V. E. Torres, P. C. Harris, and Y. Pirson, Autosomal dominant polycystic kidney disease, The Lancet, vol.369, issue.9569, pp.1287-1301, 2007.
DOI : 10.1016/S0140-6736(07)60601-1

URL : https://hal.archives-ouvertes.fr/hal-00989849

P. C. Harris and V. E. Torres, Polycystic Kidney Disease, Annual Review of Medicine, vol.60, issue.1, pp.321-337, 2009.
DOI : 10.1146/annurev.med.60.101707.125712

URL : https://hal.archives-ouvertes.fr/hal-01503616

P. C. Harris and V. E. Torres, Polycystic Kidney Disease, Autosomal Dominant, Internet Genetic Disease Online Reviews at GeneTests-GeneClinics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01503616

E. P. Consortium, The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16, Cell, vol.77, pp.881-894, 1994.

T. Mochizuki, G. Wu, T. Hayashi, S. L. Xenophontos, B. Veldhusien et al., PKD2, a Gene for Polycystic Kidney Disease That Encodes an Integral Membrane Protein, Science, vol.272, issue.5266, pp.1339-1342, 1996.
DOI : 10.1126/science.272.5266.1339

C. M. Heyer, J. L. Sundsbak, K. Z. Abebe, A. B. Chapman, V. E. Torres et al., Predicted Mutation Strength of Nontruncating PKD1 Mutations Aids Genotype-Phenotype Correlations in Autosomal Dominant Polycystic Kidney Disease, Journal of the American Society of Nephrology, 2016.
DOI : 10.1681/ASN.2015050583

M. P. Audrezet, . Cornec-le, E. Gall, J. M. Chen, S. Redon et al., Autosomal dominant polycystic kidney disease: Comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients, Human Mutation, vol.100, issue.8, pp.1239-1250, 2012.
DOI : 10.1002/humu.22103

C. Gall, E. Audrezet, M. P. Chen, J. M. Hourmant, M. Morin et al., Type of PKD1 Mutation Influences Renal Outcome in ADPKD, Journal of the American Society of Nephrology, vol.24, issue.6, pp.1006-1013, 2013.
DOI : 10.1681/ASN.2012070650

J. J. Grantham, V. E. Torres, A. B. Chapman, L. M. Guay-woodford, K. T. Bae et al., Volume Progression in Polycystic Kidney Disease, New England Journal of Medicine, vol.354, issue.20, pp.2122-2130, 2006.
DOI : 10.1056/NEJMoa054341

A. C. Ong, H. , and P. C. , A polycystin-centric view of cyst formation and disease: the polycystins revisited, Kidney International, vol.88, issue.4, pp.699-710, 2015.
DOI : 10.1038/ki.2015.207

F. Qian, A. Boletta, A. K. Bhunia, H. Xu, L. Liu et al., Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations, Proceedings of the National Academy of Sciences, vol.99, issue.26, pp.16981-16986, 2002.
DOI : 10.1073/pnas.252484899

W. Wei, K. Hackmann, H. Xu, G. Germino, and F. Qian, Characterization of cis-Autoproteolysis of Polycystin-1, the Product of Human Polycystic Kidney Disease 1 Gene, Journal of Biological Chemistry, vol.282, issue.30, pp.21729-21737, 2007.
DOI : 10.1074/jbc.M703218200

K. Hopp, C. J. Ward, C. J. Hommerding, S. H. Nasr, H. F. Tuan et al., Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity, Journal of Clinical Investigation, vol.122, issue.11, pp.4257-4273, 2012.
DOI : 10.1172/JCI64313DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484456

S. V. Fedeles, X. Tian, A. R. Gallagher, M. Mitobe, S. Nishio et al., A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation, Nature Genetics, vol.94, issue.7, pp.639-647, 2011.
DOI : 10.1074/jbc.274.40.28557

A. Kurbegovic, H. Kim, H. Xu, S. Yu, J. Cruanes et al., Novel Functional Complexity of Polycystin-1 by GPS Cleavage In Vivo: Role in Polycystic Kidney Disease, Molecular and Cellular Biology, vol.34, issue.17, pp.3341-3353, 2014.
DOI : 10.1128/MCB.00687-14

V. G. Gainullin, K. Hopp, C. J. Ward, C. J. Hommerding, H. et al., Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner, Journal of Clinical Investigation, vol.125, issue.2, pp.607-620, 2015.
DOI : 10.1172/JCI76972DS1

H. Kim, H. Xu, Q. Yao, W. Li, Q. Huang et al., Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism, Nature Communications, vol.281, p.5482, 2014.
DOI : 10.1016/S0092-8674(00)81793-6

S. Rossetti, M. B. Consugar, A. B. Chapman, V. E. Torres, L. M. Guay-woodford et al., Comprehensive Molecular Diagnostics in Autosomal Dominant Polycystic Kidney Disease, Journal of the American Society of Nephrology, vol.18, issue.7, pp.2143-2160, 2007.
DOI : 10.1681/ASN.2006121387

B. J. Loftus, U. Kim, V. P. Sneddon, F. Kalush, R. Brandon et al., Genome Duplications and Other Features in 12 Mb of DNA Sequence from Human Chromosome 16p and 16q, Genomics, vol.60, issue.3, pp.295-308, 1999.
DOI : 10.1006/geno.1999.5927

M. B. Consugar, W. C. Wong, P. A. Lundquist, S. Rossetti, V. Kubly et al., Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome, Kidney International, vol.74, issue.11, pp.1468-1479, 2008.
DOI : 10.1038/ki.2008.485

A. Y. Tan, J. Blumenfeld, A. Michaeel, S. Donahue, W. Bobb et al., Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism, Clinical Genetics, vol.14, issue.2, pp.373-377, 2015.
DOI : 10.1111/cge.12383

L. Heidet, S. Decramer, A. Pawtowski, V. Moriniere, F. Bandin et al., Spectrum of HNF1B Mutations in a Large Cohort of Patients Who Harbor Renal Diseases, Clinical Journal of the American Society of Nephrology, vol.5, issue.6, pp.1079-1090, 2010.
DOI : 10.2215/CJN.06810909

K. U. Eckardt, S. L. Alper, C. Antignac, A. J. Bleyer, D. Chauveau et al., Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management???A KDIGO consensus report, Kidney International, vol.88, issue.4, pp.676-683, 2015.
DOI : 10.1038/ki.2015.28

B. M. Paul, M. B. Consugar, R. Lee, M. Sundsbak, J. L. Heyer et al., Evidence of a third ADPKD locus is not supported by re-analysis of designated PKD3 families, Kidney International, vol.85, issue.2, pp.383-392, 2014.
DOI : 10.1038/ki.2013.227

Y. Pirson, D. Chauveau, and V. Torres, Management of cerebral aneurysms in autosomal dominant polycystic kidney disease, J Am Soc Nephrol, vol.13, pp.269-276, 2002.

F. T. Chebib, Y. Jung, C. M. Heyer, M. V. Irazabal, M. C. Hogan et al., Effect of genotype on the severity and volume progression of polycystic liver disease in ADPKD, Z.M. Nephrol Dial Transplant Feb, p.29, 2016.

M. C. Hogan, K. Abebe, V. E. Torres, A. B. Chapman, K. T. Bae et al., Liver Involvement in Early Autosomal-Dominant Polycystic Kidney Disease, Clinical Gastroenterology and Hepatology, vol.13, issue.1, pp.155-164, 2015.
DOI : 10.1016/j.cgh.2014.07.051

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267913

I. A. Hoevenaren, R. Wester, R. W. Schrier, K. Mcfann, R. B. Doctor et al., Polycystic liver: clinical characteristics of patients with isolated polycystic liver disease compared with patients with polycystic liver and autosomal dominant polycystic kidney disease, Liver International, vol.12, issue.2, pp.264-270, 2007.
DOI : 10.1111/j.1478-3231.2007.01595.x

J. P. Drenth, R. H. Te-morsche, R. Smink, J. S. Bonifacino, and J. B. Jansen, Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease, Nature Genetics, vol.33, issue.3, pp.345-347, 2003.
DOI : 10.1038/ng1104

A. Li, S. Davila, L. Furu, Q. Qian, X. Tian et al., Mutations in PRKCSH Cause Isolated Autosomal Dominant Polycystic Liver Disease, The American Journal of Human Genetics, vol.72, issue.3, pp.691-703, 2003.
DOI : 10.1086/368295

URL : http://doi.org/10.1086/368295

S. Davila, L. Furu, A. G. Gharavi, X. Tian, T. Onoe et al., Mutations in SEC63 cause autosomal dominant polycystic liver disease, Nature Genetics, vol.265, issue.6, pp.575-577, 2004.
DOI : 10.1126/science.291.5512.2364

W. R. Cnossen, R. H. Te-morsche, A. Hoischen, C. Gilissen, M. Chrispijn et al., Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis, Proceedings of the National Academy of Sciences, vol.111, issue.14, pp.5343-5348, 2014.
DOI : 10.1073/pnas.1309438111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986119

K. Sakai, M. Hirai, S. Minoshima, J. Kudoh, R. Fukuyama et al., Isolation of cDNAs encoding a substrate for protein kinase C: Nucleotide sequence and chromosomal mapping of the gene for a human 80K protein*1, *2, Genomics, vol.5, issue.2, pp.309-315, 1989.
DOI : 10.1016/0888-7543(89)90063-3

E. S. Trombetta, J. F. Simons, and A. Helenius, Endoplasmic Reticulum Glucosidase II Is Composed of a Catalytic Subunit, Conserved from Yeast to Mammals, and a Tightly Bound Noncatalytic HDEL-containing Subunit, Journal of Biological Chemistry, vol.271, issue.44, pp.27509-27516, 1996.
DOI : 10.1074/jbc.271.44.27509

C. Xu and D. T. Ng, Glycosylation-directed quality control of protein folding, Nature Reviews Molecular Cell Biology, vol.53, issue.12, pp.742-752, 2015.
DOI : 10.1016/j.cell.2006.05.045

D. 'alessio, C. Dahms, and N. M. , Glucosidase II and MRH-domain containing proteins in the secretory pathway, Curr Protein Pept Sci, vol.16, pp.31-48, 2015.

K. Treml, D. Meimaroglou, A. Hentges, and E. Bause, The ??- and ??-subunits are required for expression of catalytic activity in the hetero-dimeric glucosidase II complex from human liver, Glycobiology, vol.10, issue.5, pp.493-502, 2000.
DOI : 10.1093/glycob/10.5.493

A. Tannous, G. B. Pisoni, D. N. Hebert, and M. Molinari, N-linked sugar-regulated protein folding and quality control in the ER, Seminars in Cell & Developmental Biology, vol.41, pp.79-89, 2015.
DOI : 10.1016/j.semcdb.2014.12.001

M. F. Pelletier, A. Marcil, G. Sevigny, C. A. Jakob, D. C. Tessier et al., The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo, Glycobiology, vol.10, issue.8, pp.815-827, 2000.
DOI : 10.1093/glycob/10.8.815

P. Deprez, M. Gautschi, and A. Helenius, More Than One Glycan Is Needed for ER Glucosidase II to Allow Entry of Glycoproteins into the Calnexin/Calreticulin Cycle, Molecular Cell, vol.19, issue.2, pp.183-195, 2005.
DOI : 10.1016/j.molcel.2005.05.029

J. A. Rothblatt, R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman, Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast, The Journal of Cell Biology, vol.109, issue.6, pp.2641-2652, 1989.
DOI : 10.1083/jcb.109.6.2641

I. Sadler, A. Chiang, T. Kurihara, J. Rothblatt, J. Way et al., A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein, The Journal of Cell Biology, vol.109, issue.6, pp.2665-2675, 1989.
DOI : 10.1083/jcb.109.6.2665

R. J. Deshaies, S. L. Sanders, D. A. Feldheim, and R. Schekman, Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex, Nature, vol.349, issue.6312, pp.806-808, 1991.
DOI : 10.1038/349806a0

M. H. Skowronek, M. Rotter, and I. G. Haas, Molecular Characterization of a Novel Mammalian DnaJ-Like Sec63p Homolog, Biological Chemistry, vol.380, issue.9, pp.1133-1138, 1999.
DOI : 10.1515/BC.1999.142

H. Gao, Y. Wang, T. Wegierski, K. Skouloudaki, M. Putz et al., PRKCSH/80K-H, the protein mutated in polycystic liver disease, protects polycystin-2/TRPP2 against HERP-mediated degradation, Human Molecular Genetics, vol.19, issue.1, pp.16-24, 2010.
DOI : 10.1093/hmg/ddp463

A. Hofherr, C. Wagner, S. Fedeles, S. Somlo, and M. Kottgen, N-Glycosylation Determines the Abundance of the Transient Receptor Potential Channel TRPP2, Journal of Biological Chemistry, vol.289, issue.21, pp.14854-14867, 2014.
DOI : 10.1074/jbc.M114.562264

E. Waanders, R. H. Te-morsche, R. A. De-man, J. B. Jansen, and J. P. Drenth, Extensive mutational analysis of PRKCSH and SEC63 broadens the spectrum of polycystic liver disease, Hum Mut, vol.27, issue.830, 2006.

T. L. Kline, P. Korfiatis, M. E. Edwards, J. D. Warner, M. V. Irazabal et al., Automatic total kidney volume measurement on follow-up magnetic resonance images to facilitate monitoring of autosomal dominant polycystic kidney disease progression, Nephrology Dialysis Transplantation, vol.31, pp.241-248, 2016.
DOI : 10.1093/ndt/gfv314

B. Cheong, R. Muthupillai, M. F. Rubin, and S. D. Flamm, Normal Values for Renal Length and Volume as Measured by Magnetic Resonance Imaging, Clinical Journal of the American Society of Nephrology, vol.2, issue.1, pp.38-45, 2007.
DOI : 10.2215/CJN.00930306

A. S. Levey, L. A. Stevens, C. H. Schmid, Y. L. Zhang, A. F. Castro et al., A New Equation to Estimate Glomerular Filtration Rate, Annals of Internal Medicine, vol.150, issue.9, pp.604-612, 2009.
DOI : 10.7326/0003-4819-150-9-200905050-00006

G. J. Schwartz, G. B. Haycock, C. M. Edelmann, . Jr, and A. Spitzer, A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine, Pediatrics, vol.58, pp.259-263, 1976.

D. Mashiko, Y. Fujihara, Y. Satouh, H. Miyata, A. Isotani et al., Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA, Scientific Reports, vol.84, p.3355, 2013.
DOI : 10.1038/srep03355

A. C. Ong, P. C. Harris, D. R. Davies, L. Pritchard, S. Rossetti et al., Polycystin-1 expression in PKD1, early-onset PKD1, and TSC2/PKD1 cystic tissue, Kidney International, vol.56, issue.4, pp.1324-1333, 1999.
DOI : 10.1046/j.1523-1755.1999.00659.x

Y. Pei, J. Obaji, A. Dupuis, A. D. Paterson, R. Magistroni et al., Unified Criteria for Ultrasonographic Diagnosis of ADPKD, Journal of the American Society of Nephrology, vol.20, issue.1, pp.205-212, 2009.
DOI : 10.1681/ASN.2008050507

Y. Pei, Y. H. Hwang, J. Conklin, J. L. Sundsbak, C. M. Heyer et al., Imaging-Based Diagnosis of Autosomal Dominant Polycystic Kidney Disease, Journal of the American Society of Nephrology, vol.26, issue.3, pp.746-753, 2015.
DOI : 10.1681/ASN.2014030297

). Exac and E. A. , Exome Aggregation Consortium (ExAC) Cambridge, MA (URL: http://exac.broadinstitute.org), 2016.

M. Lek, K. Karczewski, E. Minikel, K. Samocha, E. Banks et al., Analysis of protein-coding genetic variation in 60, p.706, 2015.

P. C. Harris, K. Bae, S. Rossetti, V. E. Torres, J. J. Grantham et al., Cyst Number but Not the Rate of Cystic Growth Is Associated with the Mutated Gene in Autosomal Dominant Polycystic Kidney Disease, Journal of the American Society of Nephrology, vol.17, issue.11, pp.3013-3019, 2006.
DOI : 10.1681/ASN.2006080835

W. R. Cnossen and J. P. Drenth, Polycystic liver disease: an overview of pathogenesis, clinical manifestations and management, Orphanet Journal of Rare Diseases, vol.9, issue.1, p.69, 2014.
DOI : 10.1186/1750-1172-9-69

M. C. Hung and W. Link, Protein localization in disease and therapy, Journal of Cell Science, vol.124, issue.20, pp.3381-3392, 2011.
DOI : 10.1242/jcs.089110

T. Hennet and J. Cabalzar, Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction, Trends in Biochemical Sciences, vol.40, issue.7, pp.377-384, 2015.
DOI : 10.1016/j.tibs.2015.03.002

D. 'alessio, C. Fernandez, F. Trombetta, E. S. Parodi, and A. J. , Genetic Evidence for the Heterodimeric Structure of Glucosidase II. THE EFFECT OF DISRUPTING THE SUBUNIT-ENCODING GENES ON GLYCOPROTEIN FOLDING, Journal of Biological Chemistry, vol.274, issue.36, pp.25899-25905, 1999.
DOI : 10.1074/jbc.274.36.25899

M. L. Reitman, I. S. Trowbridge, and S. Kornfeld, A lectin-resistant mouse lymphoma cell line is deficient in glucosidase II, a glycoprotein-processing enzyme, J Biol Chem, vol.257, pp.10357-10363, 1982.

S. V. Fedeles, J. S. So, A. Shrikhande, S. H. Lee, A. R. Gallagher et al., Sec63 and Xbp1 regulate IRE1?? activity and polycystic disease severity, Journal of Clinical Investigation, vol.125, issue.5, pp.1955-1967, 2015.
DOI : 10.1172/JCI78863DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463201

S. E. Moore, S. , and R. G. , Demonstration that Golgi endo-?-D-mannosidase provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins, J Biol Chem, vol.265, pp.13104-13112, 1990.

A. R. Gallagher, G. G. Germino, and S. Somlo, Molecular Advances in Autosomal Dominant Polycystic Kidney Disease, Advances in Chronic Kidney Disease, vol.17, issue.2, pp.118-130, 2010.
DOI : 10.1053/j.ackd.2010.01.002

A. Takakura, L. Contrino, X. Zhou, J. V. Bonventre, Y. Sun et al., Renal injury is a third hit promoting rapid development of adult polycystic kidney disease, Human Molecular Genetics, vol.18, issue.14, pp.2523-2531, 2009.
DOI : 10.1093/hmg/ddp147

A. D. Urribarri, P. Munoz-garrido, M. J. Perugorria, O. Erice, M. Merino-azpitarte et al., Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases, Gut, vol.280, issue.10, pp.1658-1667, 2014.
DOI : 10.1136/gutjnl-2013-305281