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Abstract The discrete orthogonal wavelet-Galerkin method is illustrated as an effective method for solving partial differential equations
(PDE’s) with spatially varying parameters on a bounded interval. Daubechies scaling functions provide a concise but adaptable set of basis
functions and allow for implementation of varied loading and boundary conditions. These basis functions can also effectively describe C 0

continuous parameter spatial dependence on bounded domains. Doing so allows the PDE to be discretized as a set of linear equations composed
of known inner products which can be stored for efficient parametric analyses. Solution schemes for both free and forced PDE’s are developed;
natural frequencies, mode shapes, and frequency response functions for an Euler-Bernoulli beam with piecewise varying thickness are calculated.
The wavelet-Galerkin approach is shown to converge to the first four natural frequencies at a rate greater than that of the linear finite element
approach; mode shapes and frequency response functions converge similarly.
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1. Introduction
Mathematical modeling of physical systems often requires the
use of a governing partial differential equation (PDE). Phenom-
ena such as elastodynamics of a beam, heat conduction through a
plate, or fluid flow through a pipe can all be simplified to respec-
tive PDE’s with known analytic solutions. When the system of
interest has greater complexity it is still possible to describe the
system dynamics using a PDE, though complex geometries can
make analytical solutions intractable. In such cases solutions can
be approximated using numerical methods, such as the finite ele-
ment method, the finite difference method, the boundary element
method, method of lines, general Galerkin methods, or multigrid
methods [1, 2, 3].

Relatively recently a new method of solving PDE’s has emer-
ged, known as the wavelet-Galerkin method [4, 5]. Wavelets are
well localized, oscillatory functions which have been shown to
provide a basis on unbounded domains L2.R/ and bounded do-
mains L2Œa; b� [6]. Unlike the Fourier basis, a wavelet basis can
define a sparse representation of piecewise signals, including tran-
sients and singularities [4]. It is hypothesized that these localized
properties of the wavelets make them useful test and weighting
functions for use in bounded domain Galerkin approaches where
problem parameters or field variables feature high gradients or
even C 0 continuity.

A number of wavelet functions have been developed to ac-
centuate desirable characteristics, such as orthogonality, com-
pact support, symmetry, and number of vanishing moments.
References such as Mallat [4], Strang and Nguyen [5], and
Daubechies [7] provide excellent detail on the construction and
theory behind a wide range of popular wavelets.

The plethora of wavelets from which to select has resulted in
extensive literature regarding the wavelet-Galerkin method. For
instance, Williams and Amaratunga provide a review of orthogo-
nal wavelet use in engineering [8] and specifically to solutions
of linear boundary value problems [9]. Ala et al. [10] use semi-
orthogonal spline wavelets to solve the linear electric field inte-
gral, while Joly et al. [11] use wavelet packets to define adaptive
methods of solving linear time dependent PDE’s. The wavelet-
Galerkin method has also been used for nonlinear PDE’s, for
example by Beylkin and Keiser [12] to efficiently capture shock-
like responses in equations described by the semigroup approach.
Chen et al. [13] provide a seminal derivation of the discrete or-
thogonal wavelet-Galerkin method on a bounded interval while
investigating the solution to Burger’s equation, and Lakestani et
al. [14, 15] consider Duffing’s equation with various boundary

conditions using B-spline wavelets. Restrepo and Leaf [16] look
specifically at periodic solutions using orthogonal wavelets. Pe-
riodic wavelets are not generally scale-invariant due to “wrap-
around” thus special consideration is required when changing the
wavelet-scale during the investigation (scale-invariance requires
wavelets at any scale to be a pure dilation of the mother-wavelet).
Pernot and Lamarque [17] also investigate time-periodic systems,
focusing on transient vibrations and stability analysis. Much
work has also been done regarding wavelet-Galerkin solutions
on bounded domains; the standard wavelet-Galerkin formula-
tion requires the use of wavelets which span outside the domain
boundaries thus amendments must be made to the functions to
prevent boundary issues. Beylkin [18], Chen et al. [13], and
Romine and Peyton [19] all investigate the computation of inner
products and other operators of discrete orthogonal wavelets on
bounded domains, while Plonka et al. [20] account for domain
bounds using the Chebyshev transform.

In all the work referenced above, the differential equations
being solved involved constant parameters. Recently Hein and
Feklistova [21] consider a wavelet-Galerkin approach to solving
free-vibration problems involving beams with smoothly varying
properties using Haar wavelets. Solutions to bounded PDE’s
with spatially dependent variables can be difficult to approximate
accurately using standard Fourier-Galerkin methods; if param-
eters differ at the domain boundaries this will act as a jump
discontinuity for the periodic Fourier functions and slow solution
convergence. Other non-periodic polynomial basis (i.e. Legendre,
Chebyshev) can be used effectively for such problems [2, 22],
but if parameter variation is only C 0 continuous, a large number
of polynomials will be required to capture the rapid gradient
changes which again slows convergence. The problem could
also be spatially discretized using a finite element approach, but
the mesh density must be carefully selected to accurately cap-
ture any property variation. In such cases, it is hypothesized
that wavelets may allow for a more efficient representation of
parameter variation.

In the current investigation, a method for solving one-dimen-
sional partial differential equations with C 0 continuous, spatially
dependent variables is illustrated using Daubechies wavelets [7].
Derivations for various boundary and loading conditions are
given, and solution schemes for both homogeneous and forced
equations are detailed.

The paper is broken into three sections. In Section 2 the nota-
tion and relevant theory for orthogonal wavelets is reviewed. In
Section 3 the discrete orthogonal wavelet-Galerkin method is de-
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tailed using transverse vibrations of a Euler-Bernoulli beam as an
illustrative example. Finally, in Section 4 the method is employed
for a clamped-pinned beam with a C 0 continuous, spatially vary-
ing cross-section; the results for both free and forced vibration
are compared to a finite-element approximation to assess the
effectiveness of the method.

2. Notation of Discrete Orthogonal Wavelets
The family of compactly supported orthogonal wavelets were
first reported by Daubechies [7], and have since been utilized in
a number of areas including signal analysis, image compression,
and numerical analysis [5]. As notation for orthogonal wavelets
varies in the literature, a brief review is included below for clarity.

The discrete orthogonal wavelet family is defined by a set of
L filter coefficients fp` W ` D 0; 1; : : : ; L � 1g, where L is an
even integer. The fundamental two-scale equations in wavelet
theory are defined as

�.x/ D

L�1X
`D0

p`�.2x � `/ (1)

 .x/ D

L�1X
`D0

.�1/`p1�`�.2x � `/ (2)

where �.x/ is the scaling function and  .x/ is the wavelet func-
tion, with fundamental support over the finite intervals Œ0; L � 1�
and Œ1�L=2;L=2�, respectively. These equations can be used to
determine the value of the scaling and wavelet function at dyadic
points x D n=2J , n D 0; 1; : : : using the algorithm provided by
Chen et al. [13].

The wavelet filter coefficients p` were derived by Daubechies
to produce scaling and wavelet functions with specific proper-
ties [7, 13], some of which include:

� the area under the scaling function is unityZ 1
�1

�.x/ dx D 1 (3)

� the coefficients sum to two

L�1X
`D0

p` D 2 (4)

� the scaling function and its translates are orthogonalZ 1
�1

�.x/�.x � k/ dx D ı0;k ; k 2 Z (5)

� the scaling and wavelet functions are orthogonalZ 1
�1

�.x/ .x � k/ dx D 0; k 2 Z (6)

� the wavelet function has L=2 vanishing momentsZ 1
�1

xm .x/ dx D 0; m D 0; 1; : : : ; L=2: (7)

A basis of L2.R/ can be formed from the linear spans of
the scaling and wavelet functions at resolution level J , respec-
tively [6]

�J;k.x/ D 2
J=2�.2Jx � k/ k 2 Z (8)

 J;k.x/ D 2
J=2 .2Jx � k/ k 2 Z: (9)

The span of scaling functions at level J is commonly denoted
VJ , while the wavelet span is denoted Wj . The characteristics
of the wavelet basis allows for a multiresolution analysis of a
bounded domain on L2Œa; b� by decomposition of the space into
a chain of closed subspaces with care taken to properly account
for functions at the boundaries [16]

V0 � V1 � V2 � V3 � � � � � L
2Œa; b� (10)

such that

lim
J!1

VJ D L
2Œa; b�: (11)

Noting that WJ is the orthogonal complement to VJ in VJC1

VJC1 D VJ ˚WJ (12)

Equation (10) implies

VJC1 D V0 ˚W0 ˚W1 ˚ � � � ˚WJ : (13)

3. Discrete Orthogonal Wavelet-Galerkin Method
One arguable drawback to orthogonal wavelets is the two-scale
functional form of the fundamental equations (1) and (2). The cor-
responding scaling and wavelet functions are highly non-smooth
and fractal in nature: as one increases the resolution of either
function the shape does not converge but rather continues to
increase in complexity [23]. This makes accurately estimating
inner products of scaling or wavelet functions using numerical
integration or quadrature error prone. Interestingly, the exact
solution to many orthogonal wavelet operators have been derived
using the two-scale relation allowing accurate implementation of
the wavelet-Galerkin scheme [18, 13, 19, 24]. The equation of
motion for a Euler-Bernoulli beam is used below as an illustrative
example of such an implementation.

3.1 Transverse Vibrations of a Euler-Bernoulli Beam
The equation of motion for transverse, damped vibrations of a
clamped-pinned Euler-Bernoulli beam assuming no body forces
is [25]�
E.x/I.x/y;xx.x; t/

�
;xx
C �.x/A.x/ Ry.x; t/

C �.x/A.x/ Py.x; t/ D 0 (14)

where y.0; t/ D y;x.0; t/ D y.Lb; t / D 0 and EIyxx.Lb; t / D

M.t/. It is assumed the loading and displacements are harmonic

y.x; t/ D u.x/ei!t : (15)

Here y is the transverse beam displacement, E is the elastic
modulus, I is the second moment of area, � is the mass per unit
volume, A is the cross-sectional area, Lb is the length of the
beam, � is the damping factor, ! is the frequency of vibration
and i D

p
�1.

The beam in this investigation is assumed rectangular in cross-
section with a base dimension b and height h. As shown in Fig-
ure 1, the variation in height with respect to the x-direction is
only C 0 continuous, due to its piece-wise construction. This
implies both I D 1=12bh3 and A D bh are also C 0 continu-
ous functions of x; all other parameters are assumed to remain
constant. Accounting for the assumed harmonic response and
the spatial dependency of u.x/, I.x/ and A.x/ results in the
following equation of motion

I.x/u;xxxx.x/C 2I;x.x/u;xxx.x/C I;xx.x/u;xx.x/

� ˇ.!/A.x/u.x/ D 0 (16)
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Figure 1. Thickness variation h.x/ of the beam

where

ˇ.!/ D
�!2 � i!�

E
: (17)

The total length of the beam is Lb D 2m. Let the domain x 2
Œ0; Lb� be discretized by 2J points, hence the distance between
discrete points �x is given by �x D Lb=2

J . Furthermore, it
is convenient in the following sections to consider a domain of
Œ0; 1�, thus a change of variable is introduced

x D x=Lb : (18)

3.2 Galerkin Approximation
In accordance with the Galerkin method [2], an approximate trial
solution for u.x/ is introduced using scaling functions at level J
as the test functions

u.x/ Š

2J�1X
kD2�L

uk�J;k.x/ D 2
J=2

2J�1X
kD2�L

uk�.2
Jx � k/ (19)

where J > 0. The limits of summation are selected such that
an approximation of u.x/ can be made for the whole domain
x 2 Œ0; 1�. When x D 0, the summation in Equation (19) in-
volves scaling functions evaluated at integer values �k. The
scaling function �.z/ has only L� 2 non-zero integer values cor-
responding to z D 1; 2; : : : ; L � 2 [13]. Therefore, the only
non-zero �J;k.x/ correspond to k D 2 � L; 3 � L; : : : ;�1.
Similarly when x D 1 the only non-zero values correspond to
k D 2J �LC2; 2J �LC3; : : : ; 2J �1. Therefore the required
summation spans the values k D 2 � L; 3 � L; : : : ; 2J � 1.

It is important to stress that Equation (19) is a reduced basis
approximation of the function u.x/ because no wavelets are
included. According to Equation (13) the exact function can be
represented as

u.x/ D
X

k

uk�J;k.x/C

NX
jDJ

X
`

wj;` j;`.x/ (20)

where N is the maximum resolution given by the sampling rate
of the function u.x/ [4]. As discrete orthogonal wavelet func-
tions are analogous to high-pass filters [5], neglecting the wavelet
terms in Equation (20) is akin to removing portions of the high
frequency content of u.x/, resulting in a smoothed approxima-
tion of the true function. As shown in Equation (10) however,
the scaling function approximation approaches L2Œa; b� as the
level J is increased. Therefore to improve the accuracy of the ap-
proximation the wavelet functions at level J can be included, or
more simply the level of the scaling functions can be increased to
J C 1 as detailed in Equation (12). Restricting the test functions
to scaling functions at a single level simplifies the algorithms
while also providing a reduced basis which is adaptable to the
desired level of accuracy.

Another consideration before continuing with the Galerkin
approach is how to deal with the spatially dependent terms I.x/
and A.x/ from Equation (16). Since the height function h.x/
is piecewise linear, directly substituting this dependence into

the governing equation would result in different equations to be
satisfied depending on the x location. If one considers a more
general case where the height dependence is not piecewise linear,
the Galerkin formulation would require finding the integral of a
triple product of two scaling functions and an arbitrary function
of x (e.g. the integral of the weighting function, test function,
and the I.x/ function). There are a limited set of functions where
this triple product integral can be found exactly [13]; in general
this integral would have to be approximated using numerical
integration which is known to be error prone [23].

The novelty of the proposed approach lies in the decompo-
sition of the spatially varying functions, A.x/ and I.x/, using
discrete orthogonal scaling functions such that

A.x/ Š

2J�1X
jD2�L

Aj�J;j .x/ D 2
J=2

2J�1X
jD2�L

Aj�.2
Jx � j / (21)

I.x/ Š

2J�1X
jD2�L

Ij�J;j .x/ D 2
J=2

2J�1X
jD2�L

Ij�.2
Jx � j /: (22)

The scaling function approximations provide relatively accurate
representations of the piecewise functions due to the vanishing
moment properties in Equation (7) allowing perfect reproduction
of polynomials up to order .L=2� 1/ [13]. This approach results
in a single governing equation, regardless of x location, and the
resulting triple product integrals can be found exactly (see below
for full explanation).

The coefficients Aj and Ij are calculated using the inner
product [4]

Aj D

Z 1

0

A.x/�J;j .x/ dx and Ij D

Z 1

0

I.x/�J;j .x/ dx: (23)

This inner product can be performed using the discrete wavelet
transform (DWT) or fast wavelet transform (FWT) [4, 5]. Atten-
tion must be paid to the calculation of the coefficients near the
boundary x D 0. Standard decomposition requires the scaling
functions to extend into the negative x domain by L � 2 points,
thus a decision on how to represent this boundary must be made.
A number of options exist including scaling function extrapola-
tion [9], symmetric extension [4], or the use of boundary scaling
functions [18, 13, 19]. In the current investigation it is assumed a
symmetric extension is appropriate (i.e. A.�x/ D A.x/); due to
the beam geometry in this problem all the methods listed would
actually provide the same results.

The Galerkin method defines the residualR as the substitution
of Equations (19), (21) and (22) into Equation (16)

R D

2J�1X
jD2�L

2J�1X
kD2�L

h
Ijuk

�
�

.0/
J;j .x/�

.4/

J;k
.x/C 2�

.1/
J;j .x/�

.3/

J;k
.x/

C�
.2/
J;j .x/�

.2/

J;k
.x/
�
� ˇ.!/Ajuk

�
�

.0/
J;j .x/�

.0/

J;k
.x/
�i

(24)

where the superscript (n) refers to the order of differentiation.
The nth derivative of the scaling function �.n/

J;k
.x/ is defined as

�
.0/

J;k
.x/ D �J;k.x/ (25)

�
.n/

J;k
.x/ D

dn�J;k

dxn
.x/ D

d
dx
�

.n�1/

J;k
.x/ (26)

By amalgamating Equations (8), (18) and (26), and accounting
for the vanishing moment condition in Equation (7), it is possible
to write

�
.n/

J;k
.x/ D

2J=2

�xn
�.n/.2Jx � k/; n D 0; 1; : : : ; L=2 � 1 (27)
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It is important to note the limit of n D L=2� 1 due to the vanish-
ing moment condition; in the current investigation where a fourth-
order derivative is required this condition implies a minimum
scaling function order of L D 10. A method for determining
values of the scaling function and its derivatives at dyadic points
x D k=2J is given by Chen et al. [13].

Continuing with the Galerkin method, scaling functions of
level J are selected as the weighting functions and the inner
product of the residual and the weighting functions is set to
zero [2]Z 1

0

R�J;`.x/ dx D 0; ` D 2 � L; 3 � L; : : : ; 2J
� 1 (28)

which, using Equation (24), results in

2J�1X
jD2�L

2J�1X
kD2�L

�
Ijuk

�
a`;j;k C 2b`;j;k C c`;j;k

�
�ˇ.!/Ajuk.d`;j;k/

�
D 0 (29)

for ` D 2 � L; 3 � L; : : : ; 2J � 1, where

a`;j;k D

Z 1

0

�J;`.x/�
.0/
J;j .x/�

.4/

J;k
.x/ dx (30)

b`;j;k D

Z 1

0

�J;`.x/�
.1/
J;j .x/�

.3/

J;k
.x/ dx (31)

c`;j;k D

Z 1

0

�J;`.x/�
.2/
J;j .x/�

.2/

J;k
.x/ dx (32)

d`;j;k D

Z 1

0

�J;`.x/�
.0/
J;j .x/�

.0/

J;k
.x/ dx: (33)

Chen et al. refer to triple product integrals of this form as three-
term connection coefficients [13] and show that the exact solution
to these proper integrals can be found. Reference [26] suggests
improved algorithms for calculation of these connection coef-
ficients. The standard notation for the three-term connection
coefficients is

�
m;n
j;k
.x/ D

Z x

0

�.y/�.m/.y � j /�.n/.y � k/ dy (34)

which requires Equations (30) to (33) to be written as

a`;j;k D
2J=2

�x4

�
�

0;4
j�`;k�`

.2J
� `/ ��

0;4
j�`;k�`

.�`/
�

(35)

b`;j;k D
2J=2

�x4

�
�

1;3
j�`;k�`

.2J
� `/ ��

1;3
j�`;k�`

.�`/
�

(36)

c`;j;k D
2J=2

�x4

�
�

2;2
j�`;k�`

.2J
� `/ ��

2;2
j�`;k�`

.�`/
�

(37)

d`;j;k D 2
J=2
�
�

0;0
j�`;k�`

.2J
� `/ ��

0;0
j�`;k�`

.�`/
�
: (38)

Finally, Equation (29) can be written in matrix form as

ŒG � ˇ.!/H�uk D 0 (39)

where

G`;k D
2J=2

�x4

2J�1X
jD2�L

Ij

h�
�

0;4
j�`;k�`

.2J
� `/ ��

0;4
j�`;k�`

.�`/
�

C 2
�
�

1;3
j�`;k�`

.2J
� `/ ��

1;3
j�`;k�`

.�`/
�

C
�
�

2;2
j�`;k�`

.2J
� `/ ��

2;2
j�`;k�`

.�`/
�i

(40)

and

H`;k D 2
J=2

2J�1X
jD2�L

Aj

�
�

0;0
j�`;k�`

.2J
� `/ ��

0;0
j�`;k�`

.�`/
�

for k; ` D 2 � L; 3 � L; : : : ; 2J � 1:

It should be noted that the three-term connection coefficients
are parameter independent, thus they can be stored in matrix form
and reused efficiently for parametric analyses or even different
PDE’s requiring the same scaling function derivative combina-
tions. This makes the wavelet-Galerkin method an efficient tool
overall.

3.3 Imposing Boundary Conditions
The final step before a solution can be found involves prescription
of the appropriate boundary conditions on the basis functions. As
shown in Figure 1, the beam in this investigation is clamped at
x D 0 and pinned at x D 1, which is equivalent to u.0/ D 0,
u;x.0/ D 0, u.1/ D 0, and E OIu;xx.1/ D 0 respectively, where
OI is the moment of inertia at x D 1. Consider the clamped
boundary conditions at x D 0; using Equation (19) these can be
written in the scaling function domain as

u.0/ D 2J=2

2J�1X
kD2�L

uk�.�k/ D 0 (41)

u;x.0/ D
2J=2

�x

2J�1X
kD2�L

uk�
.1/.�k/ D 0 (42)

Noting that �.x/ and �.1/.x/ have non-zero values for integers
x D 1; 2; : : : ; L � 2 only [13], these equations simplify to

�1X
kD2�L

uk�.�k/ D 0 (43)

�1X
kD2�L

uk�
.1/.�k/ D 0: (44)

Now consider the pinned boundary condition at x D 1. If the
end is free of any applied moments, the BC’s can be written

u.1/ D 2J=2

2J�1X
kD2�L

uk�.2
J
� k/ D 0 (45)

E OIu;xx.1/ D
2J=2

�x2
E OI

2J�1X
kD2�L

uk�
.2/.2J

� k/ D 0: (46)

Accounting again for the non-zero values of �.x/ and �.2/.x/,
these can be simplified to

2J�1X
kD2J�LC2

uk�.2
J
� k/ D 0 (47)

2J�1X
kD2J�LC2

uk�
.2/.2J

� k/ D 0: (48)

If instead there is a moment M.t/ DMei!t applied at x D 1, as
depicted in Figure 1, the respective BC becomes

2J�1X
kD2J�LC2

uk�
.2/.2J

� k/ D
M�x2

2J=2E OI
: (49)
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3.4 Free Vibrations Solution Scheme
The natural frequencies of the beam can be found by assessing
the homogeneous solution to Equation (39). This requires setting
the forcing moment M D 0 and the damping factor � D 0.

Equation (39) is a generalized eigenvalue problem in ˇ.!/:
the eigenvalues can be used to determine the natural frequen-
cies of the system !n using Equation (17); the corresponding
eigenvectors can be used to compute the modeshapes using Equa-
tion (19). Thus the four boundary conditions (43), (44), (47)
and (48) must be imposed in a manner so as not to disturb the
generalized eigenvalue form.

One efficient approach is to constrain four participation fac-
tors using the boundary conditions. To accomplish this it is
convenient to first reorder Equation (39) so that

�
OG � ˇ.!/ OH

� �um
k

us
k

�
D 0 (50)

where um
k

are the master scaling function participation factors
and us

k
are the slave factors which will be constrained. OG and

OH are the reordered G and H matrices, respectively. The size of
um

k
is .2J C L � 6/ � 1 and us

k
is 4 � 1 to account for the four

boundary conditions.
Boundary conditions (43), (44), (47) and (48) can be used to

form the constraint equations�
um

k

us
k

�
D OCum

k (51)

where OC> D ŒI>;C>� is the constraint matrix. I is an identity
matrix of order .2J CL� 6/ and C is a 4� .2J CL� 6/ matrix
derived from Equations (43), (44), (47) and (48). The slave partic-
ipation factors should be selected such that the condition number
of C is minimized; for the current boundary conditions the slave
factors are u�1, u�2, u2J�2, u2J�1. A sample calculation of C
is given in the Appendix.

Substituting Equation (51) into (50) and pre-multiplying by
the transpose of OC results in the constrained system of equations

OC>
�
OG � ˇ.!/ OH

�
OCum

k D 0 (52)

thus the boundary conditions have been imposed without dis-
turbing the generalized eigenvalue form of the equation. The
eigenvector coefficients for the slave participation factors can be
determined using Equation (51).

3.5 Forced Vibrations Solution Scheme
As an example of how loading can be incorporated in the model,
a harmonic moment loading condition at the right end of the
beam is considered as shown in Figure 1. It should be noted that
more general loading conditions, such as distributed loads, can
also be included using the wavelet-Galerkin method.

Similar to the free response case, the system of equations (39)
is constrained using the appropriate boundary condition (43),
(44), (47) and (49). Due to the applied moment in Equation (49)
the constraint equation must be amended to�

um
k

us
k

�
D OCum

k C
OF: (53)

OF is of size .2J C L � 2/ � 1 and all entries are zero except
for the row associated with Equation (49) in C where the en-
try is .M�x2/=.2J=2E OI /. The resulting constrained system of
equations is

OC>
�
OG � ˇ.!/ OH

�
OCum

k D �
OC>
�
OG � ˇ.!/ OH

�
OF (54)

This system can be solved using standard matrix inversion for
participation factors um

k
. The solution y.x; t/ for the beam can be

found by solving for u.x/ using Equation (19), finding y.x; t/ D
u.x/ei!t , and finally transforming back to the x domain using
x D Lbx.

4. Analysis and Discussion
The discrete orthogonal wavelet-Galerkin method is employed to
approximate the transverse vibrations of an Euler-Bernoulli beam
as described by Equation (14). The beam, whose properties are
given in Table 1, varies in thickness as shown in Figure 1. The
10 coefficient Daubechies scaling function (DB10) is used for all
investigations; the level J is adjusted to determine the effect on
prediction accuracy.

Parameter Free Vibration Forced Vibration
E (GPa) 70 70
� (kg=m3) 2700 2700
b (m) 0.1 0.1
Lb (m) 2.0 2.0
� (N s=m4) 0 5�104

M (N m) 0 10

Table 1. Beam properties

A finite element model (FEM) comprised of linear beam
elements [27] is also constructed using the beam parameters
listed in Table 1 to act as a comparison model.

4.1 Free Vibration
Figure 2 shows the convergence of the first four natural fre-
quencies using the finite element model (FEM) and the wavelet-
Galerkin model (W-G); the number of unknowns shown equate
to J D 5; 6; 7; 8.
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Figure 2. Convergence of the first four natural frequencies using the
finite element method (FEM) and wavelet-Galerkin method (W-G)

As shown in the figure, the wavelet-Galerkin approach con-
verges to a solution more rapidly than the finite element method.
This is attributed to the scaling functions’ ability to better rep-
resent the piecewise variation in cross-sectional area and sec-
ond moment of inertia than can the linear finite elements. The
FEM discretization results in a step-wise approximation of the
thickness variation thus a fine mesh is required to converge to a
solution. The vanishing moment properties of the Daubechies
scaling functions allow perfect reconstruction of the linear varia-
tions in area and cubic variation in moment of inertia with only
localized error at the piecewise joints. These joint locations have

5



discontinuous slope and require higher level wavelets to perfectly
reconstruct, hence the convergence as J is increased.

For this example, computational speed is essentially propor-
tional to the number of unknowns. The element matrices can be
pre-computed and stored for the FEA method in a similar way to
the connection coefficients for the W-G method. The matrices
of interest are relatively small thus the time required for the pre-
and post-multiplication in Equation (52) and (54) is negligible.
The computational time required for the FEA or W-G method is
thus governed by the solution to the eigenvalue or linear algebra
problem, which is the same for both methods. It is currently un-
clear how the wavelet-Galerkin method would scale up to much
larger problems; this is an active area of research.

The associated normalized displacement mode shapes pre-
dicted by FEM and W-G at J D 7 are shown in Figure 3. The
predicted mode shapes from both models overlay each other
(< 0:1 % relative error rms), attesting to the validity of the pur-
posed wavelet-Galerkin method.
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Figure 3. First four mode shapes predicted by the finite element method
(FEM) and wavelet-Galerkin method (W-G) using 128 degrees of free-
dom (J D 7)

4.2 Forced Vibration
The frequency response function for the displacement of the
midspan of the beam (x D 1 m) due to a 10 N m harmonic mo-
ment at x D 2 m is provided in Figure 4. Included in the figure
is the FEM prediction for 128 degrees of freedom and the W-G
prediction at levels J D 4; 5; 6. The peaks of the curve corre-
spond to the natural frequencies shown in Figure 2; these peaks
are bounded due to the damping included for this portion of the
investigation (see Table 1).

The plot shows how the wavelet-Galerkin solution converges
rapidly as the level J is increased. As in the free vibration
case, the values of the natural frequencies are over predicted at
smaller J , most noticeably for higher modes. This is attributed to
an inadequate number of scaling functions necessary to precisely
reconstruct the increasingly rapid changes in slope of the higher
modes, as well as the thickness variation of the beam.

5. Conclusion
The discrete orthogonal wavelet-Galerkin method is introduced
as an efficient method of solving partial differential equation
(PDE) with spatially varying parameters on a bounded domain.
The Daubechies scaling functions provide a concise but adaptable
set of basis functions: increasing the level of the scaling functions
results in a more encompassing subspace of L2Œa; b� and thus
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Figure 4. Frequency response function at midspan (x D 1 m) under
a 10 N m harmonic moment acting at x D 2 m

a more accurate approximation to the solution of the PDE. The
spatial dependence of the parameters can be described using
the same scaling functions, which allows the PDE to be written
as a set of linear equations composed of three-term connection
coefficients. The connection coefficient matrices are parameter
and even problem independent thus they can be stored and reused
for efficient parametric analyses of various PDE’s.

An example problem of transverse vibrations of a pinned-
clamped Euler-Bernoulli beam with piecewise varying thick-
ness is used to describe the method. Solution schemes for both
homogeneous and forced PDE’s are developed for a number
of boundary conditions. The natural frequencies computed us-
ing the wavelet-Galerkin method are shown to converge more
rapidly than do those predicted by a linear finite element model
with equivalent degrees of freedom. The associated modeshape
are also shown to match between the two models. Finally, the
frequency response function predicted by the wavelet-Galerkin
method is shown to converge as the level of scaling function is in-
creased as expected. These results suggest the wavelet-Galerkin
method is well suited to approximating the solution of PDE’s
with spatially dependent parameters.
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Appendix
Here a sample constraint matrix C from Section 3.4 is constructed
using the boundary conditions given in Equations (43), (44), (47)
and (48) for L D 6 and J D 4. Substituting these parameters
into the respective boundary condition equations results in"
�.0/.4/ �.0/.3/

�.1/.4/ �.1/.3/

#�
u�4

u�3

�
C

"
�.0/.2/ �.0/.1/

�.1/.2/ �.1/.1/

#�
u�2

u�1

�
D

�
0

0

�
(55)

and"
�.0/.4/ �.0/.3/

�.2/.4/ �.2/.3/

#�
u12

u13

�
C

"
�.0/.2/ �.0/.1/

�.2/.2/ �.2/.1/

#�
u14

u15

�
D

�
0

0

�
: (56)

Solving for the slave participation factors gives�
u�2

u�1

�
D

�
a11 a12

a21 a22

� �
u�4

u�3

�
and

�
u14

u15

�
D

�
b11 b12

b21 b22

� �
u12

u13

�
(57)
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where

a11 D .�
.0/.1/�.1/.4/ � �.0/.4/�.1/.1//=�a (58)

a12 D .�
.0/.1/�.1/.3/ � �.0/.3/�.1/.1//=�a (59)

a21 D .�
.0/.4/�.1/.2/ � �.0/.2/�.1/.4//=�a (60)

a22 D .�
.0/.3/�.1/.2/ � �.0/.2/�.1/.3//=�a (61)

b11 D .�
.0/.1/�.2/.4/ � �.0/.4/�.2/.1//=�b (62)

b12 D .�
.0/.1/�.2/.3/ � �.0/.3/�.2/.1//=�b (63)

b21 D .�
.0/.4/�.2/.2/ � �.0/.2/�.2/.4//=�b (64)

b22 D .�
.0/.3/�.2/.2/ � �.0/.2/�.2/.3//=�b (65)

and

�a D �
.0/.2/�.1/.1/ � �.0/.1/�.1/.2/ (66)

�b D �
.0/.2/�.2/.1/ � �.0/.1/�.2/.2/: (67)

Combining these gives

8̂̂<̂
:̂
u�2

u�1

u14

u15

9>>=>>; D
2664
a11 a12 0 � � � 0

a21 a22 0 � � � 0

0 � � � 0 b11 b12

0 � � � 0 b21 b22

3775

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

u�4

u�3

u0

u1

:::

u11

u12

u13

9>>>>>>>>>>>=>>>>>>>>>>>;
(68)

or us
k
D Cum

k
.
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