Infinite dimensional weak Dirichlet processes and convolution type processes

Abstract : The present paper continues the study of infinite dimensional calculus via regularization, started by C. Di Girolami and the second named author, introducing the notion of weak Dirichlet process in this context. Such a process X, taking values in a Banach space H, is the sum of a local martingale and a suitable orthogonal process. The concept of weak Dirichlet process fits the notion of convolution type processes, a class including mild solutions for stochastic evolution equations on infinite dimensional Hilbert spaces and in particular of several classes of stochastic partial differential equations (SPDEs). In particular the mentioned decomposition appears to be a substitute of an Itô's type formula applied to f (t, X(t)) where f : [0, T ] × H → R is a C 0,1 function and X a convolution type processes.
Type de document :
Article dans une revue
Stochastic Processes and their Applications, Elsevier, 2017, 127 (1), pp.325-357. <10.1016/j.spa.2016.06.010>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01330684
Contributeur : Francesco Russo <>
Soumis le : dimanche 12 juin 2016 - 16:20:08
Dernière modification le : vendredi 24 février 2017 - 17:40:39
Document(s) archivé(s) le : mardi 13 septembre 2016 - 10:11:17

Fichiers

FabbriRusso-secondrevision-Giu...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Giorgio Fabbri, Francesco Russo. Infinite dimensional weak Dirichlet processes and convolution type processes. Stochastic Processes and their Applications, Elsevier, 2017, 127 (1), pp.325-357. <10.1016/j.spa.2016.06.010>. <hal-01330684>

Partager

Métriques

Consultations de
la notice

158

Téléchargements du document

20