.40 - - 42.40 0.00 42.82 0.99 134.33
tc1c160s16cf0 79.80 - - 79.80 0.00 80.75 1.19 765.69
tc2c160s16cf1 60.34 - - 60.34 0.00 61.26 1.52 273.86
tc0c160s16cf2 61.20 - - 61.20 0.00 62.99 2.92 365.10
tc1c160s16cf3 71.76 - - 71.76 0.00 72.75 1.38 461.58
tc0c160s16cf4 82.92 - - 82.92 0.00 83.84 1.11 1213.20
tc1c160s16ct0 79.04 - - 79.04 0.00 79.90 1.09 643.27
tc2c160s16ct1 60.27 - - 60.27 0.00 60.62 0.58 287.64
tc0c160s16ct2 60.13 - - 60.13 0.00 62.80 4.44 341.86
tc1c160s16ct3 73.29 - - 73.29 0.00 75.11 2.48 278.67
tc0c160s16ct4 82.37 - - 82.37 0.00 83.08 0.86 944.6
tc1c160s24cf0 78.60 - - 78.60 0.00 79.30 0.89 741.12
tc2c160s24cf1 59.82 - - 59.82 0.00 61.14 2.21 304.66
tc0c160s24ct2 59.25 - - 59.25 0.00 60.19 1.59 409.80
tc1c160s24ct3 68.72 - - 68.72 0.00 69.98 1.83 358.35
tc0c160s24cf4 81.44 - - 81.44 0.00 82.13 0.85 1209.32
tc1c160s24ct0 78.21 - - 78.21 0.00 79.35 1.46 577.83
tc2c160s24ct1 59.13 - - 59.13 0.00 59.72 1.00 340.40
tc0c160s24cf2 59.27 - - 59.27 0.00 60.92 2.78 403.33
tc1c160s24cf3 68.56 - - 68.56 0.00 69.57 1.47 483.10
tc0c160s24ct4 80.96 - - 80.96 0.00 82.11 1.42 956.94
tc2c320s24cf0 182.52 - - 182.52 0.00 186.94 2.42 6566.41
tc2c320s24cf1 95.51 - - 95.51 0.00 96.42 0.95 1456.16
tc1c320s24cf2 152.23 - - 152.23 0.00 153.99 1.16 7105.63
tc1c320s24cf3 117.48 - - 117.48 0.00 118.36 0.75 3065.82
tc2c320s24cf4 122.88 - - 122.88 0.00 124.68 1.46 3681.14
tc2c320s24ct0 181.50 - - 181.50 0.00 186.23 2.61 7204.02
tc2c320s24ct1 94.73 - - 94.73 0.00 96.49 1.86 1259.26
tc1c320s24ct2 148.77 - - 148.77 0.00 154.13 3.60 6853.35
tc1c320s24ct3 116.64 - - 116.64 0.00 119.17 2.17 3273.79
tc2c320s24ct4 122.02 - - 122.02 0.00 123.85 1.50 4273.94
tc2c320s38cf0 177.01 - - 177.01 0.00 182.31 2.99 6733.82
tc2c320s38cf1 94.29 - - 94.29 0.00 95.07 0.83 1601.78
tc1c320s38cf2 141.68 - - 141.68 0.00 147.08 3.81 7235.62
tc1c320s38cf3 116.33 - - 116.33 0.00 117.74 1.21 3113.71
tc2c320s38cf4 122.32 - - 122.32 0.00 123.47 0.94 2660.68
tc2c320s38ct0 191.09 - - 191.09 0.00 192.15 0.55 7636.50
tc2c320s38ct1 94.53 - - 94.53 0.00 95.29 0.80 1408.88
tc1c320s38ct2 141.14 - - 141.14 0.00 145.09 2.80 6974.34
tc1c320s38ct3 116.07 - - 116.07 0.00 117.71 1.41 3062.95
tc2c320s38ct4 121.66 - - 121.66 0.00 123.15 1.22 2784.91
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Table B.5 – continued from previous page
Gurobi ILS+HC

Instance BKS Best G (%) Best G (%) Avg. G (%) t (s)

Avg. Gap 2.61 0.00 1.32
Max. Gap 41.36 0.00 4.44
Found solution 45 120
Best 27 120
Avg. Time 849.55
Max. Time 7636.50
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