Support Measure Data Description for group anomaly detection

Jorge Guevara, Stéphane Canu, R Hirata

To cite this version:
Jorge Guevara, Stéphane Canu, R Hirata. Support Measure Data Description for group anomaly detection. ODDx3 Workshop on Outlier Definition, Detection, and Description at the 21st ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD2015), Aug 2015, Sydney, Australia. hal-01330487
Support Measure Data Description for group anomaly detection

Jorge Guevara
University of Sao Paulo
IME-USP
Sao Paulo, Brazil
jorjasso@ime.usp.br

Stéphane Canu
Normandie Université
St Etienne du Rouvray, France
INSA de Rouen - LITIS
scanu@insa-rouen.fr

R. Hirata Jr.
University of Sao Paulo
IME-USP
Sao Paulo, Brazil
hirata@ime.usp.br

ABSTRACT

We address the problem of learning a data description model from a dataset containing probability measures as observations. We estimate the data description model by optimizing volume-sets of probability measures where each volume-set is defined as a set of probability measures whose representative functions in a reproducing kernel Hilbert space (RKHS) belong to an enclosing ball. We present three data description models, which are functions in a RKHS depending only on some probability measures, named support measures in analogy to support vectors. An advantage of the method is that we do not consider any particular form for the probability measures. We validate our method in the task of group anomaly detection, with artificial and real datasets.

Keywords

Kernel on distributions, One-class classification, support vector data description, embedding of probability measures, mean map, group anomaly detection. MV-set

1. INTRODUCTION

Data description (DD) is the task of building models to depict the common characteristics of objects in some data set aiming to perform machine learning tasks such as anomaly and novelty detection, clustering and classification [21, 24, 23, 30, 4]. The main idea of DD methods is to assume that observations are generated by an underlying unknown distribution. Consequently, a valid approach is to estimate some distribution information from a training dataset. For example, an empirical probability density function, or a density level set, or some information about the density support set.

Very often, DD methods are defined for datasets given by sets of the form: \{x_i\}_{i=1}^N; x_i \in \mathbb{R}^D, where \(N\) is the number of observations in the dataset. However, there is a growing interest in machine learning methods for datasets whose individual observations are clusters, groups or sets of points in \(\mathbb{R}^D\). \[32, 33, 20, 19, 25, 35, 10, 31, 26, 15, 18\]. Such datasets are sets of the form:

\[T = \{s_i\}_{i=1}^N,\]

where \(N\) is the number of observations, each \(s_i\) is a set \(\{x_1^{(i)}, \ldots, x_{L_i}^{(i)}\}\) with cardinality \(L_i\), and \(x_i \in \mathbb{R}^D\). Practical examples of observations taking the form of \(s_i\) are: sets of image features in an image dataset [17]; sets of spatio-temporal features [16]; sets of replicate values in a measurement process [31]; sets describing point wise uncertainty [25, 35]; or sets describing the invariance of some particular object [10].

1.1 Group anomaly detection

Group anomalies can be given by \[32\]: 1) point-based anomalies, defined as being an aggregation of anomalous points; 2) distribution-based anomalies, defined as being an anomalous aggregation of non-anomalous points. In order to construct robust DD models for datasets given by \(T\) and detect group anomalies, DD methods must take into account the distribution information provided by each \(s_i\). Figure 1 shows how the information provided by each local distribution of points is crucial to perform a right description of \(T\).

1.1.1 Related work

Several solutions have been proposed to this kind of estimation, including representing groups by sets of features [3]...
embedding for probability measures. The main concepts presented here are mean map, Hilbert space embedding and kernel on probability measures.

Hilbert space embedding of probability measures [13, 29] gives a way to represent probability measures \(\mu_i \) as functions in a RKHS. Such functions are commonly named as representative functions, mean functions or mean maps. We present them in the following definition.

Definition 1 (Mean map). Let \(\mathbb{P} \) be a probability measure and \(X \sim \mathbb{P} \). The mean map in \(\mathcal{H} \) is the function:

\[
\mu_\mathbb{P} : \mathbb{R}^D \to \mathbb{R}
\]

\[
t \mapsto \mu_\mathbb{P}(t) = \mathbb{E}_\mathbb{P}[k(X, t)] = \int_{x \in \mathbb{R}^D} k(x, t) d\mathbb{P}(x),
\]

(2)

A sufficient condition guaranteeing the existence of \(\mu_\mathbb{P} \) in \(\mathcal{H} \) is given by assuring that \(\mu_\mathbb{P}(X) = \mathbb{E}_\mathbb{P}[k(X, X)] < \infty \), and \(k(\cdot, \cdot) \) being a measurable function [12, 26, 28]. As a consequence, the reproducing property \(\langle f, \mu_\mathbb{P} \rangle = \langle f, \mathbb{E}_\mathbb{P}[k(\cdot, X)] \rangle = \mathbb{E}_\mathbb{P}[f(X)] \) holds for all \(f \in \mathcal{H} \).

The Hilbert space embedding for probability measures is given in the following definition.

Definition 2. The embedding of probability measures \(\mathbb{P} \in \mathcal{P} \) in \(\mathcal{H} \) is given by the mapping

\[
\mathbb{P} \mapsto \mu_\mathbb{P} = \mathbb{E}_\mathbb{P}[k(\cdot, \cdot)] = \int_{x \in \mathbb{R}^D} k(x, \cdot) d\mathbb{P}(x).
\]

Hence, \(\mu_\mathbb{P} \) acts as the representative function in \(\mathcal{H} \) for \(\mathbb{P} \). Choosing characteristic kernels [8, 27, 28] for \(k \), makes the embedding \(\mu \) injective. Some examples of characteristic kernels are the Gaussian, Laplacian, inverse multiquadratics, \(B_{2n+1} \)-splines kernels. See [28] for details. Furthermore, an empirical estimator of \(\mu_\mathbb{P} \) from the sample \(\{x_i\}_{i=1}^M \), drawn i.i.d. from \(\mathbb{P} \) assures a good approximation for \(\mu_\mathbb{P} \), i.e., the term \(\|\mu_\mathbb{P} - \mu_{\text{emp}}\| \), where \(\mu_{\text{emp}} \) is an empirical estimator of \(\mu_\mathbb{P} \), is bounded [26].

2.1 Kernel on probability measures

The mapping

\[
\mathcal{P} \times \mathcal{P} \to \mathbb{R}
\]

\[
(P, Q) \mapsto \mathbb{E}[k(x, x') dP(x) dQ(x')]
\]

defines an inner product on \(\mathcal{P} \). Indeed, from Fubini’s theorem

\[
\langle \mu_\mathbb{P}, \mu_\mathbb{Q} \rangle_\mathcal{H} = \int_{x \in \mathbb{R}^D} \int_{x' \in \mathbb{R}^D} k(x, x') dP(x) dQ(x').
\]

Consequently, the real-valued kernel on \(\mathcal{P} \times \mathcal{P} \), defined by

\[
k(P, Q) = \langle \mu_\mathbb{P}, \mu_\mathbb{Q} \rangle_\mathcal{H} = \int_{x \in \mathbb{R}^D} \int_{x' \in \mathbb{R}^D} k(x, x') dP(x) dQ(x')
\]

is positive definite [1].

3. SMDD MODELS

In this section, we introduce three DD models, for datasets given by sets of probability measures. We call these models Support Measure Data Description Models (SMDD’s).

Those models are based on the concept of minimum volume-set and enclosing balls for the representative functions \(\mu_i \),
of probability measures. SMDD is a data description model given by a function in a RKHS relying only in some subset from the training set: the support measures.

3.1 Minimum Volume Sets

Volume-sets are widely used to find a description of datasets of the form \(\{x_i\}_{i=1}^{N}, x_i \in \mathbb{R}^D \). A minimum volume-set (MV-set) is a volume-set satisfying some optimization criteria over all the possible volume-sets. The class of sets used in DD methods ranges from convex sets \(^2\) to sets implicitly defined in a RKHS via positive definite kernels \(^3\). \(^4\)

We assume that the points in \(s_i \), are i.i.d. \(^5\) realizations of a random variable \(X \sim P \). A generalization of the definition of MV-set given in \(^2\) to \(^4\) to the case of probability measures is stated below.

Definition 3 (MV-set for probability measures). Let \((P, A, E) \) be a probability space, where \(P \) is the space of all probability measures on \(\mathbb{R}^D \). \(A \) is a suitable \(\sigma \)-algebra of \(P \) and \(E \) is a probability measure on \((P, A) \). The MV-set is the set

\[
\mathcal{G}_i^* = \arg\min_{G \in A} \{ \rho(G) | \mathcal{E}(G) \geq \alpha \},
\]

where \(\rho \) is a reference measure on \(A \) and \(\alpha \in [0, 1] \). The MV-set \(\mathcal{G}_i^* \), describes a fraction \(\alpha \) of the mass concentration of \(\mathcal{E} \).

To Compute a MV-set of a set of probability measures with the above procedure is very general. Therefore, we limit our attention to the class of sets \(A \) formed by sets of probability measures satisfying some certain criteria. We will assume that \(\{P_i\}_{i=1}^{N} \) is an i.i.d. sample distributed according to \(E \) (Def. \(3 \)), where each \(P_i \) is unknown. As \(G \in A \) is some set of probability measures, a first empirical approximation for \(G \) in \(\{4\} \) is given by:

\[
\hat{G}_0(R,c) = \{P_i \in P \mid \|X_i - c\|^2 \leq R^2 \},
\]

where we consider a hypersphere of radius \(R \in \mathbb{R}^+ \) and center \(c \in \mathbb{R}^D \). A MV-set will be found optimizing over \(R \) and \(c \). However, \(\{4\} \) has two main drawbacks: it does not consider complex models, and some \(P_i \) will be in \(\{5\} \), if only if all possible realizations of \(X_i \sim P_i \) are inside the hypersphere \((R,c) \). Such limitations are overtaken considering the following three cases of sets described below.

The first class of volume-sets is defined by considering only \(P_i \), \(\{i \in I \mid 0 < \alpha_i \leq \lambda \} \), and is given as follows:

\[
\hat{G}_1(R,c) = \{P_i \in P \mid \|X_i - c\|^2 \leq R^2 \},
\]

The second class considers mean maps with norm one (we explain the motivation for this in Section \(3.3 \)).

\[
\hat{G}_2(R,c) = \{P_i \in P \mid \|\mu_{P_i} - c\|_H^2 \leq R^2, \|\mu_{P_i}\|_H^2 = 1 \}. \quad (7)
\]

The third class considers bounding values \(K = \{k_{\iota_i}\}_{i=1}^{N}, k_{\iota_i} \in [0,1] \). Thus, \(P_i \) is in the volume-set \(G \), if a subset of the realizations of the random variable \(X_i \sim P_i \) is inside the hypersphere \((R,c) \), with probability less than \(1 - k_{\iota_i} \).

\[
\hat{G}_3(K) = \{P_i \in P \mid |P_i|(|k(X_i,\cdot) - c|^2_2 \leq R^2) \geq 1 - k_{\iota_i} \}. \quad (8)
\]

\(^1\)Independent and identically distributed.

\(^2\)Empirical in the sense of sample \(\{P_i\}_{i=1}^{N} \).

All three formulations use a Hilbert space embedding for probability measures, with the advantage that the knowledge of the the density \(P_i \) is not explicitly needed.

3.2 First model SMDD

The MV-set \(\hat{G}_i^* \) for volume-sets \(G \) of the form given by \(\{6\} \) can be computed solving the following optimization problem. Given the mean functions \(\{\mu_i\}_{i=1}^{N} \) of \(\{P_i\}_{i=1}^{N} \), the SMDD model is:

Problem 1.

Minimize \(c \in \mathbb{H}, R \in \mathbb{R}^+ \), \(\xi \in \mathbb{R}^N \)

subject to \(|\mu_{P_i} - c|^2_H \leq R^2 + \xi_i, \, i = 1 \ldots , N \)

\(\xi_i \geq 0, \, i = 1 \ldots , N \).

Proposition 1. (Dual form). The dual form of the previous problem is given by:

Problem 2.

Maximize \(\alpha \in \mathbb{R}^N \)

subject to \(0 \leq \alpha_i \leq \lambda, \, i = 1 \ldots , N \)

\(\sum_{i=1}^{N} \alpha_i = 1 \)

where \(\hat{k}(P_i, P_j) = (\mu_{P_i}, \mu_{P_j})_H \) by \(\{8\} \), and \(\alpha \) is a Lagrange multiplier vector with non negative components \(\alpha_i \).

Proposition 2. (Representer theorem). The representer theorem for Problem \(7 \) is:

\[c(.) = \sum_{i} \alpha_i \mu_{P_i}, \quad i \in \{i \in I \mid 0 < \alpha_i \leq \lambda \}. \]

where \(I = \{1, 2, \ldots , N \} \). Furthermore, all \(P_i \), \(i \in \{i \in I \mid \alpha_i = 0 \} \) are inside the MV-set \(\hat{G}_i^* \). All \(P_i \), \(i \in \{i \in I \mid 0 < \alpha_i < \lambda \} \) are the support measures.

Theorem 3. Let \(\eta \) be the Lagrange multiplier of the constraint \(\sum_{i=1}^{N} \alpha_i = 1 \) of Problem \(8 \), then \(R^2 = -\eta + \|c\|^2_H \).

Consequently, to decide if some test probability measure \(P_T \) is in the SMDD model, we have to compute the score \(|\mu_{P_T} - c|^2_H \), which, using Proposition \(8 \) and Theorem \(3 \) can be written in terms of the kernel \(k \) by:

\[
\hat{k}(P_i, P_T) - 2 \sum_{i} \alpha_i \hat{k}(P_i, P_T) + \sum_{i,j} \alpha_i \alpha_j \hat{k}(P_i, P_j), \quad (9)
\]

where indices \(i, j \) belongs to the support measure set. This score must be compared against the value \(R \) to decide if \(P_T \) is in the description of SMDD.

Note that, if the linear kernel: \(k(x,x') = \langle x, x' \rangle \) on \(\mathbb{R}^D \times \mathbb{R}^D \) is used in \(\{8\} \), Problem \(8 \) is equivalent to the dual problem of SVDD \(\{9\} \), because, \(\hat{k}(P_i, P_j) = \mathbb{E}_{P_i}[E_{P_j}([X, X'])] \) will be \(\langle \mu_i, \mu_j \rangle \).
3.3 Second SMDD Model

This SMDD model considers mean maps with norm one, i.e., \(\|\mu_0\|_H^2 = 1 \) and Stationary kernels \(\phi \), which are kernels of the form \(k_I(x, x') = f(x - x') \), that is, they only depend on the difference \(x - x' \).

Implicit feature maps of stationary kernels are functions \(\tilde{k}_I(x, \cdot) \) in a RKHS lying on a surface of a hypersphere because they have constant norm. To see that, note that stationary kernels satisfy:

\[
k_I(x, x') = (k_I(x, \cdot), k_I(x, \cdot))_H = \epsilon, \quad \forall x \in \mathbb{R}^D,
\]

where \(\epsilon \) is a constant value. So \(\|k_I(x, \cdot)\|_H = \sqrt{\epsilon} \), consequently, functions \(k_I(x, \cdot) \) lie on a surface of a hypersphere of radius \(\sqrt{\epsilon} \). However, mean maps \(\mu_H = E_P[k_I(X, \cdot)] \), do not have constant norm, because:

\[
\|\mu_H\|_H = \|E_P[k_I(X, \cdot)]\|_H \leq E_P[\|k_I(X, \cdot)\|_H] = \sqrt{\epsilon},
\]

by convexity of \(\|\cdot\|_H \) and Jensen’s inequality.

A possible solution to prevent small values for the radius is to scale mean maps \(\mu_H \) to have norm one, to lie on the surface of some hypersphere. The following theorem is due to Muandet et al [19].

Theorem 4 (Spherical Normalization [19]). If kernel \(k(\cdot, \cdot) \) is characteristic and the examples are linearly independent in the RKHS \(H \), then the spherical normalization:

\[
\tilde{k}(P, P) = \frac{(\mu_P, \mu_P)_H}{\sqrt{(\mu_P, \mu_P)_H (\mu_H, \mu_H)_H}},
\]

preserves the injectivity of the mapping \(\mu : \mathcal{P} \rightarrow H \).

Basically, Theorem 3 says that all the information is preserved after performing spherical normalization of the data.

The MV-set \(G^*_\alpha \) for volume-sets \(G \) of the form given by (7) can be computed by solving the optimization problem similar as the one given in Problem 2 but with kernel:

\[
\tilde{k}(P, P) = \frac{\tilde{k}(P, P)}{\sqrt{\tilde{k}(P, P)\tilde{k}(P, P)}},
\]

because of Theorem 4. Furthermore, note that \(\tilde{k} \) is given by (3) but with kernel \(\tilde{k}_I \).

As \(\sum_{i=1}^N \alpha_i k(P_i, P) \) is constant in Problem 2 when a kernel \(k \) is used, the MV-set \(G^*_\alpha \) can be computed by the following optimization problem:

Problem 3.

\[
\begin{align*}
\max_{\alpha \in \mathbb{R}^N} & - \sum_{i,j=1}^N \alpha_i \alpha_j \tilde{k}(P_i, P_j) \\
\text{subject to} & 0 \leq \alpha_i \leq \lambda, \quad i = 1, \ldots, N \\
& \sum_{i=1}^N \alpha_i = 1.
\end{align*}
\]

This formulation is very similar to the dual formulation of One-class Support Measures Machines [23, 19] but is not directly equivalent. We discuss this point in Section 4.

3.4 Third SMDD model

The MV-set \(G^*_\alpha \) for volume-sets \(G \) of the form given by (8) can be computed solving the chance-constrained optimization problem. Given the mean functions \(\{\mu_{\alpha_0}\}_{i=1}^N \) of \(\{P_i\}_{i=1}^N \), and \(\{\kappa_i\}_{i=1}^N \), \(\kappa_i \in [0, 1] \), the SMDD model is:

Problem 4.

\[
\begin{align*}
\min_{c \in \mathcal{H}, R \in \mathbb{R}, \xi \in \mathbb{R}^N} & \quad R^2 + \lambda \sum_{i=1}^N \xi_i \\
\text{subject to} & \quad P_i(\|k(X_i, \cdot) - c(\cdot)\|_H^2 \leq R^2 + \xi_i) \geq 1 - \kappa_i, \\
& \quad \xi_i \geq 0, \\
& \quad \forall i = 1, \ldots, N.
\end{align*}
\]

The chance constraints of Problem 4 control the probability of constraint violation, allowing flexibility to the model. However, each constraint requires we deal with every possible realization of \(k(X_i, \cdot), X_i \sim P_i \). To implement this problem, it is necessary to turn probabilistic constraints into deterministic ones.

For a non-negative random variable \(X \sim P \) and \(t > 0 \), this can be achieved by Markov’s inequality which bounds \(P(X \geq t) \) by \(E_P[X]/t \).

\[
P_i(\|k(X_i, \cdot) - c(\cdot)\|_H^2 \geq R^2 + \xi_i) \leq \frac{E_P[\|k(X_i, \cdot) - c(\cdot)\|_H^2]}{R^2 + \xi_i}, \tag{12}
\]

holds, for all \(i = 1, 2, \ldots, N \).

3.4.1 Trace of the Covariance Operator

The term \(E_P[\|k(X_i, \cdot) - c(\cdot)\|_H^2] \) in the numerator of (12) can be computed using the trace of the covariance operator in \(H \) and mean maps \(\mu_P \). The covariance operator in \(H \) with kernel \(k \) is the mapping \(\Sigma_H : H \rightarrow H \), such that for all \(f, g \in H \) it satisfies:

\[
(f, \Sigma_H g)_H = E_P[f(X)g(X)] - E_P[f(X)]E_P[g(X)],
\]

because the reproducing property \(f \).

The covariance operator is subsequently the matrix:

\[
\Sigma_H = E_P[k(X, \cdot)k(X, \cdot)^\top] - E_P[k(X, \cdot)]E_P[k(X, \cdot)]^\top. \tag{13}
\]

From this, the trace of \(\Sigma_H \) can be obtained as:

\[
tr(\Sigma_H) = \int_{x \in \mathbb{R}^D} E_P[k(x, t)k(x, t)^\top] \, dt - E_P[k(x, t)]E_P[k(x, t)]^\top dt
\]

\[
= E_P[(k(x, \cdot)k(x, \cdot))] - E_P[k(x, \cdot)]E_P[k(x, \cdot)]_H
\]

\[
= E_P[k(x, \cdot)] - \langle \mu_P, \mu_P \rangle_H,
\]

where the last line is due to the reproducing property and Def. 3. Therefore, using (3), yields

\[
tr(\Sigma_H) = E_P[k(X, \cdot)] - \tilde{k}(P, P), \tag{14}
\]

that is, the trace of a possible infinite dimensional matrix can be computed in terms of kernel evaluations. We then have the following lemma.

Lemma 5.

\[
E_P[\|k(X, \cdot) - c(\cdot)\|_H^2] = tr(\Sigma_H) + \|\mu_P - c(\cdot)\|_H^2.
\]

\(\Sigma_H \) is a bounded operator on a separable infinite dimensional Hilbert space and can be represented by an infinite matrix [25].

Because \(\mu_P(X) < \infty \), it follows that \(tr(\Sigma_H) < \infty \).
3.4.2 Deterministic Form

From Lemma 5, the deterministic form of the Problem is the following optimization problem. Given the mean functions $\{\mu_i\}_{i=1}^N$ of $\{P_i\}_{i=1}^N$ and $\{\kappa_i\}_{i=1}^N$, $\kappa_i \in (0, 1]$, the SMDD model is:

Problem 5.

$$\min_{c \in \mathcal{H}, R \in \mathbb{R}, \xi \in \mathbb{R}^N} \quad R^2 + \lambda \sum_{i=1}^N \xi_i$$

subject to

$$\|\mu_i - c(.)\|^2_{\mathcal{H}} \leq (R^2 + \xi_i)\kappa_i - tr(\Sigma_i^N),$$

for all $i = 1, \ldots, N$, where $tr(\Sigma_i^N)$ is given by Eq. (14).

Proposition 6 (Dual Form). The dual form of Prob. 5 is given by

$$\max_{\alpha \in \mathbb{R}^N} \quad \sum_{i=1}^N \alpha_i \mu_i$$

subject to

$$0 \leq \alpha_i \kappa_i \leq \lambda, \quad i = 1, \ldots, N$$

$$\sum_{i=1}^N \alpha_i = 1,$$

where (μ_i, Σ_i) is computed by $\tilde{k}(P_i, \Sigma_i)$, α is a Lagrange multiplier vector with non-negative components; and κ_i of Prob. 5 is given by Eq. (14).

A remark about the nature of that problem it that it is a fractional programming problem [7].

Proposition 7 (Representers theorem). The representers theorem for Problem 5 is:

$$c(.) = \frac{\sum_{i} \alpha_i \mu_i}{\sum_{i} \alpha_i}, \quad i \in \{i \in \mathcal{I} \mid 0 < \alpha_i \kappa_i \leq \lambda\},$$

where $\mathcal{I} = \{1, 2, \ldots, N\}$. Furthermore, all P_i, $i \in \{i \in \mathcal{I} \mid \alpha_i = 0\}$ are inside the MV-set \hat{G}^κ_α. All P_i, $i \in \{i \in \mathcal{I} \mid \alpha_i \kappa_i \leq \lambda\}$ are the training errors. All P_i, $i \in \{i \in \mathcal{I} \mid 0 < \alpha_i \kappa_i < \lambda\}$ are the support measures and, from this, the radius is computed by

$$R^2 = \frac{\|\mu_i - c(.)\|^2_{\mathcal{H}} + tr(\Sigma_i^N)}{\kappa_i},$$

for all $i \in \{i \in \mathcal{I} \mid 0 < \alpha_i \kappa_i < \lambda\}$.

Alternatively, we have the following result to compute R.

Theorem 8. Let η be the Lagrange multiplier of the constraint $\sum_{i=1}^N \alpha_i \kappa_i = 1$ of the Lagrangian of Problem 5 then $R^2 = -\eta$.

As a consequence, to test if some test probability measure P_i is in this SMDD model, we have to compute the score $\|\mu_i - c(.)\|^2_{\mathcal{H}} + tr(\Sigma_i^N)$. Using Prop. 7 Theorem 8 and Eq. (14), the score can be written in terms of the kernel \tilde{k} by

$$\tilde{k}(P_i, P_j) = 2 \sum_{i} \alpha_i \tilde{k}(P_i, P_j) + \sum_{i,j} \alpha_i \alpha_j \tilde{k}(P_i, P_j) + tr(\Sigma_i^N)$$

where indices i, j belong to the support measure set. This score must be compared against the value R to decide if P_i is in the description of SMDD.

4. EQUIVALENCES AMONG MODELS

In this section, we describe the relationship among SMDD models and the equivalence between SMDD models and One-Class Support Measure Machine (OCSMM) [23, 19]. For this purpose, we use the notation given in Table 1. We start showing how M1 can be formulated if we restrict it only to the case of joint constraints and a sharing covariance matrix. We then use this formulation to compare the restricted M1 with the original M1 and M2.

Theorem 9. The Primal form of M1 with joint constraints sharing the same covariance matrix, i.e., $\kappa_i = \kappa$ and $\Sigma_i = \Sigma^N$ for all $i = 1, 2, \ldots, N$ and $\lambda > 0$, can be written as

Problem 7.

$$\min_{c(.) \in \mathcal{H}, \rho \in \mathbb{R}, \xi \in \mathbb{R}^N} \quad \frac{||c(.)||^2_{\mathcal{H}}}{2} - \rho + \lambda \sum_{i=1}^N \xi_i$$

subject to

$$\langle \mu_i, c(.) \rangle_{\mathcal{H}} \geq \rho + \xi_i, \quad i = 1, \ldots, N$$

$$\xi_i \geq -\frac{||\mu_i||^2_{\mathcal{H}}}{2}, \quad i = 1, \ldots, N,$$

where

$$\xi_i = 1 - \sum_{i \in \mathcal{I}} \alpha_i - \frac{||\mu_i||^2_{\mathcal{H}}}{2} \tag{18}$$

Problem 7 is a less flexible formulation of M1 because it considers the same local covariance and the same κ values for all points. Using optimal $c \in \mathcal{H}$ and ρ values from Problem 7 the radius is computed by:

$$R = \sqrt{(tr(\Sigma) + ||c(.)||^2 - 2\rho))/\kappa}, \tag{19}$$

or equivalently, solving Problem 7 for $\kappa_i = \kappa$ and $\Sigma_i = \Sigma$, for all $i = 1, 2, \ldots, N$, we can retrieve ρ_0 of Problem 7 as follows:

$$\rho_0 = -\frac{1}{2}(R^2 - tr(\Sigma) - ||c||^2).$$

Corollary 10 (Dual Form). Using the kernel between probability measures given by [8], the dual of Prob. 7 is given by:

Problem 8.

$$\max_{\alpha \in \mathbb{R}^N} \quad \frac{1}{2} \sum_{i=1}^N \alpha_i \tilde{k}(P_i, P_i) - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \tilde{k}(P_i, P_j)$$

subject to

$$0 \leq \alpha_i \leq \lambda, \quad i = 1, \ldots, N$$

$$\sum_{i=1}^N \alpha_i = 1.$$
From this, we can solve Prob. 8 and apply Lemma 11 to retrieve \(\rho \), the center by \(c = \sum_{i} \alpha_{i} x_{i}, \ i \in \{i | 0 < \alpha_{i} \leq \lambda \} \), and the radius \(R \) from (19).

Under this particular setting for M1, we have the following equivalence among the SMDD models:

- **M1 vs M2**, M1 is almost the same as M2 but with a difference of a scaling factor of 0.5 in the dual objective function;
- **M1 vs M3**, after spherical normalization on data, the dual objective function of M1 as is given by Prob. 8 becomes \(-0.5 \sum_{i,j=1}^{N} \alpha_{i} \alpha_{j} \hat{k}(\mathcal{P}_{i}, \mathcal{P}_{j})\), where \(\hat{k} \) is the kernel given by (11), because the other term in the objective function is constant. Therefore, M1 is equivalent to M3, with a difference of a scaling factor of 0.5 in the dual objective function.

We conclude this section describing how SMDD models are equivalent to OCSMM. It is widely known that SVDD and One-Class Support Vector Machines (OCSVM) are similar if stationary kernels are used \([23, 30]\). Although, Prob. 7 is similar to OCSMM, SMDD is not directly equivalent to it because mean maps under stationary kernels do not have constant norm. However, under a spherical normalization on data, there is the following equivalence:

Corollary 12. M2, M3 and OCSMM are equivalent under a spherical normalization of the training set \(\{\mathcal{P}_{i}\}_{N} \) by (4).

Consequently, M1 under the assumptions given by Prob. 8 is equivalent to OCSMM, with a difference of a scaling factor of 0.5 in the dual objective function.

5. Supervised Group Anomaly Detection Experiments

In this section, we present an experimental evaluation of SMDD models for the task of group anomaly detection using artificial and real datasets. In the experiments, we consider two types of group anomalies: Point-based anomaly detection, described in Section 5.3 and Distribution-based anomaly detection described in Section 5.4. Finally, in Section 5.5, we use real data from the Sloan Digital Sky Survey (SDSS) project to detect anomalous groups of galaxies.

5.1 Kernel and covariance estimation

The kernel between probability measures given by (5) was estimated via the empirical estimator:

\[
\hat{k}(\mathcal{P}_{i}, \mathcal{P}_{j}) \approx \frac{1}{L_{i} L_{j}} \sum_{l=1}^{L_{i}} \sum_{l'=1}^{L_{j}} k(x_{i}^{(l)}, x_{j}^{(l')})
\]

from a training set given by (1). Furthermore, the trace of the covariance operator in the RKHS given by (14) was estimated by:

\[
tr(\Sigma^{N}) \approx \frac{1}{L_{i} - 1} \sum_{l=1}^{L_{i}} k(x_{i}^{(l)}, x_{i}^{(l)}) - \frac{1}{L_{i}(L_{i} - 1)} \sum_{l=1}^{L_{i}} \sum_{l'=1}^{L_{i}} k(x_{i}^{(l)}, x_{i}^{(l')})
\]

where \(k \) is a positive definite kernel on \(\mathbb{R}^{D} \times \mathbb{R}^{D} \).

Table 1: Models used in the experiments

<table>
<thead>
<tr>
<th>Model</th>
<th>Problem</th>
<th>Section/Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>6</td>
<td>3.4</td>
</tr>
<tr>
<td>M2</td>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>M3</td>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>OCSMM</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>SVDD</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

5.2 Experimental settings

The notations for the DD models used throughout this section are given by Table 1. For comparison purposes, we use SVDD, trained using only the empirical group means, as the baseline. Because some experimental results for group anomaly detection between OCSMM and other approaches, including a state of the art method proposed in [33] were reported in [19], we only compare SMDD models against the OCSMM model.

We used CVX, a package for specifying and solving convex programs \([11]\) to solve M1. To solve M2, M3, OCSMM and SVDD, we used the SVM and Kernel Methods Matlab Toolbox (SVM-KM) \([2\, 3]\).

Remark Because we model anomaly detection as a one-class classification problem (only the non-anomalous class is labeled), it is difficult to build a confusion matrix to get statistics. However, an approach based on testing with artificial group anomalies will reflect the power of the presented models.

5.3 Point-Based Group Anomaly Detection over a Gaussian Mixture Distribution dataset

The goal of group anomaly detection is to find groups of points with unexpected behavior from datasets given by (1). Differently from usual anomaly detection, points of anomalous groups can be highly mixed with points of non-anomalous groups turning group anomaly detection a challenging problem. In Point-Based Group Anomaly detection \([32]\), anomalous groups are given by aggregating individually anomalous points. For this experiment, we generated 50 non-anomalous groups of points and 30 groups for test. From the 30 groups in the test set, 20 groups correspond to anomalous groups. The number of points by group for all non-anomalous and anomalous groups was randomly chosen from a Poisson distribution with parameter \(\beta = 10 \).

The points for non-anomalous groups were randomly sampled from a Multinomial Gaussian Mixture Distribution or GMD. We considered two types of non-anomalous groups, following the same experimental setting described in references \([33, 19]\). The first type was given by groups sampled from a two-dimensional GMD with three components, mixture weights: (0.33, 0.64, 0.03); means: (1.7, 1.7, 0.2); and 0.2 * \(I_{2} \) as the sharing covariance matrix, where \(I_{2} \) denotes the 2 x 2 identity matrix. The second type was given by groups of points sampled from a GMD with the same parameters, but with mixture weights: (0.33, 0.03, 0.64). The probability of chosen each group was \(\pi = (0.48, 0.52) \), respectively. The green box in Fig. 2 shows three non-anomalous

\[http://www.vision.ime.usp.br/~jorjasso/SMDD.html\]
groups for $\pi = 0.48$ and the yellow box shows two non-anomalous groups for $\pi = 0.52$.

We generated three different types of anomalous groups. The first type of group anomalies was given by 10 groups of points sampled from the normal distribution: $N((-0.4, 1), I_2)$. Figure 2 shows five anomalous groups of this type (magenta box). The second type of group anomalies was given by five groups of points sampled from a two-dimensional GMD with four components, with the following parameters: weights: $(0.1, 0.08, 0.07, 0.75)$; means: $(-1.7, -1), (1.7, -1), (0, 2), (0.6, -1)$; and a sharing covariance matrix given by $0.2 \cdot I_2$. Figure 2 shows five anomalous groups of this type (blue box).

The third type of group anomalies was given by five groups of points sampled from a two-dimensional GMD with four components with parameters: weights: $(0.14, 0.1, 0.28, 0.48)$; means: $(-1.7, -1), (1.7, -1), (0, 2), (-0.5, 1)$; and $0.2 \cdot I_2$ as the sharing covariance matrix. Figure 2 shows five anomalous groups of this type (red box).

![Figure 2: Group anomaly detection dataset. Green and yellow boxes contain non-anomalous groups of points. Red, blue, and magenta boxes contain anomalous groups of points.](image)

To get reliable statistics, we performed 200 runs, over training sets of 50 non-anomalous groups and test sets of 30 groups (20 anomalous and 10 non-anomalous groups). The performance metrics are the area under the ROC curve (AUC), and the accuracy (ACC). As it is usual in one-class classification tasks, it is not possible to have a validation set for model selection because the data (training or test) have no labels. We follow the same methodology used in literature, that is, we choose arbitrarily a value for the regularization parameter λ of the SMDD model and computed the kernel parameters using some heuristic on the available data. In this way we avoid to employ the training or the test set for model selection, Figure 4 shows the performance metrics AUC, ACC for each type of anomaly.

5.4 Distribution-Based Group Anomaly Detection over a Gaussian Mixture Distribution dataset

Distribution-Based Group Anomalies are anomalous groups of points that individually are non-anomalous but together form anomalous groups. In this experiment, 50 non-anomalous groups of points were generated to form the training set and 15 anomalous groups of points plus 15 non-anomalous groups of points were generated to form the test set. The number of points per group was the same as in the last experiment.

Points in each non-anomalous group were sampled from a two-dimensional GMD with three components and the following parameters: mixture weights: $p = \{1/3, 1/3, 1/3\}$; means: $(-1.7, 1), (1.7, -1), (0, 2)$ and sharing the covariance matrix $0.2 \cdot I_2$.

To build the group anomalies, groups of points were sampled from the same GMD used to generate non-anomalous groups. Next, we rotated all the points belonging to the set containing all the non-anomalous groups by 45 degrees, that is, $x_i^{R} = x_i^R$, where R is a rotation matrix of 45 degrees. Furthermore, we estimated the covariance matrices of those rotated points. Finally, group anomalies were sampled from the same GMD of the non-anomalous groups but with two of their covariance matrices given by the covariance matrices of the rotated points. That is, individually, points are non-anomalous, but an aggregation of them is anomalous.

For this experiment, we used a kernel given by γ implemented by a Gaussian kernel with parameter given by γ but with s given by the median of the Euclidean distance between all possible pairs of points in the dataset. Furthermore, we used a regularization $\lambda = 1$ for all the models.

Figure 3 shows the performance metrics AUC, ACC for non-anomalous groups, and ACC for anomalous groups. In addition, it is shown the group means of non-anomalous groups (green points), and the group means of anomalous groups (red points).

All the three SMDD models and also the OCSMM (M4) presented good performance in terms of ACC metric. On the other hand, the results show that SVDD (M5) was the model with the worst performance.

5.5 Group Anomaly Detection in Astronomical Data

In this section, we tested the SMDD models with real data: The Sloan Digital Sky Survey (SDSS) project, previ-

http://www.sdss3.org/
ously used for comparison in [20, 33, 19]. This dataset contains massive spectroscopic surveys of the Milky Way galaxy and extra solar planetary systems. The idea is to use the dataset to detect anomalous clusters of galaxies. The dataset contains about 7×10^5 galaxies, each of them represented by a 4000-dimensional vector denoting spectral information. Following [20], each vector was down-sampled to a 500-dimensional vector and clusters of galaxies were obtained analyzing the spatial neighborhood of galaxies. The analysis returns 505 clusters of galaxies of a total of 7530 galaxies. Thus, each cluster of galaxies corresponds to one group of about 10^{-15} galaxies. Finally, PCA was applied to the vectors to get a four-dimensional dataset, preserving about 85% of the variance of the data.

The training set was formed by randomly choosing 455 groups of galaxies among the first 505 groups. Furthermore, two test datasets, each of them containing the remaining 50 non-anomalous groups, from the original 505 groups, plus 50 anomalous groups, were generated.

In the first test dataset, each anomalous group was generated by randomly selecting about n_i galaxies from the 7530 galaxies, where n_i is distributed according to a Poisson distribution with parameter $\beta = 15$. As galaxies were randomly chosen, the aggregation itself of such galaxies is anomalous.

Anomalous groups for the second test dataset were generated as follows: first, we empirically estimated the covariance of the 7530 observations (galaxies) and, then, we selected randomly three sets of galaxies from the 7530 galaxies, each one containing about n_i galaxies (the same n_i of the last experiment). We estimated the empirical means of the three sets and using them and the empirical covariance matrix Σ, we constructed a GMD with three components and weights: $p = \{0.33, 0.33, 0.33\}$ and a covariance matrix $5 \ast \Sigma$. Finally, we generated anomalous groups of points for the second test dataset from the above GMD with about n_i points per group.

We show in Sub-figures 5d and 5h, the group means of the PCA vectors. Green points are the non-anomalous group means, and red points are the anomalous group means. Each sub-figure shows four plots: upper-left: the plot of the first vs. second dimensions, upper-right: the plot of the second vs. third dimensions, bottom-left: the plot of the third vs. four dimensions, bottom-right: the plot of the four vs. first dimensions. Moreover, because the overlapping of the group means, group anomalies for this experiment are hard to be detect by common methods.

We carried out 200 runs to get reliable statistics. Figure 5 shows that performance metrics for the first test set (top), and the second test set (bottom).

It is important to emphasize that M4 was compared against other group anomaly generative method detectors [19] and obtained equivalent performance. Therefore, we compare only SMDD models against M4 and M5 models.

For the first test set, we computed the RBF kernel parameter using (22) but with s being the median. We considered a regularization parameter letting about 30% of the non-anomalous groups to be the errors allowed in the training set. Models M2 and M3 performed a little worse than SVDD (M5) for this choice of parameters when detecting group anomalies. However, the AUC metric for SVDD shows that the performance of this model is no more than chance. On the other hand, M1 and OCSMM (M4) perform better than the baseline for detecting group anomalies. Note that the ACC for the non-anomalous groups is about 70% because the choice of the regularization parameter.

Results for the second test set are shown in the bottom part of Fig. 5. The experimental setup is the same as before but now we considered a regularization parameter $\lambda = 1$ and...
a kernel parameter given by (22). The ACC for anomalous groups shows that M2 is the worst for detecting the group anomalies. The AUC metric shows that all the models performed well. Furthermore, we note that a spherical normalization has a positive effect, increasing M3 AUC value close to one.

6. CONCLUSION

In this work, we presented a data description method named SMDD for datasets given as sets of points, that is, each observation is considered to be a set of points distributed according to an unknown probability measure. SMDD models describe datasets of probability measures by optimizing volume-sets of probability measures. Such volume-sets are constructed using the information provided by the representative functions or mean maps of probability measures in a RKHS. In this work, we considered the class of sets of probability measures given by enclosing hyperspheres of mean functions in a RKHS. The main advantage of our approach is that it does not require a density estimation for P_i. However, the description will be dependent in the choice of the kernel.

We formulated and described three SMDD models. The first is a direct extension of the SVDD method for the case of probability measures. This model also uses the mean map embedding of probability measures technique. The second SMDD model is almost the same as the first one but it considers a scaling of data and stationary kernels. The reason behind this, is that mean maps under stationary kernels do not have a constant norm in the RKHS. The third model uses information of covariance matrices and mean maps. This model is formulated as a chance constrained program, which is further transformed into a deterministic problem by Markov’s inequality. We also compared the relationship among models, showing the cases where the SMDD models are equivalent.

The SMDD models were tested in the challenging group anomaly detection task. We showed empirically that they perform well for such a task, showing that the SMDD method is an alternative methodology to deal with group anomaly detection. Experimental evaluation, using those datasets, shows that SMDD model M1 is better than SMDD models M2 and M3, and performs similarly to OCSMM. However SMMD model M1 is more flexible than OCSMM. Also SMMD model M3 performs better than M2 showing a positive effect of the spherical normalization of the data. Future work includes applications in novelty detection, clustering and classification, for datasets of probability measures.

7. ACKNOWLEDGMENTS

This work was started when the first author was in LITIS, INSA Rouen, France. The authors would like to thank to FAPESP grant # 2011/50761-2, CNPq, CAPES, NAP eScience - PRP - USP.

8. REFERENCES

