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Abstract—The ability to navigate in diverse and previously
unknown environments is a critical service of autonomous robots.
We propose a test framework based on MORSE (Modular Open
Robots Simulation Engine), and using the generation of virtual
3D worlds to challenge the navigation service. We elaborate on
the notion of the difficulty of the generated worlds, which we
characterize in terms of mission achievement, mission duration
and trajectory curves. We experimentally study our ability to
control the difficulty level by means of the generation parameters.
We also assess the indeterminism of the navigation and how
it evolves depending on the difficulty level. The experimental
outcomes provide insights toward the definition of test strategies
to further stress the navigation service.

I. INTRODUCTION

The deployment of mobile robots in unstructured and
human shared environments raises safety, performance and
mission achievement issues. Indeed failures of such systems
may lead to unacceptable consequences. Among dependability
techniques, testing in real world is a way to reveal and remove
faults. But real world tests of mobile robots are very expensive,
can explore a limited number of operational situations and
are not without risk (for the hardware, the environment or the
humans). Another way to test these systems can be simulation-
based testing. It is potentially more complete compared to
a real world testing campaign, and may avoid catastrophic
consequences. Moreover, the tests may immerse the robots
in many virtual worlds to explore a large number of situ-
ations. Although existing simulators have reached sufficient
maturity to allow testing, systematic simulation-based testing
approaches are still to be defined. The long-term goal of our
work is to propose such an approach.

As a case study, we focus on testing a critical service of
mobile robots: the navigation service. Our testing framework is
based on MORSE (Modular Open Robots Simulation Engine),
which uses the 3D game engine of Blender. Virtual worlds are
generated using a procedural generation approach.

In this paper, we propose a notion of the difficulty of
the generated worlds, in terms of the feasibility of navigation
missions and the effort required for their successful comple-
tion. Predicting difficulty a priori is very complex, so we
observe it a posteriori (after running the tests). Based on the
observed mission success rate, mission duration and trajectory
curves, we classify worlds on a scale ranging from easy to
very difficult. We then experimentally study our ability to
control the difficulty level by means of the 3D world generation
parameters. We also assess the indeterminism of the navigation
and how it evolves depending on the difficulty level.

The paper is organized as follows. Section II presents
related work: some previous experiments on autonomous
systems, existing simulators and procedural generation tech-
niques. In Section III, we present the system under test.
Section IV presents the testing framework we developed based
on MORSE. We used this framework to address a set of
experimental questions presented in Section V, pertaining to
the notion of difficulty. The results are presented and discussed
in section VI. We then conclude.

II. BACKGROUND

Simulation-based testing permits to avoid hazardous con-
sequences, while providing means for controlling the inputs
and for performing complex output analysis. Some robot
simulators are specialized for a particular system or compo-
nent, like iCub [1] or HRP [2]. Others can simulate various
types of robots in various environments, as it is the case for
MORSE [3], Gazebo [4] or Webots [5]. The survey in [6]
compares several simulators including MORSE and Gazebo.
A Software-in-the-loop philosophy is present in most of the
simulators mentioned above. It allows the execution of real
control software using a model that simulates its environment.

Recent work has studied test selection strategies for au-
tonomous systems. Most of the proposed strategies are based
on an abstract model of test situations [7], describing the
involved entities, their relationships and some interaction
patterns. The authors of [8] use UML (Unified Modeling
Language) to specify a metamodel of entities and a set of
interaction scenarios. The approach is applied to a vacuum
cleaner robot, using metaheuristic search techniques to gener-
ate abstract test data from the models. In [9], the structural
model of entities is in UML and the dynamic part consists of
Petri nets. The work of [10] defines several types of mid-air
collision situations, and uses them to guide the evolutionary
testing of a drone collision avoidance algorithm.

As a general comment, the vast majority of developed ap-
proaches adopt a simplified view of the simulated environment.
To the best of our knowledge, the work of [11] is the only one
to consider complete virtual world environments. In order to
test a path-following navigation algorithm for ground robots,
the authors randomly generate virtual worlds consisting of 2D
maps filled with fixed and mobile obstacles. An interesting
contribution of this work is to establish a connection with
world content generation techniques used in the domain of
video games.

In the video game community, generating worlds is well
studied and developed. Procedural content generation (PCG)



<<Tcl shell>>
Execution controller

Robot 
model

<<GenoM>>
POM

<<GenoM>>
P3D

<<GenoM>>
DTM

Blender<<MORSE>>
Rflex

<<MORSE>>
Velodyne

<<MORSE>>
Pose

Simulation config 

<<SUT>>

Fig. 1: Simplified diagram of the test architecture

is an algorithmic approach such that, from a few selected
parameters, a large number of possible game contents can be
automatically created [12]. PCG is widely used to generate
maps, dialogues, missions, characters, or more decorative
aspects such as textures. The main idea is to have some
upstream parameters – compact description of the content
(or genotype) – describing the content that will be generated
downstream – extended description of the content (or pheno-
type). This generation can take place offline or online, i.e.
during development or while playing the game. In [12], the
authors distinguish between constructive and generate-and-test
techniques. The constructive techniques generate the content
once, while the other ones have iterations at which candidate
contents are produced and evaluated. For example, generate-
and-test algorithms have been used to produce maps for the
Dwarf Fortress game, and also for a game based on Super
Mario Bros (in which case the evaluation function included
learned information about the player [13]). Another approach
in [14] uses an evolutionary approach to optimize a population
of maps for a real time strategy game, based on a multi-
objective fitness function.

In conclusion, simulation-based testing of autonomous sys-
tems is an emerging topic that has started to attract interest
from the testing community. Previous work has suggested the
application of PCG techniques to generate the test situations,
which we believe is a promising direction of research. This
paper presents a testing framework based on the MORSE
simulator and our first experimental results on the generation
of virtual worlds.

III. SYSTEM UNDER TEST

In this study we use MORSE, a robotic simulator built upon
Blender [15]. It includes a physical engine (Bullet Engine)
and provides numerous plugins for popular robotic platforms,
sensors and effectors. Blender also provides numerous useful
functions for automatic generation of worlds. We focus here
on the Mana robot (a Segway RMP 400 platform) and the
Velodyne lidar sensor, which are both handled by MORSE.

The Mana robot software is organised according to a
classical robotic architecture [16], but we focus here on
functional layer and more precisely the navigation service.
Six functional modules are involved in this service. As can
be seen in Figure 1, Rflex (wheel control and odometry),

Fig. 2: Left: the robot in the simulation environment MORSE.
Right: DTM environment representation

Velodyne (3D laser scanner sensor) and Pose (position sensor)
are all handled by MORSE. DTM (3D mapping manager),
POM (position management) and P3D (motion planning) are
the exact replicas of the modules running on the real robot.
Together, these three modules represent the system under test
(SUT) for a total number of 35k lines of code. They are
developed with GenoM (Generator of Module) [17]. GenoM
is a tool that helps developers to deploy and encapsulate
the needed algorithms into standardized server components.
GenoM modules communicate via the pocolibs middleware,
using shared memory primitives called posters.

In robotics, motion planning has been extensively stud-
ied. The tested P3D module implements the local planning
algorithm presented in [18]. Its principle is to choose the
path that minimizes both a traversability-stability cost and the
distance to the goal. The algorithm considers a fixed number
of arc-shaped paths in front of the robot, and different points
(called nodes) along each arc. The cost of putting the robot at
a particular point increases with the slope at this location. Cost
is infinite if the terrain is unknown (no perception). Perception
problems may come from the laser sensor range or from terrain
irregularities, as shown in the right side of Figure 2: the white
areas correspond to patches of the map that have not been
perceived by the laser. P3D computes the cost and reward
associated with each arc and selects the best one.

In our test cases, P3D performs its search over 20 arcs with
15 nodes each. It fails when no arc is elected, i.e., all the costs
are above a given threshold. Without going into the details of
the P3D navigation, one should note that this is a local method,
so it is expected to fail if the robot ends up in a dead end (or
inside a small U shape area). In such a situation, a global
navigation such as D∗ [19] could then be used to pursue the
exploration of the “unknown” environment and find a path to
the destination point.

It is important to note that even if one starts two navigations
with the same initial setup (world and mission), the observed
trajectories may be different. Indeterminism is inherent to the
perception/action loop. It occurs on real robots as well as in
simulation.

IV. TESTING FRAMEWORK

MORSE typically serves prototyping purposes, but we
consider its use for conducting more extensive test campaigns.
It requires us to set up a richer testing framework, allowing us
to automate the generation of the navigation scenarios, their
execution, the collection of output data sets and their analysis.



A. Virtual worlds as test inputs

When designing test experiments, a key element is the
world model underlying the navigation scenarios. It is obtained
by studying the specification of the robot (marine, aerial or
terrestrial) and its typical use cases. The study must identify
relevant environment characteristics as well as constraints that
eliminate impossible worlds. Once the world model is built, we
investigate solutions to automatically produce world instances.
The solutions may combine world content generation functions
and selection from a library of predefined elements.

Robot developers gave us a 3D image of an area where
the physical robot was deployed for experimentation in real
conditions. This use case helped us to identify the types of
obstacles and terrain that the robot can potentially encounter.
We derived the world model represented in Figure 3, composed
of the ground and obstructing objects like trees and buildings.
The ground itself does not have a rugged topology with
mountains or canyons. It is rather smooth but with many
local irregularities. We model these irregularities by local
deformations applied to subdivisions of the ground. Overall, a
map is characterized by its size, its percentage of obstruction
(due to objects), and its degree of smoothness (resulting from
the ground local deformations). Some constraints are added to
the model: objects must have a location inside the map, they
are laid on the ground and cannot overlap each other.

The inputs to robot navigation testing are a world instance
and a navigation mission in this world, defined by a starting
position and a target arrival position. The mission adds con-
straints: both positions must be at a location free of obstacles.
Moreover, the free area around the starting position must be
large enough for Mana to properly initialize. The robot first
moves some few meters from its initial location to scan its
surroundings and to build an initial map of the perceived
environment. The size of the free area around the starting
position was determined after discussion with the developers
of the navigation software. We took the same size for the free
area around the arrival point.

To instantiate the world model, the generation of the
ground and obstacles may uses different solutions: predefined
functions of Blender, predefined objects or basic objects.

For the topology, we choose the Blender Subdivide
function. It subdivides the faces of objects (called mesh in the
Blender terminology), to obtain a grid controlling the mesh
geometry. The Fractal transformation then displaces the
grid vertices in random directions. Figure 4 shows the result
of a transformation applied to a flat plane mesh representing
the ground. We choose to constrain the displacements along
the normal z-axis to obtain a less chaotic and more realistic
terrain. Control parameters: s, the number of subdivisions, and
d, the amplitude of the grid deformation; allow us to obtain
from smooth to rough terrain.

For buildings, we decided that it was not worth using a
convoluted function. The robot lidar only perceive the general
shape of objects, and so a building can merely be represented
as a big rectangular box mesh, which can be easily generated
from Blender. For a first approximation, we also use cubes to
simulate trees.

These solutions, attached to each basic element of the
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Fig. 3: World model derived from the use case

Fig. 4: The resulting topography of the subdivision algorithm
with s = 4 and d = 1

world model, provide convenient building blocks of generation
profiles to produce world instances.

B. Data collection and analysis

During a simulation run, we collect events and data traces
that are relevant to analyse the navigation behaviour. Some of
them are taken from the robot’s point of view, including its
perception of the environment and the decisions it took, while
others are the view of an external observer sensing what really
happened in the simulated world instance.

The readouts for the robot’s point of view are the following:

• Perceived positions during the run, captured each time
the corresponding poster is updated by POM. Each
position is timestamped and includes yaw, pitch, roll,
x, y and z,

• Perceived map at the end of the run, corresponding to
the last value of the poster updated by DTM,

• Error messages produced by all the GenoM modules.

The interface of GenoM modules makes it possible to
configure them to log the values of posters each time they
are updated, as well as to log them on demand. Should we
test alternative navigation algorithms the logged data would
still be meaningful.



The readouts for the external observer’s point of view are
the following:

• Real positions of the robot during the run (in the same
format as the perceived ones),

• Collision events,

• Timeout events, used to abort the run if it does not
end after a certain amount of time (e.g. because the
robot failed to approach toward the goal).

All these readouts are raw data that must be processed to
produce synthetic outcomes. Our testing framework currently
provides a number of data processing and data visualization
facilities.

Each simulation run is classified according to the success or
failure of the mission. In case the run ended normally (no time-
out, no error from GenoM modules), there was no collision,
and the last real robot position was at the target destination
within some tolerance, the mission is considered a success. All
other cases fall into a mission failure category, which can be
Fail-Collision, Fail-TimeOut, Fail-Error or Fail-Other. Runs
exhibiting multiple issues (e.g., both a collision and an error
message) are classified into the most severe category (e.g.,
Fail-Collision). The distance between the end position of the
robot and the target destination point is also systematically
reported. Note that a failed mission does not necessarily mean
that the navigation is faulty. While collisions obviously reveal
faults, Fail-Error may be an expected behaviour if obstacles
make it impossible for the robot to reach its target. It is then
necessary to have a closer look at the trajectory adopted by
the robot.

A script has been developed by colleagues at LAAS to draw
trajectories on the 3D image of the world instance. It allows
us to visualize a real trajectory during one run, compare it
with the perceived trajectory, or visualize different trajectories
taken in multiple similar runs due to the indeterminism as one
can see in Figure 5. Finally, the perceived map at the end of
the run may be visualized. It may be helpful to understand
the reasons for a failed mission, in particular in cases where
an error message reported that no arc for navigation could be
selected.

V. DESIGN OF EXPERIMENTS

The map model in Figure 3 can later be enriched by
considering dynamic elements, like mobile obstacles (e.g.,
pedestrians, bikes, cars), noise applied to the robot sensors,
etc. But before considering these extensions, it is interesting
to gain deeper insights into how the static characteristics of the
map may stress the navigation. We use the previously described
testing framework to experimentally address three questions.

The first one concerns controllability of the difficulty of
a generated map. The candidate control parameters are the
smoothness degree and percentage of obstruction: these are
inputs to the generation process. The difficulty of the resulting
maps is determined a posteriori, from the observed success rate
of navigation missions, the time to get to the destination point
and the complexity of the trajectory (detours). We aggregate
these outcomes to obtain a classification into three levels of
difficulty: easy, challenging and very difficult. Ideally, we

Fig. 5: Five paths on the same ground with 6% of obstruction

would like to find a close correspondence between ranges of
generation parameters and the supplied difficulty levels.

Q1 - To what extent can the difficulty level of the nav-
igation mission be identified and controlled by the value of
generation parameters?

The second question is related to the indeterminism of
the navigation. Given one map and one mission in this map,
different runs might yield drastically different results. This
would impact the applicability of iterative test generation
techniques. For example, consider a search-based generation
process, in which the fitness of a map is calculated based
on the result of a single run at each iteration. Or consider
the incremental production of neighbouring maps, in which
obstacles are gradually added on the trajectory of the robot.
A high degree of indeterminism would compromise such
techniques. We conjecture that the degree of indeterminism
might depend on the difficulty level.

Q2 - To what extent does the navigation exhibit indeter-
minism, and how does indeterminism evolve depending on the
difficulty level?

The third question concerns the use of difficulty levels in
a test strategy. It may be desirable to generate maps from
all levels of difficulty, to exercise the navigation service in
diverse ways. Or one may consider that the test process should
not spend much time exploring easy cases, hence favouring
the challenging and very difficult levels. Conversely, one may
avoid the very difficult cases, considering it useless to assign
infeasible missions to the robot. The issue is open, and will
require extensive empirical investigation. As a preliminary
step, we experiment with a faulty version of the navigation
that may exhibit collisions.

Q3 - For the faulty navigation service, how does the fault
revealing power evolve with the difficulty level?

To address these questions, we consider navigation runs
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in maps of size 100 m x 100 m. The starting and destination
points are fixed, respectively in the bottom left and the top right
areas of the map: a straight trajectory in a flat map is then a
travel of about 140 m. The experiments consider one control
parameter at a time. If we let the smoothness degree vary,
no obstacle is put on the map. Conversely, if the percentage
of obstruction is the focus, the map is kept flat. There are
five classes of experiments as presented Figure 6. The three
ground experiments study the smoothness degree, by letting
the deformation d vary for a fixed number of subdivisions s =
2, 4 or 6. The two remaining experiments study the obstruction
by buildings or trees, considered separately. Obstacles are
placed randomly until the desired percentage of obstruction is
obtained. Buildings are boxes having a basis of 9m x 9m, while
trees have a basis of 1m x 1m. Hence, for a given percentage of
obstruction, the map may either contain a few large obstacles
or many small ones.

For each class of experiment, the values of the studied con-
trol parameters are sampled with a fixed increment, yielding a
set of control configurations. Given a configuration, 5 different
maps are generated and then 5 runs are executed for each map,
yielding a total of 25 runs per configuration. For example, we
produce 5 different maps with small obstacles filling 6% of
the surface. Then, robot navigation is launched five times on
each map in turn, so that we can observe indeterminism. Note
that a run duration is typically in the order of minutes.

The data collected during the runs is used to assign a
difficulty level to each control configuration (Q1). The assign-
ment depends on: the overall mission success rate for the 25
runs, the median duration of successful runs, and the median
“tortuousness” of successful trajectories. The tortuousness is
introduced to characterize the trajectory curves: it corresponds
to the average absolute angle between successive positions of
the robot. Since duration and tortuousness concern successful
runs only, a first step consists in extracting the configurations
for which zero or few successes are observed. They are as-
signed the level very difficult. In our experiments the threshold
is less than 25% of successes. The remaining configurations are
partitioned by the kmeans clustering algorithm, with a weight
of 0.5 for the success rate, 0.25 for the duration and 0.25 for
the tortuousness. The cluster including the flat configuration
with no obstacle has the easy level, while the other one has
the challenging one. It is then studied whether the obtained
classification matches subdomains of parameter values.

Indeterminism (Q2) occurs when, for a same map (and
a same mission, since the destination point is fixed), the
robot takes different paths. It is detected by comparing the

Class of experiment Total runs Total time
Buildings 900 48h30min

Trees 570 23h53min
Ground s = 2 375 16h39min
Ground s = 4 300 14h35min
Ground s = 6 200 8h10min

TABLE I: Experimental effort
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Fig. 7: Success rate, times, and tortuousness results for trees
obstacles on a flat ground

timestamped positions for runs on the same map. We derive
a synthetic measurement of the maximal Euclidean distance
of the positions at any time t. Details of the differences can
also be observed manually by using the trajectory visualization
facility.

The maps produced for studying the obstruction by build-
ings and trees are reused in experiments with an intentionally
faulty version of the navigation (Q3). The injected fault
consists in configuring P3D for a robot that is slightly smaller
(0,84m x 0,45m) than the avatar used by the simulator (1.14m
x 0.67m): in Figure 1, the Robot model contains an erroneous
size. As a result, P3D underestimates the space required by
the robot, which may lead to collisions in the simulation. Like
previously, five runs are executed for each map. The fault
revealing power is assessed by reporting the number of runs
exhibiting collisions.

VI. EXPERIMENTAL RESULTS

All the experiments have been performed on a PC with an
Intel Core i7-4800MQ CPU at 2.70GHz, and 16 GB of RAM.
Table I shows the numbers of runs for each class of experiment
and their total duration.

A. Controllability of difficulty levels (Q1)

Figures 7 to 9 show the assignment of difficulty levels to
experimental configurations for three classes of experiments:
obstruction with trees, obstruction with buildings, and smooth-
ness degree with one of the considered numbers of subdivisions
(the one with s = 2). Each figure contains three graphs
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Fig. 8: Success rate, times, and tortuousness results for build-
ings obstacles on a flat ground
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Fig. 9: Success rate, times, and tortuousness results for subdi-
vision s = 2 and with no obstacle

corresponding to the measurements used in the assignment: the
mission success rate, the duration of successful runs and their
tortuousness. The graph plotting the success rate also visually
indicates the assigned difficulty level, using a symbol  for
the easy configurations, N for the challenging ones and � for
the very difficult ones. The experiments with buildings (Fig.
8) did not allow us to observe very difficult configurations.
Beyond an obstruction rate of 28.25%, the random placement
of buildings failed to find enough free space in the map to add
obstacles without overlapping. We had to stop the experiment.

No collision was reported in any of the experiments. The
large majority of missions failed because P3D considered that
the continuation of the mission was impossible (Fail-Error):
it stopped the robot and issued an error. All other cases
correspond to runs that were forced to abort at the expiration
of timeouts (Fail-TimeOut). The robot was trapped into a zone
surrounded by obstacles or steep slopes, it went round and
round in circles without finding an exit and P3D was not able

to decide to stop the mission.

As a general observation, there is a pretty good corre-
spondence between increasing values of control parameters
on the one hand, and increasing levels of difficulty on the
other hand. For example, in Figure 7, the configuration is
easy up to 5% of obstruction by trees, challenging in 5-7%
and very difficult above 7%. The thresholds may however be
fuzzy, as exemplified by Figure 8 for buildings. Both easy
and challenging configurations can be found above 19% of
obstruction by buildings. Fuzzy thresholds are also observed
for one class of experiment studying the smoothness degree,
the one with s = 4: as the deformation value increases, we
first observe easy configurations only, then a mix of easy
and challenging ones, then a mix of challenging and very
difficult ones, and then only very difficult ones. It must be
reminded that we considered a limited number of five maps
per configurations. Precise threshold values are not significant,
but the overall trend of increasing difficulty levels is clear.

It is also significant to compare the relative values of
thresholds obtained for similar classes of experiments, re-
spectively for experiments on the obstruction rate and on the
smoothness degree. By comparing the results for trees and
buildings, it is obvious that the size of obstacles matters and not
merely the percentage of obstruction. A map obstructed at 8%
by trees will tend to be very difficult, while 8% by buildings
will tend to be easy. Intuitively, it is much more stressful
to slalom between many small obstacles, than to negotiate a
few large ones. Similarly, the comparison of results on the
smoothness degree shows that the size of the deformed ground
surfaces matters. The smaller the size (i.e., the larger the
number of subdivisions of the ground), the more stressful the
deformation. In Figure 9 displaying results for 2 subdivisions,
the very difficult configurations start at deformation d = 5.5.
They start earlier at d = 3.5 for 4 subdivisions, and as early
as at d = 2.5 for 6 subdivisions.

To conclude, the macroscopic parameters of a map are
relevant from the perspective of a coarse control of the
difficulty levels. But the difficulty introduced by obstacles
strongly depends on their size. As a map may contain several
types of obstacles (e.g., both trees and buildings) or obstacles
of varying size in a certain envelope (e.g., buildings which are
not all identical), the generation parameters should not merely
consider the desired percentage of obstruction. They should
also include weights to control the generation of alternative
types of obstacles, and possibly additional control parameters
for intra-type variability. The difficulty introduced by the
irregularities of the terrain may be coarsely controlled by the
size of the map, the number of subdivisions and the amplitude
of the deformation.

B. Indeterminism (Q2)

We compare the timestamped positions of the robot ob-
served for repeated runs on the same map. Figures 10 and 11
show the results for the obstruction by trees and for deforma-
tions applied to a map with s = 2. Each figure includes two
graphs: we separately study the successful and unsuccessful
trajectories. Max intra-map distances at time t are calculated,
and then we report the average max distance observed for the
various maps of a given parameter configuration. Comparison
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Fig. 10: Indeterminism for the trees experiment. Top graph:
successful runs, bottom graph: unsuccessful runs
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Fig. 11: Indeterminism for the s = 2 smoothness experiment.
Top graph: successful runs, bottom graph: unsuccessful runs

of successful trajectories is focused on the easy and challeng-
ing configurations, because the very difficult configurations
have too few successes. Likewise, comparison of unsuccessful
trajectories is not done for the easy configurations.

For all classes of experiments, the results confirm the
indeterminism of the navigation. The difference between tra-
jectories is significant, in the order of meters and even tens
meters. The max difference seems random. In particular, we
did not observe any clear correspondence between increasing
difficulty levels and increasing distances (see e.g., Fig. 11).
The results do not support the conjecture that the degree
of indeterminism depends on the difficulty level. Rather, we
must expect diverse trajectories to occur at any parameter
configuration. It concerns both the successful and unsuccessful
trajectories. The robot may follow diverse paths to successfully

reach the destination point (see e.g., Fig. 5) or may fail ending
its route in diverse areas of the map.

It means that the test design cannot ignore indeterminism.
The behaviour of the navigation must be checked using re-
peated runs. If a search-based generation process is imple-
mented, the fitness function must synthesize the outcomes of
the repeated runs to evaluate a candidate map. If some dynamic
elements are included in the test profile, like mobile obstacles
traversing the route of the robot, it might be necessary to
implement on-the-fly control procedures. How to manage
indeterminism will be a major challenge for future work.

C. Study of a faulty version of navigation (Q3)

The faulty version under study has the navigation service
“believe” that the physical platform is smaller than its real size.
Collisions are all the more likely as the planned trajectory
gets closer to obstacles. Figure 12 reports the number of
observed collisions for obstruction by trees and buildings. As
a general comment, the results are consistent with the previous
observation that many small obstacles are more stressful than
a few large ones. A much higher number of collisions are
observed for trees than for buildings, at all difficulty levels.

Easy configurations tend to have a lower revealing power
than the challenging or very difficult ones. For buildings,
most of the easy configurations did not allow us to observe
collisions. For trees, the average number of collisions was 3.82
for the easy configurations, versus 9.75 for the challenging
ones and 9.25 for the very difficult ones. So, testing with
the easy configurations is the least effective with respect to
this fault, but there is no significant difference between the
challenging and very difficult configurations.
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We conjectured that creating infeasible missions could be
useless to test the navigation. For this fault, it is true that
they do not bring an added value compared to the challenging
ones. But the very difficult configurations proved surprisingly
effective. An explanation might be that the tested navigation
algorithm is indeed robust. Even in very difficult maps the
robot may manage to travel a sufficiently long distance to
experience diverse obstruction situations.

VII. CONCLUSION

In this paper we presented a framework able to drive
large robot navigation test campaigns, running tasks such as:
generating inputs (e.g., a map and a mission) with respect to
obstruction and smoothness parameters, running simulations,
collecting data and analysing them.

We proposed measurements to characterise the difficulty,
in the sense of the difficulty of a navigation problem: its
feasibility (a route is found, measured by the observed success
rate) and the effort to solve it (time, detours). We determine
difficulty levels based on these measurements, yielding a clas-
sification of the generated maps. We studied this classification
along two macroscopic parameters used to generate the map:
smoothness and obstruction. We observed that coarse control
of the difficulty can be obtained by tuning these parameters.
For obstruction, the size of obstacles was observed to be an
important factor. So, obstruction should be tuned by consider-
ing not only the obstruction rate but also the weights of the
various types of obstacles. These control parameters could be
used in the framework of generate-and-test procedures.

While the results we obtained are specific to the SUT, the
chosen notion of difficulty and the a posteriori approach to
classify the maps are general enough to be used for other
navigation algorithms. Also, they could be reused for studying
controllability by other generation parameters than the ones
we studied. The long-term goal is to integrate the control of
difficulty into efficient test strategies. As a very preliminary
example, we considered a configuration fault related to the
robot size. The challenging and very difficult levels proved
more capable of revealing the fault than the easy one.

We observed indeterminism through the difference between
trajectories by comparing their timestamped positions. A sig-
nificant indeterminism, from meters to tens of meters, was
found for all levels of difficulty and for successful as well as
unsuccessful runs. It appears to be impossible to conduct test
experiments without facing this phenomena. As a result, test
outcomes must be evaluated based on results of several runs.
Moreover, we plan to enrich the world model with dynamic
elements. The control of their interactions with the robot will
have to be performed online to adapt to the current trajectory.
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