
HAL Id: hal-01330497
https://hal.science/hal-01330497

Submitted on 21 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

MergeIA: A Service for Dynamic Merging of Interfering
Adaptations in Ubiquitous System

Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan
Rey, Michel Riveill

To cite this version:
Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey, Michel Riveill.
MergeIA: A Service for Dynamic Merging of Interfering Adaptations in Ubiquitous System. The 5th
International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Nov
2011, Lisbon, Portugal. �hal-01330497�

https://hal.science/hal-01330497
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

MergeIA: A Service for Dynamic Merging of Interfering Adaptations
in Ubiquitous System

Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey, Michel Riveill
University of Nice Sophia-Antipolis

Nice, France
{fathalla, stephane.lavirotte, jean-yves.tigli, gaetan.rey, michel.riveill}@unice.fr

Abstract— The composition of adaptations with system’s appli-
cation does not always yield to the desired behavior. Each
adaptation occurs correctly when it is separated but it may in-
teract with other adaptations when they are combined. These
interactions can affect the final behavior after adaptation; we
call this an interference. This paper presents an on-going work,
which aims to build a generic approach for the dynamic resolu-
tion of adaptation interferences in ubiquitous applications. We
represent application and adaptation details by graphs; then we
apply graph transformation rules on these graphs to resolve
interferences. This allows us to express our approach inde-
pendently of any implementation details of applications and
adaptations.

Keyword-software composition; self-adaptation; interfe-
rence resolution; graph transformation.

I. INTRODUCTION
Nowadays, ubiquitous systems are present in several en-

vironments. In these cases, the user does not have to carry
out most actions; the system reacts automatically and trans-
parently to its changes. The computing facilities in
ubiquitous system are used to anticipate user needs and to
make information being available anywhere and at anytime.
The goal of this work is to create applications in ubiquitous
computing environment. Generally, software application
relies on processing units that interact together. Lot of pro-
gramming paradigms produce ubiquitous applications
(component based), which can be represented using graphs
where nodes are the processing units and edges are the inter-
actions between these units. In ubiquitous computing, some
processing units are embedded on sensors and mobile devic-
es of our everyday life. These devices constitute the software
infrastructure, on which the ubiquitous system is based. In-
deed, the functionalities of such devices, which are generally
managed as software services, may unexpectedly appear or
disappear. Therefore, ubiquitous systems must be adapted to
these infrastructure changes. Due to the mobility of devices,
we cannot anticipate in advance which adaptation will be
applied. Therefore, adaptation should be independent of each
other, which allow them to be applied without a priori
knowledge of other adaptations. In ubiquitous computing,
infrastructure changes occur during execution; so, applica-
tion should be adapted at runtime: it is the dynamic
adaptation [1]. Our adaptation acts on application graph by
adding and/or deleting edges and nodes (Figure 1).

Problem: In this paper, we focus on dynamic adaptation
of applications to their infrastructure changes. We have seen
that adaptations should be independent of each other. So,
when they are composed with the graph of the initial applica-
tion, interferences may occur. There are several definitions
of interference. In our work, we detect interference if two (or
more) adaptations try to modify a common point in the graph
of the initial application (by adding and/or deleting edges
and/or nodes). So, interfering adaptations share edges and/or
nodes together and with initial graph.

Figure 1. Dynamic adaptataion of ubiquitus application.

Scenario
In this paper, we will use the following scenario to illus-

trate the problem of interference between adaptations. We
expose also the process of our approach through this exam-
ple. “The increase of energy cost encourages the use of an
optimizing policy. For this purpose, Nathalie uses in her
house a system of intelligent power management. The first
adaptation occurs when she enters her house. The system
would enable the switches to open the shutters if the outside
brightness is sufficient. Otherwise, it turns on the light.
Nathalie lives with her grandmother who has vision prob-
lems. When the grandmother enters a room, the system will
turn on the light”.

When Nathalie enters with her grandmother the system
will be in interference because no priority has been specified
between users (one cannot know all users in a ubiquitous
environment). If there is enough brightness outside, the sys-
tem opens the shutters for Nathalie? Turns on the light for

the grandmother? Or will it do the two actions? “In addition,
Nathalie uses in her house special light. When the light re-
ceives an event it will inverse his state”. If there is not
enough brightness outside the light receives two events. The
system will send an event to turn on the light for Nathalie
and another event to turn on the light for the grandmother.
The light will be turned off despite there is not enough out-
side brightness. How to solve these interferences?

The paper is organized as follows: next section briefly
describes some related work to detect their limits. In Section
3, we introduce our approach to identify and resolve inter-
ferences; we also apply our solution on the previous
example. In Section 4, we present implementation details
and we evaluate the response time of our approach. Finally,
Section 5 concludes and opens the way for future works.

II. RELATED WORK

Despite the independence between adaptations, some in-
terference may occur when they are composed. Baresi et al.
[8] focus on the ability of dynamic reconfiguration of SOA
(Service Oriented Architecture) application using graph as
platform abstraction model. They propose several adapta-
tions at graph level (adding/deleting nodes and links). In
their approach, there is no interference because they define
explicitly the order of applying adaptation. However, in the
field of ubiquitous computing, we cannot predict which ad-
aptation will be applied because it depends on infrastructure
changes due to mobility for example.

Other works [5] [7] [11] focus explicitly on the problem
of adaptation interference detection. Ciraci et al. [11] use a
graph formalism to identify interference. Graphs represent
the several states of a program according to different order of
adaptations applying. They detect interference if the final
state changes according to the order of adaptation applying.
The motivation of Whittle et al. [5] and Mehner et al. [7]
was the early detection of interference within the software
engineering process. To find potential inconsistencies, they
analyze adaptation interactions at the level of requirements
modeling. To do that, they use graph transformation tech-
nique since it includes a mechanism called Critical Pair
Analysis [10]. This mechanism allows interference detect-
ing. However, it is not enough to detect interference without
suggesting a resolution.

In order to address this limitation, Zhang et al. [6] pro-
poses an explicit approach to resolve interference at design
time. They describe how adaptation precedence (before, af-
ter) can be specified at modeling level in order to produce
correct behavior. So, they reduce interference before pro-
ceeding to the implementation. However, the application in
ubiquitous computing field needs runtime interference reso-
lution.

Runtime resolution of adaptation interference was pro-
posed by Greenwood et al. [9]. They investigate a solution to
interference in the context of AO-Middleware platform. To
do that, they define “interaction contract” which are used at
runtime to assure that interference does not occur. These
contracts express several strategies to resolve interferences
such as priority and precedence and logical operator (to
combine contracts). Despite the use of these contracts at

runtime, the specification is made by the developer who
must include all dependent relationships between the adapta-
tions. If an automatic resolution is not possible, a notification
is sent to the developer to include this case into the contract.

The strategy of interference resolution may depend on
the runtime state of application. Dinkelaker et al. [12] pro-
pose to dynamically change the composition strategies
according to the application context. They define an exten-
sible ordering mechanism which can be adapted at runtime.
This type of approach is not suitable for ubiquitous compu-
ting because we should specify at design time the
relationship between all adaptations according to different
context state. If we add a new adaptation to the system, the
developer should study its dependence with the other adap-
tations and also the context, which is a complex task with a
high combinatorial.

Through the study of works, it is clear that there is no
implicit approach for solving interference without develop-
er’s intervention. Our proposed approach is to merge
interfering adaptation without preventing interferences ex-
plicitly. We guarantee independence between adaptations
that can be composed whatever their order, and that can be
added or removed easily to the system at runtime. The first
work on this subject was developed in our team [2]. The
essential contribution was the definition of the composition
mechanism, which includes interference resolution process.
The composition mechanism is limited to the language de-
fined in [2]. It is very difficult to extend it to support new
known semantic operators due to an implementation with an
inference engine in Prolog. In addition, the representation of
the adaptations is not homogeneous with the representation
of the application. The adaptations are specified in the lan-
guage but we work on assemblies of components which are
represented as graphs. Therefore, it is necessary to make
two transformations from graph to the language (syntactic
tree), then from the language to the graph form. We think
that it would be relevant to remain closer to the execution
model (i.e., the level of the graph forms). Then, it could be
interesting to explain these adaptations as graphs. The use of
graphs will allow us to have a mechanism of interference
resolution independent from the language of adaptations.

III. GLOBAL APPROACH

The aim of this research is to provide automatic adapta-
tion interference composition that replaces the mechanism
of precedence. The composition process occurs at runtime
and is independent of adaptations that are in interference.

A. Process of interference resolution
The process of our approach is given in Figure 2. Each

adaptation is represented as a graph. All graphs will be su-
perposed to the graph of the initial application. We obtain a
graph G, which represents the application of all possible
adaptations on initial graph. Our composition mechanism is
independent from application’s implementation because it
occurs on graph G, which abstracts all details.

The first step is the interference detection process. Since
adaptations are independent; they can interfere each other.

http://www.springerlink.com/content/?Author=Luciano+Baresi

Figure 2. Composition process for interference resolution

So, we add a specific component  (Figure 3) to mark these
points in order to check off interference. In the scenario
presented above, we have two adaptations: one for Nathalie
and another one for her grandmother. When Nathalie goes
into home with her grandmother, these adaptations will be
applied. The interference is presented in Figure 3.

Figure 3. Graph transformation rule for conditionals merging

Next step is interference resolution. Since we work at graph
level, the resolution of interference will be a transformation
of this graph G to a new graph G' where all problems were
resolved. Therefore, we need to define graph transformation
rules that specify how the problem will be resolved.

B. Graph transformation and type Graph
The rewriting of a graph G into a graph G' is a substitu-

tion of a subgraph L of G by a subgraph R, where L is the
left-hand side of the rule and R is the right-hand side. There-
fore, a rewrite rule has the form of p:LR and is applicable
to a graph G if there is an occurrence of L in G. The applica-
tion of the rule implies to: (1) remove the graph L and
preserve the graph Lra (is the graph part that is not
changed.) and (2) add the graph corresponding to Ris the gr
(define the part to be created).

To apply graph transformation rules, we have to define
the type graph. In our graph, we have two classes of nodes:
Blackbox nodes represent devices. They encapsulate the
functionalities that can be only accessed by their ports,
without knowing their semantics. Whitebox nodes partially
explain their semantics.

To define node, we need to specify two attributes: CN(n)
is the node identifier and CTy(n) is node type (blackbox or
whitebox). Graph’s edges represent interaction between
nodes. On the edge, we specify a label to indicate the se-
mantic of interaction (for example, the conditional behavior
IF has three parts, so we put on the outgoing arc one of the
three following labels: Condition, Then, Else).

C. MergeIA: Merging Interferering Adaptataion
Until now, we have identified the interference between

adaptations. Our approach is to merge adaptations that inter-
fere and not to explicitly prevent interferences. Therefore
we propose the merging of adaptations from the knowledge
of the semantics of Whitebox nodes using graph transfor-
mation rules. This role is attributed to MergeIA service.

MergIA (Merge Interfering Adaptation) service includes
several graph transformation rules which define how to
merge all known semantic nodes. We defined a set of merg-
ing rules which derived from previous works [2]. Our
composition is symmetric. This property consists of three
sub-properties: associativity, commutativity and idempoten-
cy. It means that there is no order in which composition
process should be applied. It allows adaptations to be inde-
pendent of each other and that they can be composed in an
unanticipated manner. Therefore, these properties allow the
weaving process to be deterministic.
We continue with the defined scenario. To resolve the iden-
tified interference, MergIA uses the graph transformation
rules for the merging of the conditional behavior IF and a
message (Figure 4).

Figure 4. Graph transformation rule for conditionals merging

The conditional behavior “IF” is specified by three parts.
“X” node represents the condition to be evaluated (in our
scenario X is unified to blackbox node Brightness). When
this condition is True, we execute the node “A” (the mes-
sage open the shutter). Otherwise “B” will be executed
(turn on the light for Nathalie). When two adaptations add
two bindings to blackbox node “N” (Switch), (binding to IF
behavior and binding to a message in L graph), the result of
the merging operation consists in the duplication of the

Condition

Condition

Then

Else

Else

Then

Adaptation
Graphs

Adaptations + Application

Adapted Application
Graph

message “B” into the two sub part of IF behavior (Then and
Else in graph R). Therefore, we propagate the merging op-
erator  (Figure 4) and we obtain two merging operation.
The first operation is the merging of the node “A” and “B”.
The second operation merges “B” and “B”. This propagation
allows other rules to be applied according to the semantic of
nodes “A” and “B”. In our scenario “A” and “B” are meth-
od calls (message). The result of the merging of two
different messages consists to add a parallel (PAR) operator
between the two bindings. The merging of the same mes-
sage produces a single link to this message. The interference
resolution step produces the graph of application given in
Figure 5.

Figure 5. Final application after interfering adaptations resolution

In Figure 5, if there is enough outside brightness, we turn on
the light for the grandmother in parallel with the opening of
shutter. After that, the decision is left to the grandmother.
She can turn off the light if there is enough brightness for
her. Else (if there is not enough outside brightness) the light
will be turned on (we send a single event to the light). So we
solved the interference problem defined in our example sce-
nario.

IV. IMPLEMENTATION AND EVALUATION

In our implementation, we consider service-oriented
middleware [14] in order to manage heterogeneity of the
devices included in the infrastructure of an application. Each
application is embedded into a service which is orchestrated
using component assemblies [13]. The appearances and dis-
appearances of services are directly implemented in the
appearance and disappearance of components in the plat-
form [4].

Our approach for adaptation interference resolution was
implemented as service MergeIA. If we detect interference,
MergeIA receives the XML (Extensible Markup Language)
description of the graph of the application. To resolve inter-
ference, it uses the graph transformation rules defined in his
rule database. We defined five known semantic nodes.
Therefore, we have 16 rules in the rule Database (due to the
property of symmetric defined above). The graph transfor-
mation rules used in this paper can be formulated using

several tools. In fact, we have used AGG (Attributed Graph
Grammar System) [3] to carry out the transformations. As a
consequence, we use its algorithms to resolve interference.

The complexity of the current implementation is closely
related to AGG because most of the composition time is
passed into the resolution interference step. The most com-
plex operation during the application of a transformation
rule is the search of a match in the graph (find an occurrence
of L in G). The complexity of this operation is O(2NNode)
with NNode is the number of node in the left-side graph of
the rule to apply. If we execute one transformation rules to
resolve each interference the complexity of MergeIA will
be: O(NbInterf*2NNode). From this complexity, we can de-
duce the following mathematical model: R =
𝑎𝑎1∑ 2𝑛𝑛𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑘𝑘=1 + 𝑎𝑎2 ; where nk is the number of L graph
node of the rule to apply, nbInterf is the number of interfer-
ence, a1 and a2 are the parameters of the model and R is the
duration of the interference detection and resolution.

Figure 6. MergeIA: Response Time according to number of interference

We evaluated our approach in term of performance with
some experiments on the duration of the interference resolu-
tion step over components assemblies randomly generated.
They were conducted on a standard personal computer (In-
tel® Core TM2, 3GHz). For this purpose, various types of
components have been instantiated randomly at runtime, in
order to randomly activate two adaptations (described above
in Figure 3). Our experiments involved a set of instances of
adaptation, with their cardinality ranging from 0-100. The
number of considered interference ranged from 0 to 50.
Several experiments were made, and the Figure 6 provides a
comparison between the mathematical model and experi-
mental values. From these experiments, we can extract the
following values for the model: a1=0,446 and a2=0,02 10-3.

V. CONCLUSION AND FUTURE WORK
In this paper, we presented an approach for application’s

self-adaptation in ubiquitous computing domain. We pro-
posed a general mechanism to resolve interference that can
occur between adaptations. The solution proposed is to

merge the interfering adaptations. This is possible thanks to
known semantic operators. Whatever the formalism chosen
to specify adaptations, the merger considers them as graphs
to automatically compute the solution. To do this, the Mer-
geIA service uses graph transformations mechanism.

Our future work will be to study how we can add new
semantics and extend MergeIA service. Actually we consid-
er only output port to detect interferences because our
defined operators have a single input port and multiple out-
put ports. If we introduce new operators with multiple input
ports we will be able to resolve interference at input port of
components. Therefore we will obtain a general approach
that considers two interference cases: Output and Input port.

ACKNOWLEDGMENT
This work is part of the Continuum Project (French National
Research Agency) ANR-08-VERS- 005.

REFERENCES
[1] A. Rasmus, I. Schaefer, M. Trapp, and A. P. Heffter.

“Component-based modeling and verification of dynamic
adaptation in safety-critical embedded systems”. In Journal
ACM Transactions on Embedded Computing Systems
(TECS) Volume 10 Issue 2, 2010.

[2] J. Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-Foo-
Wo, E. Callegari, and M. Riveill. “WComp Middleware for
Ubiquitous Computing: Aspects and Composite Event-based
Web Services”. In Annals of Telecom, pp. 197-214, 2009.

[3] G. Taentzer. “AGG: A graph transformation environment for
modeling and validation of software”. Lecture Notes in
Computer Science, vol. 3062, pp. 446–453, 2004.

[4] H. Cervantes and R. S. Hall. “Autonomous adaptation to
dynamic availability using a service-oriented component
model”. In Proceding of the 26th International Conference on
Software Engineering. pp. 614-623. USA , 2004

[5] J. Whittle, P. Jayaraman, A. Elkhodray, and A. Moreira.
“Mata: A Unified Approach for Composition UML Aspect

Models Based on Graph Transformation”. In Transaction on
AOSD V. p191-237, Berlin 2009.

[6] J. Zhang, T. Cottenier, A. Van Den Berg, and J. Gray.
“Aspect composition in the motorola aspect-oriented
modeling weaver” . In Journal of Object Technology , 2007.

[7] K. Mehner, M. Monga, and G. Taentzer. “Analysis of aspect-
oriented Model Weavings”. In Transaction on AOSD V.
p235-263, Berlin 2009.

[8] L. Baresi, R. Heckel, S. Thöne, and Daniel Varro. “Style-
based modeling and refinement of service-oriented
architectures A graph transformation-based approach”.
Special Issue Paper in Software and Systems Modeling
Volume 5, Number 2, 187-207.

[9] P. Greenwood, B. Lagaisse, F. Sanen, G. Coulson, A. Rashid,
E. Truyen, and W. Joosen. “Interactions in AO middleware”.
In Proceding of Workshop on ADI, ECOOP, 2007.

[10] R. Heckel, J. Kuster, and G. Taentzer. “Confluence of typed
attributed graph transformation systems”. In Journal Graph
Transformation, pp. 161–176, Springer 2002.

[11] S. Ciraci, W. Havinga, M. Aksit, C. Bockisch, and P. van den
Broek. “A graph-based aspect interference detection approach
for UML-based aspect-oriented models”. In Transactions on
Aspect-Oriented Software Development VII, pp. 321–374,
2010.

[12] T. Dinkelaker, M. Mezini, and C. Bockisch. “The art of the
meta-aspect protocol”. In Proceedings of the 8th ACM
international conference on Aspect-oriented software
development, pp. 51–62. ACM, 2009.

[13] V. Hourdin, J. Y. Tigli, S. Lavirotte, G. Rey, and M. Riveill.
“SLCA, composite services for ubiquitous computing”. In
Proceding of the 5th International Conference on Mobile
Technology Applications and Systems(Mobility), 2008.

[14] M. Issarny, N. Caporuscio, and Georgantas. “A perspective
on the future of middleware-based software engineering”. In
Future of Software Engineering. FOSE'07. pp. 244-258.
IEEE, 2007.

http://www.springerlink.com/content/?Author=Luciano+Baresi
http://www.springerlink.com/content/?Author=Reiko+Heckel
http://www.springerlink.com/content/?Author=Sebastian+Th%c3%b6ne
http://www.springerlink.com/content/?Author=D%c2%b4aniel+Varr%c2%b4o
http://www.springerlink.com/content/1619-1366/
http://www.springerlink.com/content/1619-1366/5/2/

	I. Introduction
	II. Related Work
	III. Global Approach
	A. Process of interference resolution
	B. Graph transformation and type Graph
	C. MergeIA: Merging Interferering Adaptataion

	IV. Implementation and evaluation
	V. Conclusion and Future Work
	Acknowledgment
	References

