Other quantum relatives of the Alexander polynomial through the Links-Gould invariants

Abstract : Oleg Viro studied in arXiv:math/0204290 two interpretations of the (multivariable) Alexander polynomial as a quantum link invariant: either by considering the quasitriangular Hopf algebra associated to $U_q sl(2)$ at fourth roots of unity, or by considering the super Hopf algebra $U_q gl(1|1)$. In this paper, we show these Hopf algebras share properties with the $-1$ specialization of $U_q gl(n|1)$ leading to the proof of a conjecture of David De Wit, Atsushi Ishii and Jon Links on the Links-Gould invariants.
Type de document :
Article dans une revue
Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145 (12), pp.5419-5433. 〈10.1090/proc/13699〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01329298
Contributeur : Bertrand Patureau Mirand <>
Soumis le : jeudi 9 juin 2016 - 04:19:54
Dernière modification le : lundi 11 décembre 2017 - 12:41:35

Identifiants

Collections

Citation

Ben-Michael Kohli, Bertrand Patureau-Mirand. Other quantum relatives of the Alexander polynomial through the Links-Gould invariants. Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145 (12), pp.5419-5433. 〈10.1090/proc/13699〉. 〈hal-01329298〉

Partager

Métriques

Consultations de la notice

317