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Abstract

Assessing the level of diversity in plant communities from field-based data is

difficult for a number of practical reasons: (1) establishing the number of sam-

pling units to be investigated can be difficult; (2) the choice of sample design

can impact on results; and (3) defining the population of concern can be chal-

lenging. Satellite remote sensing (SRS) is one of the most cost-effective

approaches to identify biodiversity hotspots and predict changes in species

composition. This is because, in contrast to field-based methods, it allows for

complete spatial coverages of the Earth’s surface under study over a short per-

iod of time. Furthermore, SRS provides repeated measures, thus making it pos-

sible to study temporal changes in biodiversity. Here, we provide a concise

review of the potential of satellites to help track changes in plant species diver-

sity, and provide, for the first time, an overview of the potential pitfalls associ-

ated with the misuse of satellite imagery to predict species diversity. Our work

shows that, while the assessment of alpha-diversity is relatively straightforward,

calculation of beta-diversity (variation in species composition between adjacent

locations) is challenging, making it difficult to reliably estimate gamma-diversity

(total diversity at the landscape or regional level). We conclude that an

increased collaboration between the remote sensing and biodiversity communi-

ties is needed in order to properly address future challenges and developments.

Introduction

The importance of measuring species diversity as an indi-

cator of ecosystem health has been recognized by major

initiatives worldwide (Skidmore et al. 2015), including

the Group on Earth Observation (GEO BON, http://

www.earthobservations.org/geobon.shtml) initiative, the

International Geosphere Biosphere Programme (IGBP,

http://www.igbp.net/), the World Climate Research Pro-

gramme (WCRP, http://wcrp-climate.org/), the Commit-

tee on Earth Observation Systems (CEOS) Biodiversity

task (http://ceos.org/), among others.

Assessment of biodiversity at local and regional scales

has traditionally relied on the assessment of both local

diversity (alpha-diversity) and species turnover (beta-

diversity); the combination of these two measures leading

to an estimate of the whole diversity of an area (gamma-

diversity, Whittaker 1972; Lande 1996). A large number

of indices have been used to estimate alpha-diversity (e.g.

species richness, Simpson, Berger–Parker, Shannon–Wiener,
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Brillouin, McIntosh, Pielou indices, Table 1). Species

turnover is generally assessed using information on spe-

cies compositional distance measures among sampling

units, and expressed using a measure such as the Sørensen

index or the Jaccard index (Table 1).

Species monitoring in relatively large areas has always

been a challenging task for ecologists, mainly because of

the intrinsic difficulty in evaluating the completeness of

the resulting species’ lists and in quantifying sampling

effort (e.g. Palmer 1995). Inventorying species over a large

region is complicated by the fact that field biologists can-

not inspect every individual organism in the region while

accounting for changes in species composition over time

(Palmer et al. 2002).

Moreover, when sampling species, a number of issues

need to be resolved, such as: (1) the number of sampling

units to be investigated; (2) the choice of sample design;

(3) the identification of the statistical population of con-

cern; and (4) the operational definition of a community

to be considered (see Chiarucci 2007, for a review on

these issues).

Additionally, ground surveys are time consuming and

costly. Moreover, in many biodiversity-rich locations,

field survey can be risky due to challenging environmental

and socio-political conditions (Hanson et al. 2009).

Field surveys sometimes experience low spatial and the-

matic accuracy. As an example, Bacaro et al. (2009)

demonstrated that species accumulation curves can vary

according to the identity of the biologist sampling the

area under consideration. Moreover, in a study addressing

the causes of species misidentification in vegetation moni-

toring, Scott and Hallam (2003) found an average

misidentification rate of 2.7–25.6% depending on survey-

ors’ expertise and species involved.

Identifying areas likely to have a high level of diversity

may help to minimize the amount of time and funds

required for setting up efficient monitoring programs,

given that increased attention is likely to be given to bio-

diversity hotspots (e.g. Bacaro et al. 2009).

We acknowledge that criticism exists about the validity

of the direct relationship between species richness and

turnover versus biodiversity. In light of previous work on

the matter, however, (e.g. Hurlbert 1971; Noss 1990;

Grime 1998; Dıaz et al. 2003; Fleishman et al. 2006;

Petchey and Gaston 2006; Sundstrom et al. 2012; Giorgini

et al. 2015), in this article, we consider species richness

and turnover as proxies, and useful metrics, for biodiver-

sity estimate at different spatial scales.

Satellite remote sensing (SRS) might prove to be an

extremely powerful tool since it allows for coverage of

large regions in a short period of time, having the poten-

tial to provide a continuous source of information on

biodiversity distribution (He et al. 2015). In this period

of major environmental change, SRS represents a power-

ful opportunity for ecologists to gain critical knowledge

about the drivers of the spatial and temporal distribution

of biodiversity (Rocchini et al. 2005; Pettorelli et al.

2014).

The relationship between spectral variability over space

and species diversity might be of great importance for

maximizing the inventory of species diversity giving pri-

ority to sites which are spectrally more different, hence

more diverse in species composition (Rocchini et al.

2005).

However, a number of pitfalls are associated with the

use of remote sensing for predicting species diversity, as

deriving measures of diversity from a spectral and a spa-

tial signature of environmental features is not trivial.

Table 1. Mostly used indices to measure alpha- and beta-diversity.

Diversity type Index Formula References

Alpha-diversity Species richness S Colwell (2009)

Simpson index IS = 1/Σp2 Simpson (1949)

Berger–Parker index IBP = 1/(pmax) Berger and Parker (1970)

Shannon–Wiener index H0 = �Σp 9 ln (p) Shannon and Weaver (1948)

Brillouin index IB ¼ ðlnN! � Rn!Þ=N Maurer and McGill (2011)

McIntosh index IMc ¼ ðN �
ffiffiffiffiffiffiffiffiffi

Rn2
p

=N � ffiffiffiffi

N
p Þ McIntosh (1967)

Pielou evenness J0 ¼ H0=H0
max ¼ H0= lnðSÞ Pielou (1966)

Beta-diversity (turnover) Jaccard index bj = C/(A + B + C) Jaccard (1912)

Sørensen index bsor = 2C/(2C + A + B) Sørensen (1948)

Wilson & Shmida index bws = (A + B)/(2C + A + B) Wilson and Shmida (1984)

Colwell & Coddington index bcc = (A + B)/(A + B + C) Colwell and Coddington (1994)

Lennon index bl = 2(A � B)/(2C + A + B) Lennon et al. (2001)

S = total number of species, n = number of individuals belonging to each species, N = total number of individuals, p = relative proportion of each

species, A = exclusive species composition of the sampling unit A, B = exclusive species composition of the sampling unit B, C = intersection of

the species composition of sampling units A and B.
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The aim of this article is to highlight the potential for

SRS to support the monitoring of species assemblages,

and help predicting patterns in species diversity. We will

limit this review to SRS, simply referred in this article to

remote sensing. This review will also discuss current pit-

falls associated with such approaches; as far as we know,

there has been limited discussion on this topic in the lit-

erature. We will here primarily focus on plant communi-

ties, but the ideas and suggestions raised applied to a

number of different other taxa, including butterflies

(Kumar et al. 2009) and mammals (Oindo and Skidmore

2002).

Assessing Alpha- and Beta-Diversity
from Space

Potential and pitfalls of remote sensing-
based estimates of alpha-diversity

Most of the research dealing with remote sensing-based

estimates of species diversity has focused on mapping

localized biodiversity hotspots (see also Tucker et al.

2004), based on the Spectral Variation Hypothesis (SVH,

Gould 2000; Palmer et al. 2002; Rocchini 2007).

The SVH states that the spatial variability in the remo-

tely sensed signal, that is, the spectral heterogeneity, is

expected to be related to environmental heterogeneity and

could therefore be used as a powerful proxy of species

diversity. In other terms, the greater the habitat hetero-

geneity, the greater the local species diversity within it

(Palmer et al. 2002), regardless of the taxonomic group

under consideration. Besides random variation in species

distribution (Hubbell 2001), a higher heterogeneity of

habitats will host a higher number of species each occu-

pying a particular niche (niche difference model, Nekola

and White 1999).

Different modeling techniques have been used to unveil

a relationship between local species diversity and the level

of spatial variation in the spectral signal, ranging from

simple univariate models (Gould 2000), to multivariate

statistics (Feilhauer and Schmidtlein 2009), neural net-

works (Foody and Cutler 2003), and Generalized Additive

Models (GAMs, Parviainen et al. 2009).

Figure 1 explicitly shows how alpha-diversity is com-

monly predicted using remote sensing data. Starting from

a heterogeneity map based on the satellite sensor image

and on field sampling data, a regression model is com-

monly built and a back transformation is applied to

derive a map of species richness variation over space

(Fig. 1).

A number of different measures of spectral heterogene-

ity have been proposed and used to assess ecological

heterogeneity and thus species diversity such as: the vari-

ance in a neighborhood of the spectral response (Gillespie

2005), the variability in the reflectance values among pix-

els using the texture of a remotely sensed image (Hern�an-

dez-Stefanoni et al. 2012), the distance from the spectral

centroid, that is, the mean of spectral values in a multiple

dimensional system whose axes are represented by each

image band (Palmer et al. 2002), and the distance from

the spectral centroid in a principal component space, that

is, the compacted spectral space where noise related to

band collinearity has been removed (Rocchini 2007). All

such measures have been shown to be useful to predict

species richness at local scale (Table 2).

Moreover, in addition to the use of common spectral

indices such as the normalized difference vegetation index

(NDVI), some studies have demonstrated an increase in

the strength of relationship between species alpha-diver-

sity and remotely sensed spectral heterogeneity when

using additional spectral information (e.g. Landsat 7

shortwave IR-band 5, from 155 to 175 nm and band 7,

from 209 to 235 nm, see Rocchini (2007) and Nagendra

et al. (2010).

In addition to the importance of having the correct

measure or spectral band/index to be used for relating

spectral and species diversity at local scale (alpha-diver-

sity), different species diversity measures (see Table 1 for

an overview of the metrics classically used to assess alpha-

diversity) can lead to differences in the type and strength

of the relationship between spectral and species diversity.

For example, Oldeland et al. (2010); dealing with plant

species diversity in African savannas, relied on relative

abundances of species, as measured by the Shannon index

to quantify the difference in the relative proportion of

each species. They demonstrated that accounting for spe-

cies relative abundances improves the capability of local

species diversity estimation with hyperspectral remotely

sensed data, with R2 values obtained up to five times

higher than those achieved by only considering species

richness (R2 values of 0.62 and 0.12, respectively). This is

mainly because the Shannon index is less affected than

species richness by the presence of rare species, which

represent a relatively incidental set of species of more

‘dispersed’ origin (Ricotta et al. 2008).

Recent advances in biodiversity mapping are based on

the processing of high spatial resolution imaging spec-

troscopy and use an original approach to test the validity

of SVH for the estimation of alpha-diversity in tropical

rainforests (F�eret and Asner 2014a). One original aspect

of this method is that it takes advantage of both high spa-

tial and spectral resolution to arbitrarily assign a ‘spectral

species’ identity to each individual pixel of the image,

using unsupervised clustering. It consecutively performs

pixel inventories over all individual surface units of a

given size across the image. F�eret and Asner (2014a)
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applied a size of 1 ha for individual surface units, but it

can be adapted depending on the spatial resolution of the

image and expected patterns of biodiversity. This method

is based on the hypothesis that species or groups of spe-

cies can be identified across the landscape based on their

spectral signature (Clark et al. 2005; F�eret and Asner

2013), with each actual species/group of species showing

lower within-group spectral variability than among-

groups variability. Consequently, even without supervi-

sion, pixels from the same actual species/group of species

statistically tend to naturally converge toward the same

cluster. Deriving classic diversity metrics (e.g. Shannon

index, Simpson index, etc.) based on histograms of spec-

tral species offers appreciable properties compared to

one-dimensional spectral distance metrics such as the

ones discussed earlier. In fact, this approach can also be

less sensitive to the inherent nonuniform distribution of

species groups in the spectral space, or to pixels corre-

sponding to undesired surfaces (shadow, water, soil),

which may artificially increase spectral variability in high

spatial resolution images. This is a well documented and

common issue (Nagendra and Rocchini 2008). Such

methods currently lack validation based on remote sens-

ing, due to the unavailability of satellites combining high

spatial and spectral resolution, and high signal to noise

characteristics. However, several possibilities are foreseen

for the near future, and adjustments can already be antic-

ipated to fit specificities of different types of biomes.

Tropical environments may be particularly dependent

on high spectral resolution information to discriminate at

least between broad groups of species because of the

extremely high number of species and the subtle differ-

ences in spectral signature measured among species

(Asner and Martin 2009). Future satellite programs such

Field plots Field plots

Figure 1. Alpha-diversity (left side) is commonly predicted starting from remote sensing data, calculating a heterogeneity map based on local

heterogeneity estimators applied to the image and building a regression model with field-based species diversity calculated with one of the

methods reported in Table 1. Beta-diversity is commonly assessed relying on differences among areas in terms of spectral signal values (Table 2)

and the relationship with field based measures of species distance (Table 1). In this case an example of a distance decay model is shown where

species similarity decays with increasing spectral variability among areas. The satellite image shown in this figure is used as a symbol of a raster

file. Refer to the main text for additional explanations.
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as HyspIRI (USA), EnMAP (Germany) and HYPXIM

(France) may provide the necessary amount of spectral

information to allow the implementation of this method.

The fusion with higher spatial resolution sensors and

appropriate methods (such as image sharpening) will also

contribute to improved biodiversity mapping in complex

environments. However, many difficulties have to be

overcome in such environments, starting with high-qual-

ity atmospheric correction and efficient fusion methods

of multiple sensors.

In temperate to boreal environments, spectral informa-

tion may not be as crucial as it is in tropical environ-

ments. First, the moderate species richness may require

less spectral information for accurate species discrimina-

tion; second, the strong diversity of temporal–seasonal
dynamics among species and vegetation types provides

particularly helpful information for discrimination, as the

temporal variations of spectral properties can be related

to differences in phenology and physiology. Multispectral

satellite sensors with high to very high spatial resolution

and short revisit period, such as Sentinel-2, Vens, and

other high spatial resolution multispectral sensors may be

good candidates for biodiversity mapping based on spec-

tro-temporal variations.

Potential and pitfalls of remote sensing
estimates of beta-diversity

While alpha-diversity is related to local variability, species

turnover (beta-diversity) is a crucial parameter when try-

ing to identify high biodiversity areas (Baselga 2013). In

fact, for a given level of local species richness, high beta-

diversity indeed leads to high global diversity of the area.

This is one of the basic rules underpinning the concept of

irreplaceability of protected areas (e.g. Wegmann et al.

2014).

Table 2. Advances in biodiversity assessment using remote sensing.

Topic Approach Habitat, location and source data References

Alpha-diversity

assessment

Univariate regression models using

vegetation indices

Tropical dry forests, Florida, US, Landsat

Enhanced Thematic Mapper Plus (ETM+)

data

Gillespie (2005)

Univariate regression models using single

bands as predictors

Wetlands, Italy, Quick-Bird data Rocchini et al. (2007)

Univariate regression models using Principal

Components as predictors

Wetlands, Italy, Quick-Bird data Rocchini et al. (2004)

LOcally WEighted Smoothing Surfaces

(LOWESS) regression models, testing

images with different spatial and spectral

resolution

Tropical dry forests, India, Landsat Enhanced

Thematic Mapper Plus (ETM+)/IKONOS

data

Nagendra et al. (2010)

Multiple nonparametric regression models

(Generalized Additive Models, GAM)

including remote sensing variables

Boreal forests, Finland, Landsat Enhanced

Thematic Mapper Plus (ETM+) data

Parviainen et al. (2009)

Multivariate regression models including

remote sensing data as covariates

Walnut fruit forests, Kyrgyzstan/Central

Asia, ASTER data

Feilhauer and Schmidtlein (2009)

Regression models testing images with

different spatial and spectral resolution

Tropical dry forests, India, Landsat Enhanced

Thematic Mapper Plus (ETM+)/IKONOS

data

Nagendra et al. (2010)

Neural networks for predicting species

richness and abundance

Bornean tropical rainforests, Malaysia, Asia,

Landsat Thematic Mapper (TM) data

Foody and Cutler (2003)

Beta-diversity

assessment

Mantel-based correlation between species

compositional turnover and spectral

distance

Worldwide, WWF Ecoregion database,

MODIS data

He and Zhang (2009)

Multivariate approaches (based on

detrended correspondence analysis, DCA)

to find beta-diversity gradients

Walnut fruit forests, Kyrgyzstan, Central

Asia, ASTER data

Feilhauer and Schmidtlein (2009)

Quantile regression applied to species beta-

diversity estimate (spectral distance decay)

Tropical dry forests, India, Landsat ETM+

data

Rocchini and Cade (2008)

Beta-diversity mapping based on explicit

distance maps

Tropical forests, Amazon, Peru, data from

the Carnegie Airborne Observatory (CAO)

airborne taxonomic mapping system

(AToMS)

F�eret and Asner (2014a)

Rows are ordered based on a complexity criterion, that is, following an increase in the complexity of the approaches being used.
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In general, beta-diversity is assessed by plotting the

compositional similarity among sites measured in the

field versus their spatial distance (but see Table 1 for an

overview of the metrics classically used to assess beta-

diversity). The higher the slope of the resulting curve, the

higher the beta-diversity of the area. In other terms, the

higher the decay in the similarity of species among sites

the higher the turnover in terms of species composition.

Therefore, it is expected that species turnover should

increase with increasing spatial extent. The curvilinear

nature of this relationship, however, means in practice

that the validity of extrapolation will depend on the sam-

pling effort, that is, the extent of field knowledge (Ferrier

et al. 2007).

In some cases spatial distance/dispersal ability might not

be the only driver of species turnover, which seems to be

more strictly related to environmental conditions (Tuo-

misto et al. 2003). Hence, models have been built to relate

species and spectral turnover to explain their potential

relationship and its causes (Rocchini et al. 2009; Fig. 1).

Tuomisto et al. (2003), studying plant diversity in

Amazonia, found that spatial distance accounted only for

a small fraction of variance in species similarity, while

environmental variation, measured by both soil properties

and spectral distance in a Landsat TM image, accounted

for a much larger one. When using spatial distances, dis-

tance decay does not necessarily account for environmen-

tal heterogeneity (Palmer 2005), especially in heavily

fragmented landscapes. Thus, the use of spectral distances

for summarizing beta-diversity patterns may be more reli-

able as this method explicitly takes environmental hetero-

geneity into account instead of mere spatial distances

among sites (Fig. 1). Therefore, it is expected that the

higher the spectral distance among sites, the higher their

difference in terms of environmental niche, thus leading

to higher beta-diversity. This has been demonstrated at a

number of spatial scales and in several habitat types,

ranging from local scaled studies in Mediterranean forests

(Rocchini and Cade 2008), Amazonian tropical forests

(Tuomisto et al. 2003), Western Ghats (India) tropical

forests (Krishnaswamy et al. 2009), tropical dry forests

(Rocchini et al. 2009), North and South Carolina (U.S.)

lowlands, and floodplains (He et al. 2009), to worldwide

assessments on the relationship between biodiversity and

productivity (He and Zhang 2009).

A straightforward method for measuring beta-diversity

is to calculate the differences between pairs of plots in

terms of their species composition using one out of the

many possible (dis)similarity coefficients proposed in the

ecological literature (Legendre and Legendre 1998; Koleff

et al. 2003; Baselga 2013), and assess the spectral turnover

variability derived remotely from the variation in species

composition among sites.

This has been mainly related to the spectral distance

decay models in which species similarity decays once

spectral distance d increases, using all pairwise distances

once a total number N of plots is considered, based

on an a priori defined statistical sampling design (Fig. 1).

A potential pitfall is that the relationship between beta-

diversity and habitat heterogeneity is also rarely linear,

even when appropriate log transforms of environmental

variables are made (Ferrier et al. 2007) because of varia-

tions in the rate of species turnover along an environ-

mental gradient. New statistical approaches need to be

developed to deal with such challenges (e.g. generalized

dissimilarity modeling, Ferrier et al. 2007).

Predicting and mapping beta-diversity using remotely

sensed images acquired over large areas may become a

computationally intensive task when it is based on dis-

tance matrices, compared to the ‘raw data’ approach

(‘distance’ vs. ‘raw data’ approaches as described by

Legendre et al. 2005; see also Rocchini et al. 2010).

Another difficulty with mapping beta-diversity is the

need to use appropriate visualization strategies in order

to produce spatially explicit maps respecting the continu-

ous nature of changes in species composition (Penner

et al. 2011). On this particular point, prediction maps of

species composition based on supervised classification has

obvious drawbacks in terms of (1) class definition which

requires exhaustive description of all classes, and risk of

confusion increasing with the number of classes, and (2)

crisp borders which do not correspond to the gradual

nature of changes in species composition, and directional

turnovers along continuous environmental/physical

gradients.

A solution proposed by Thessler et al. (2005), and

addressing these two issues consists in combining ordina-

tion methods derived from field observations with cluster-

ing methods applied to remotely sensed data, in order to

obtain a uniform prediction of species composition over

an entire satellite acquisition. The solution proposed by

Thessler et al. (2005) still requires important field obser-

vation in order to run the method and build the models,

and there is no guarantee that the field sampling

accounted for all major species communities to identify.

However, this method significantly decreased the amount

of work. The authors estimated that mapping all Ecuado-

rian Amazonia (70 000 km2) would require 5 years with

c. 20 people.

The approach of Thessler et al. (2005) was extended to

purely remotely sensed data thanks to high spatial resolu-

tion imaging spectroscopy (Baldeck and Asner 2013; Bal-

deck et al. 2014; F�eret and Asner 2014a,b). These studies

are based on the preliminary unsupervised clustering of

spectral data, assigning each pixel to a ‘spectral species’ as

6 ª 2015 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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described in the previous section. After spectral clustering,

the image is divided into homogeneous elementary sur-

face units, and a dissimilarity metric (Bray–Curtis dissim-

ilarity, Bray and Curtis 1957) is then used to compute

pairwise dissimilarity between each pair of surface units.

Finally, the resulting dissimilarity matrix is processed

using nonmetric multidimensional scaling to project ele-

mentary units in a three-dimensional Euclidean space,

allowing the creation of a colored map in the standard

Red–Green–Blue referential system. This colored map

expresses changes in species composition with changes in

color tone. This method proved to perform well with dif-

ferent vegetation types. In savanna landscapes, both pre-

liminary definition of spectral species based on supervised

and unsupervised classification of tree species were com-

pared (Baldeck and Asner 2013). Supervised classification

using support vector machine algorithms resulted in more

accurate estimation of pairwise Bray–Curtis dissimilarity

than k-mean unsupervised classification. However, such

possibilities can be considered only for landscapes with

moderate species richness, due to the confusion caused by

increased species richness. In tropical environments,

exhaustive supervised classification of individual tree

crowns is unrealistic, which leads to selecting unsuper-

vised classification for the assignment of spectral species

to pixels. Therefore, F�eret and Asner (2014a) developed

a fully unsupervised method to process hyperspectral

images acquired over various sites in Peruvian Amazo-

nian rainforest. They successfully mapped spatial varia-

tions in species composition and Shannon diversity

index for various sites in Peruvian Amazonian rainforest

using a preliminary spectral species mapping derived

from repetitive k-means clustering. This method was

compared to various other methods relying on SVH and

proposed in the literature, and dramatically outper-

formed indicators such as variations in NDVI and mean

distance from centroid. In a second study, F�eret and

Asner (2014b) analyzed variations in both alpha- and

beta-diversity related to changes in microtopography

derived from a digital elevation model obtained with air-

borne LiDAR (Light Detection And Ranging) acquisi-

tions. Therefore, they proposed a way to take advantage

of the combination of imaging spectroscopy and LiDAR

acquisitions in order to map biodiversity and relate the

spatial variations in species composition to environmen-

tal and physical factors (Fig. 2). Therefore, novel

approaches integrating multisensors acquisitions can help

to improve understanding of the various environmental,

physical, climatic, and human factors influencing biodi-

versity, by monitoring spatial and temporal variations in

species composition.

Adding a further confounding factor, the relationship

of beta-diversity with environmental heterogeneity is also

scale dependent, perhaps even more than alpha-diversity.

Areas of ecological transition, where the factors influenc-

ing patterns of biodiversity distribution change at differ-

ent spatial scales, represent therefore a particular

challenge for field monitoring. Yet, it is in precisely such

areas where remote sensing may be especially helpful,

enabling swift and easy computation of proxies of vegeta-

tion heterogeneity at different spatial scales, to generate

hypotheses about scales at which such ecological transi-

tions may be taking place: this can then be tested using

appropriately designed field datasets. For instance, Mair-

ota et al. (2015) found differences in models of the asso-

ciation between remotely sensed values and biodiversity

across scales, with plant diversity being most appropri-

ately measured at the patch scale, while bird and insect

diversity showed stronger associations with remotely

sensed variables at the landscape and plot level, respec-

tively.

Additional Limitations Associated
with Remote Sensing-Based
Approaches for Assessing Alpha- and
Beta-Diversity

Spectral information can be a good proxy of diversity

estimate; however, care must be taken in using only

remotely sensed variables without considering additional

multiscale drivers like climate, soil types, topographic

variables, and biotic interactions.

A potential pitfall in the use of remotely sensed data

for species diversity estimation is related to spatial scale.

Finding a perfect match between remotely sensed imagery

and species diversity sampling units is difficult. Obvi-

ously, pixels should ideally be smaller than the sampling

units, at least when calculating local spectral heterogeneity

for local species diversity estimates. Nonetheless, as previ-

ously stated, when pixels with a very low dimension (e.g.

a ground spatial distance, of 1–5 m) are used (high spa-

tial resolution), shadows may create a higher spatial

heterogeneity among spectra leading to higher noise

rather than information content (Nagendra and Rocchini

2008; Stickler and Southworth 2008).

On the other hand, a lower spatial resolution may

hamper catching the actual heterogeneity due to informa-

tion smoothing processes which can hinder the detection

of fine-grained patterns. Quoting Turner et al. (2003) ‘the

challenge for the researcher is to ensure that the scale of

the imagery matches that of the species richness data and

that both are scaled appropriately for the theory being

tested’. An inappropriate match of satellite spatial resolu-

tion and the grain size of field data could hide actual spa-

tial heterogeneity with subpixel variability remaining

undetected (Small 2004; Rocchini 2007).
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Remotely sensed data sets may also vary in suitability

for diversity estimation. For example, issues such as the

radiometric resolution of the sensor often get ignored,

but two sensors with differing radiometric resolution may

yield different estimates for the same site if all other sen-

sor properties are equal. Similarly, sensors of differing

spectral resolution may yield different diversity estimates.

Concerning temporal fluctuations of species diversity,

an interesting aspect has been raised by Oindo and Skid-

more (2002) who posed the attention to the interannual

variability in NDVI in explaining species diversity pat-

terns (considering both vascular plants and mammal spe-

cies). The best predictor was found to be the interannual

integrated NDVI, including both its average (negative

polynomial relationship with species richness) and its

coefficient of variation (linear relationship). From the

‘temporal’ point of view, remote sensing is a valuable tool

since it offers the capability of extracting multitemporal

univariate or multivariate statistics as predictors instead

of relying on single-date predictors of species diversity.

The same holds for intraannual variability as demon-

strated by He et al. (2009) who found the NDVI variabil-

ity calculated for March to be range of NDVI-based

measures, mainly because of the phenological changes of

the vegetation under study.

The use of spatial heterogeneity in the spectral signal as

a proxy of species diversity also has its limitations, partic-

ularly in the conservation and management of biodiver-

sity. Simple measures of species diversity in biology, and

habitat diversity in landscape ecology, have been criticized

because diversity contains no information on the actual

species composition of a community or the habitat com-

position of a landscape (Luoto et al. 2005). Habitat diver-

sity estimated by spectral heterogeneity is a landscape

summary measure that does not take into account the

uniqueness or potential ecological importance of different

habitats. Furthermore, there are situations where increas-

ing habitat diversity may contradict management objec-

A B C

Figure 2. A lowland Amazonian area shown using: (a) a natural color composite image from the Carnegie Airborne Observatory (CAO) visible-to-

shortwave infrared (VSWIR) imaging spectrometer; (b) alpha-diversity (Shannon index); and (c) beta-diversity based on Bray–Curtis dissimilarity. A

larger Bray–Curtis dissimilarity between two plots corresponds to larger differences in color in the RGB space between the two corresponding

pixels). Reproduced from F�eret and Asner (2014a) with kind permission from the Ecological Society of America.
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tives with regard to threatened species that require large

and homogeneous habitat patches of a specific type.

Despite the ‘heterogeneity pitfall’, on the other hand,

remotely sensed spectral heterogeneity information offers

an inexpensive means to derive spatially complete envi-

ronmental information for large areas in a consistent and

regular manner. For this reason, spectral heterogeneity

may provide a valuable ‘first filter’ estimate for the loca-

tion of species hotspots and the prediction of spatial pat-

terns of biodiversity and their change over space, overall

since remote sensing offers straightforward multiscale

measurements and analyses at different scales will lead to

a more effective biodiversity assessment.

Conclusion

Landscape ecology can provide a useful framework for

improving the potential of remote sensing for predicting

and monitoring species diversity, allowing the considera-

tion of environmental gradients and spatial discontinu-

ities, through, for example, the use of patch-matrix-

corridor models (Turner 1989) of biodiversity distribu-

tion. Traditional approaches relating remote sensing to

species diversity indeed consider alpha- or beta-diversity

to be primarily dependent of environmental variations

along defined gradients, without sufficiently taking into

account how environmental discontinuities at patch edges

and variability in spatial configuration (e.g. patch size,

shape, connectivity) can impact species distributions

(Anderson et al. 2009).

Remote sensing-based analyses also need to be con-

ducted at multiple spatial scales using approaches such as

texture analysis at different window sizes, moving win-

dows, and/or pixel aggregation, to assess the scale most

suitable for biodiversity monitoring of specific taxa, in

specific contexts (Mairota et al. 2015). Field sampling

protocols need to be modified accordingly. Increased use

of hierarchical nested field sampling approaches is most

needed, collecting field data on species diversity at nested

plot (pixel within an environmental gradient), patch (lar-

ger environmentally distinct unit bounded by discontinu-

ities that separate it from other patches) and landscape

(corresponding to a single image window, or a region of

interest such as a protected area) levels (Nagendra and

Gadgil 1999).

This review has shown the high potential of remote

sensing in biodiversity research as well as the challenges

underpinning the development of this interdisciplinary

field of research. Further sensitivity studies on environ-

mental parameters derived from remote sensing for biodi-

versity mapping need to be undertaken to understand the

pitfalls and impacts of different data collection processes

and models. Such information is crucial for a continuous

global biodiversity analysis and an improved understand-

ing of our current global challenges.

Quantifying and monitoring global biodiversity using

remote sensing-based techniques will require increasingly

complex data analyses. These can only be implemented

in the future with a completely new orientation of Big

Data analysis using Linked Open Data (LOD)

approaches as well as the rapidly growing Open Data-

base Initiative – Freebase (Lausch et al. 2015). LOD

availability is constantly evolving, also under the

umbrella of Volunteering Geographic Information (Fonte

et al. 2015), whereby all large datasets that are freely

available on the Internet can be related through seman-

tic networks. The basic advantage of LOD models com-

pared to traditional data-mining models is that, due to

already existing semantic links, it is not up to the ana-

lyst to decide the criteria to link data in the model

(Bizer et al. 2009).

Following the research needs suggested in our article,

new and unknown patterns of biodiversity, insights, and

model-based forecasts might be developed based on a

more robust use of remote sensing.
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