T. Aydin and Y. S. Akgul, Stereo depth estimation using synchronous optimization with segment based regularization, Pattern Recognition Letters, vol.31, issue.15, pp.2389-2396, 2010.
DOI : 10.1016/j.patrec.2010.07.012

S. Prince, Models for grids, 2012.
DOI : 10.1017/CBO9780511996504.017

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.11, pp.1222-1239, 2001.
DOI : 10.1109/34.969114

J. Sun, Y. Li, S. B. Kang, and H. Y. Shum, Symmetric stereo matching for occlusion handling, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, pp.399-406, 2005.

Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér, Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.3, 2009.

G. Facciolo, C. De-franchis, and E. Meinhardt, MGM: A Significantly More Global Matching for Stereovision, Procedings of the British Machine Vision Conference 2015, pp.90-91, 2015.
DOI : 10.5244/C.29.90

URL : https://hal.archives-ouvertes.fr/hal-01240853

A. F. Bobick and S. S. Intille, Large occlusion stereo, International Journal of Computer Vision, vol.33, issue.3, pp.181-200, 1999.
DOI : 10.1023/A:1008150329890

H. Hirschmüller, Stereo Processing by Semiglobal Matching and Mutual Information, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.2, 2008.
DOI : 10.1109/TPAMI.2007.1166

J. Zbontar and Y. Lecun, Stereo matching by training a convolutional neural network to compare image patches. arXiv preprint 1510, p.5970, 2015.

S. Beucher and F. Meyer, The morphological approach to segmentation: the watershed transformation, Optical Engineering, vol.34, pp.433-481, 1992.

A. Hosni, M. Bleyer, and M. Gelautz, Near real-time stereo with adaptive support weight approaches, International Symposium on 3D Data Processing, pp.1-8, 2010.

C. Cigla and A. A. Alatan, Information permeability for stereo matching, Signal Processing: Image Communication, vol.28, issue.9, pp.1072-1088, 2013.
DOI : 10.1016/j.image.2013.04.001

C. Vachier and F. Meyer, The Viscous Watershed Transform, Journal of Mathematical Imaging and Vision, vol.7, issue.3, pp.251-267, 2005.
DOI : 10.1007/s10851-005-4893-3

R. Zabih and J. Woodfill, Non-parametric local transforms for computing visual correspondence, Third European Conference on Computer Vision 1994 Proceedings , Volume II, pp.151-158, 1994.
DOI : 10.1007/BFb0028345

P. Fua, A parallel stereo algorithm that produces dense depth maps and preserves image features, Machine Vision and Applications, vol.8, issue.2, pp.35-49, 1993.
DOI : 10.1007/BF01212430

URL : https://hal.archives-ouvertes.fr/inria-00075191

D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Ne?i´ne?i´c et al., High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth, In: Pattern Recognition, pp.31-42, 2014.
DOI : 10.1007/978-3-319-11752-2_3

S. N. Sinha, D. Scharstein, and R. Szeliski, Efficient High-Resolution Stereo Matching Using Local Plane Sweeps, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.1582-1589, 2014.
DOI : 10.1109/CVPR.2014.205