Reliable GPS position on an unreliable hardware
Mohamed Hafidhi, Emmanuel Boutillon

To cite this version:
Mohamed Hafidhi, Emmanuel Boutillon. Reliable GPS position on an unreliable hardware. GDR SOCSIP, Jun 2016, Nantes, France. <https://colloque-socsip.ietr.fr/page=home>. <hal-01331037>

HAL Id: hal-01331037
https://hal.archives-ouvertes.fr/hal-01331037
Submitted on 13 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
OBJECTIVES

This work addresses the fault tolerance topic in the GPS context. Starting from a noiseless GPS receiver, redundant mechanisms can be added to design a more resilient GPS receiver in the presence of errors due to process, voltage and temperature (PVT) variations [1]. These mechanisms are based on different layers of abstraction to guarantee a mutual trade-off of system performance (quality of the position given by the GPS receiver), hardware reliability and implementation complexity. An application-specific integrated circuit (ASIC) will be designed with two versions of the GPS receiver: the standard version, and a complex version where fault-tolerant techniques are added to make the GPS receiver more tolerant to errors.

REFERENCES

INTRODUCTION

- There is continual motivation to reduce power consumption and extend battery life of mobile devices.
- Power consumption and device lifetime can be improved by operating at minimal supply voltage, which increases the likelihood of momentary/persistent faults.
- GPS satellite signals are made of three components: spreading code, carrier and navigation message.
- Tracking GPS satellite signals evolves three main processes:
 - GPS receivers use, Numerically controlled oscillators (NCO), to produce a local copy of the carrier of incoming satellite signals. Moreover, copies of spreading codes of GPS satellites are produced, locally, by two 10-stage LFSR (Linear feedback shift register) modules, designated G1 and G2.
 - A correlation function is computed every 10 ms between local signals and incoming signals. A maximum correlation output is achieved when the two signals are time aligned.
 - Two feedback loops are used to update the local generated signals over time, since satellites are in continuous motion and the receiver is also dynamic. Each loop is made of discriminators and filters.

RELIABLE GPS POSITION ON AN UNRELIABLE HARDWARE

Mohamed Mourad Hafidhi and Emmanuel Boutillon
Lab-STIC, University de Bretagne Sud, UMR 6582, 56100 Lorient, France

CONTACT INFORMATION

Further Project Information:
Web: http://www.reliasic.cominlabs.ueb.eu/

Lab-STIC, UBS:
Web: http://www.reliasic.cominlabs.ueb.eu/
Email: mohamed.hafidhi@univ-ubs.fr
Email: emmanuel.boutillon@univ-ubs.fr

Acknowledgement:
This work was funded by French government sponsors COMIN Labs and the National Research Agency in the “Investing for the Future” program under reference ANR-10-LABX-07-01 and the Brittany Region. The authors would like to thank the Institut Supérieur de l’Aéronotique et de l’Espace (ISAE) for sharing with us VHDL codes of the GPS receiver.

DESIGN OF THE SIMULATION PLATFORM

The GPS receiver algorithm was first designed with the MATLAB high level software. Then, an implementation of the GPS receiver algorithm is done for an FPGA target to explore low level performances compared to the high level Matlab performances. The implemented platform can be split into three main parts:

- User interface: This represents the space from where the FPGA is controlled.
- Signal source file: Signal received from more than 4 GPS satellites, over a significant period of time, are stored in a file. This file is added in the memory of an FPGA to replace a real-time receiving process of a GPS receiver.
- FPGA target: This will contain the hardware description of the acquisition and the tracking algorithms for a GPS receiver. It contains also a micro-blaze that manages the communication between the user interface and the hardware description of the GPS receiver.

REFERENCES