Extraction of Temporal Network Structures from Graph-based Signals

Abstract : A new framework to track the structure of temporal networks with a signal processing approach is introduced. The method is based on the duality between static networks and signals, obtained using a multidimensional scaling technique, that makes possible the study of the network structure from frequency patterns of the corresponding signals. In this paper, we propose an approach to identify structures in temporal networks by extracting the most significant frequency patterns and their activation coefficients over time, using nonnegative matrix factorization of the temporal spectra. The framework, inspired by audio decomposition, allows transforming back these frequency patterns into networks, to highlight the evolution of the underlying structure of the network over time. The effectiveness of the method is first evidenced on a synthetic example, prior being used to study a temporal network of face-to-face contacts. The extracted sub-networks highlight significant structures decomposed on time intervals that validates the relevance of the approach on real-world data.
Type de document :
Article dans une revue
IEEE transactions on Signal and Information Processing over Networks, IEEE, 2016, 2 (2), pp.215-226. 〈10.1109/TSIPN.2016.2530562〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01330184
Contributeur : Ronan Hamon <>
Soumis le : vendredi 10 juin 2016 - 10:51:36
Dernière modification le : mercredi 19 septembre 2018 - 10:02:23

Fichier

TSIPN2530562.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Ronan Hamon, Pierre Borgnat, Patrick Flandrin, Céline Robardet. Extraction of Temporal Network Structures from Graph-based Signals. IEEE transactions on Signal and Information Processing over Networks, IEEE, 2016, 2 (2), pp.215-226. 〈10.1109/TSIPN.2016.2530562〉. 〈hal-01330184〉

Partager

Métriques

Consultations de la notice

325

Téléchargements de fichiers

1423