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Performance analysis of optimal blind
fusion of bits

Jean-Pierre Delmas, Yann Meurisse

Abstract— This paper is devoted to a statistical per-
formance analysis of blind estimation of bit error rates
(BERs) of a bank of detectors, using empirical estima-
tion algorithms that have appeared in the literature (by
Dixit et al.). In particular, we prove that these blind es-
timators asymptotically (in the number of observed bits)
achieve the accuracy obtained with perfect knowledge
of the transmitted bits. We propose a maximum like-
lihood solution which follows from the standard Expec-
tation Maximization (EM) algorithm, considered to be
a reference algorithm. Finally, the optimal fusion rule
is revisited and our theoretical results are compared to
Monte-Carlo simulations.
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I. Introduction

In recent years, signal processing with distributed sensors and
decentralized detection has been gaining importance in many ap-
plications. Most results (see e.g., [1], [2] and the references therein)
on decentralized detection assume that each sensor node produces
a finite-valued function of its observation, conditioned on the state
0 or 1 of a phenomenon H, which is conveyed over a noisy channel
to the fusion center. In this paper, we consider the simplest case
where a binary sensor decision is conveyed reliably to the fusion
center.

This happens, for example, in cellular communications, where
one often wishes to merge data from several distributed detectors
located in base stations, to improve overall link performance. In
this case, raw bit decisions from each detector are fused into a final
bit decision. Naturally this scheme is suboptimal with respect to
the optimal combination of sufficient statistics issued from each of
the detectors. Assuming perfect knowledge of the individual BERs
of each detector, optimal fusion of bit estimates is a standard prob-
lem [3]. But when this knowledge is missing, only recent empirical
algorithms [4], [5], [6] have addressed this problem. [4] introduces
the problem of blind fusion of bit estimates, curiously not studied
until now: it presents a very clever, simple and intuitive algorithm
to solve this problem. Then a refinement of the previous algo-
rithm and an iterative procedure that outperforms the previous
algorithms for small numbers of observations are proposed in [5]
and [6] respectively. In this contribution, we examine the statisti-
cal performance of blindly estimating bit error rates (BERs).

The paper is organized as follows. After stating the problem
and giving a statistical framework in section 2, we consider an EM
algorithm where the transmitted bits play the role of the miss-
ing data and we analyze the statistical performance of empirical
algorithms based on the number of mutual agreements between
the different receivers in sections 3 and 4 respectively. Conditions
where the optimal fusion detector reduces to the majority detec-
tor or to the best detector are given in section 5. Our theoretical
results are compared to Monte-Carlo simulations in section 6. Fi-
nally section 7 summarizes our contribution.

II. Problem statement

A. Model and notations

The problem we consider here involves the simultaneous trans-
mission of T binary signals (bt)t=1,...T ∈ {0, 1} over K indepen-
dent memoryless binary symmetric channels (BSC). It is assumed
that each bit bt may be randomly flipped by an independent error
sequence nk,t ∈ {0, 1} depending on the channel k,

yk,t = bt ⊕ nk,t, k = 1, . . . , K and t = 1, . . . , T,

where (yk,t)k=1,...,K,t=1,...,T ∈ {0, 1} are the observations, and ⊕
denotes modulo-two addition. Hence, the received bit yk,t from
the channel k at time t is equal to the input bit bt if nk,t = 0;
otherwise yk,t 6= bt and an error occurs. The transmitted bits
(bt)t=1,...T are assumed to be independent and have equal prior
probabilities. The K error probabilities are θk = P (nk,t = 1) and

are unknown parameters. Let Θ be the parameter (θ1, . . . , θK).1

Based on the observation Y
def
= (yk,t)k=1,...,K,t=1,...,T ,

the problem consists (see Fig.1) in detecting the bits B
def
=

(bt)t=1,...T without any knowledge of the separate error proba-
bilities (θk)k=1,...,K with or without previous estimates of the pa-
rameter Θ.

BSC(θ1)

BSC(θK)

Blind
fusion
rule

bt

t=1,...,T t=1,...,T

bt
^

y1,t

yK,t

Fig.1 Blind bit fusion.

B. Statistical framework

It is a fundamental rule in decision theory that the statistical
framework must be carefully specified before examining optimality.
As usual, classical and Bayesian approaches can be considered.

In the classical approach, the parameter Θ is assumed to be
a deterministic but unknown constant and we are faced with a
joint parameter estimation and bit detection problem, also known
as composite hypothesis testing in the statistical literature. The
distributions p(Y, B; Θ) and its marginal p(Y ; Θ) are well de-

fined. Ideally, we would like to detect (bbt(Y ))t=1,...,T by mini-

mizing the error probability P [bbt(Y ) 6= bt]t=1,...,T for all values of

Θ ∈ (0, 1
2
)K . This, however, is an unachievable goal because the

probabilities P [bbt(Y ) 6= bt]t=1,...,T depend in fact on Θ and con-

sequently (bbt(Y ))t=1,...,T would depend on Θ. In these situations,
several practical solutions, very similar to generalized likelihood
ratio tests, can be used. These solutions are composed of two con-
secutive maximizations. The most attractive one is the use of two
maximum likelihood estimates:

bΘ(Y ) = arg

„
max

Θ
p(Y ; Θ)

«
, (II.1)

followed by

bB(Y ) = arg

„
max

B
p(Y, B; bΘ(Y ))

«
.

1Note that alternative modeling of correlated binary observa-
tions (yk,t)k=1,...,K has been studied in literature (see e.g., [7]
and the references therein).
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The first step can be solved using the EM algorithm (see section
III) and the second step gives the following detection rule which
will be commented on in section V:

KX

k=1

(2yk,t − 1)ln
1− bθk(Y )

bθk(Y )
bbt(Y ) = 1

>
<

bbt(Y ) = 0
0, t = 1, . . . , T.

(II.2)
Very attractive empirical parameter estimators can replace the
first step of the previous procedure, as addressed in section IV.

In the Bayesian approach, the parameter Θ is assumed to be
a random variable whose particular realization we must estimate.
A prior distribution of Θ is assumed given. In this case p(Y, B)
is a marginal issued from the joint distribution p(Y, B, Θ). Once
a prior distribution has been chosen for Θ, optimal detection of
the sequence (bt)t=1,...,T can be considered. In particular, max-
imum a posteriori (MAP) estimators minimize the error proba-

bility P [(bbt(Y ))t=1,...,T 6= (bt)t=1,...,T ]. Because (bt)t=1,...,T is
uniformly distributed, the MAP estimator is given by

bB(Y ) = arg

„
max

B
p(Y/B)

«
,

with p(Y/B) =
R

. . .
R

p(Y/B, Θ)p(Θ)dθ1 . . . dθK and p(Y/B, Θ) =QT
t=1

QK
k=1 θ

yk,t⊕bt

k (1 − θk)1−(yk,t⊕bt). If the prior distribution
of Θ is now assumed uniform in (0,1), a closed-form expression of
p(Y/B) can be derived:

p(Y/B) =
KY

k=1

Z 1

0
θ
PT

t=1 yk,t⊕bt

k (1− θk)
PT

t=1(1−yk,t⊕bt)dθk

=
KY

k=1

(
PT

t=1 yk,t ⊕ bt)!(
PT

t=1(1− yk,t ⊕ bt))!

(T + 1)!
,

and (bbt(Y ))t=1,...,T is the solution of the following intricate max-
imization

bB(Y ) = arg

 
max

B

KY

k=1

(
TX

t=1

yk,t ⊕ bt)!(
TX

t=1

(1− yk,t ⊕ bt))!

!
.

We note that the previous function takes the same value for the
sequences (bt)t=1,...,T and (1 − bt)t=1,...,T ; this comes from the

prior (0, 1)K uniform distribution.
If the MAP criterion is applied to the “parameter” (B, Θ), a

suboptimal detection procedure can be proposed. Since the joint
distribution of (B, Θ) is uniform, we have

( bB(Y ), bΘ(Y )) = arg

„
max
B,Θ

p(Y/B, Θ)

«
. (II.3)

Because

arg

„
max

Θ
p(Y/B, Θ)

«
= arg

 
max

Θ

KX

k=1

 
TX

t=1

(yk,t ⊕ bt)lnθk +
TX

t=1

(1− (yk,t ⊕ bt))ln(1− θk)

!!

and

arg

„
max

B
p(Y/B, Θ)

«
= arg

 
max

B

TX

t=1

 
KX

k=1

(yk,t ⊕ bt)lnθk +
KX

k=1

(1− (yk,t ⊕ bt))ln(1− θk)

!!
,

the maximization (II.3) can be solved with the following cyclic
procedure, after an appropriate initialization at iteration i:

KX

k=1

(2yk,t − 1)ln
1− bθ(i)

k (Y )

bθ(i)
k (Y )

bb(i+1)
t (Y ) = 1

>
<

bb(i+1)
t (Y ) = 0

0,

and

bθ(i+1)
k (Y ) =

1

T

TX

t=1

yk,t ⊕bb(i+1)
t (Y ), k = 1, . . . , K.

Within the Bayesian framework, we note that an optimal estimator
bΘ always exists. But this optimality is obtained “on average” (
as different values of Θ are chosen). Of course, for a particular
value of Θ, it may not perform as well as an estimator obtained
in the classical framework. Consequently, in the sequel, only the
classical approach will be considered.

III. Maximum likelihood estimation of the error
probabilities

Due to the intricate expression of the likelihood (II.1), its direct
maximization using standard optimization techniques is likely to
be intractable. In these situations, a practical solution is to use
the EM algorithm, an iterative method for finding maximum like-
lihood estimates in problems involving incomplete-data. In this
problem, the incomplete data is the observation itself Y and the

complete data consists of X = (Y, B) with B
def
= (bt)t=1,...T . The

likelihood of X is referred to as the complete likelihood. The
basic idea behind EM is to maximize the incomplete likelihood
by iteratively maximizing the complete likelihood. The complete
likelihood may be written as:

p(X; Θ) =
1

2T

TY

t=1

KY

k=1

θ
yk,t⊕bt

k (1− θk)1−(yk,t⊕bt).

Each iteration of EM has two steps: an Expectation step and
a Maximization step. The (i+1)st E-step finds the conditional
expectation of the complete data log-likelihood with respect to the
conditional distribution of the missing data given the observation
Y = y and the current estimated parameter Θ(i),

Θ 7→ Q(Θ, Θ(i))
def
= E

“
ln(p(X; Θ)/Y = y; Θ(i))

”

∝
TX

t=1

KX

k=1

E
“
(yk,t ⊕ bt)/Y = y; Θ(i)

”
lnθk

+ E
“
(1− (yk,t ⊕ bt))/Y = y; Θ(i)

”
ln(1− θk)

∝
TX

t=1

KX

k=1

P
“
yk,t ⊕ bt = 1/Y = y; Θ(i)

”
lnθk

+ P
“
yk,t ⊕ bt = 0/Y = y; Θ(i)

”
ln(1− θk),

as a function of the unknown parameter Θ, given the val-
ues of the observation y and the parameter Θ(i). Since
the posterior probabilities P

`
yk,t ⊕ bt = 1/Y = y; Θ(i)

´
and

P
`
yk,t ⊕ bt = 0/Y = y; Θ(i)

´
are given by

P
“
yk,t ⊕ bt = 1/Y = y; Θ(i)

”
=

a
(i)
k,t

a
(i)
t

,

“
yk,t ⊕ bt = 0/Y = y; Θ(i)

”
= 1−

a
(i)
k,t

a
(i)
t

with

a
(i)
k,t =

KY

k′=1

θ
(i)
k′

1−(yk′,t⊕yk,t)
(1− θ

(i)
k′ )

yk′,t⊕yk,t

and

a
(i)
t =

KY

k=1

θ
(i)
k

1−yk,t
(1− θ

(i)
k )yk,t +

KY

k=1

θ
(i)
k

yk,t
(1− θ

(i)
k )1−yk,t ,

the (i+1)st M-step involves the following maximization:

Θ(i+1) = arg

0
@max

Θ

TX

t=1

KX

k=1

0
@a

(i)
k,t

a
(i)
t

lnθk + (1−
a
(i)
k,t

a
(i)
t

)ln(1− θk)

1
A
1
A

⇒ θ
(i+1)
k =

1

T

TX

t=1

a
(i)
k,t

a
(i)
t

, k = 1, . . . , K.
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IV. Blind empirical fusion rule by Dixit et al.

A. Algorithms of Dixit et al.

To estimate the parameter Θ, Dixit et al. consider the following

statistic (ck,l
t )1≤k<l≤K,t=1,...,T issued from the observation Y :

ck,l
t

def
= 1− (yk,t ⊕ yl,t) =


1 if yk,t = yl,t

0 if yk,t 6= yl,t.

The idea behind these different numbers of mutual agreements

between the different receivers ck,l
t is that ck,l

t = 1− (nk,t ⊕ nl,t).
Consequently this statistic does not depend on the bit sequence

(bt)t=1,...T , and each ck,l
t is Bernoulli distributed with parameter

θk,l = (1− θk)(1− θl) + θkθl.
From this statistic, Dixit et al. propose different methods of mo-

ments based on the
K(K−1)

2
sample moments αk,l

T = 1
T

PT
t=1 ck,l

t

which are consistent estimate of functions E(ck,l
t ) = θk,l of the

parameter Θ. All these methods are composed of two steps:
• Empirical ordering of the channels (θl ≤ θ2.... ≤ θK). This
procedure is based on comparisons of the different outputs yk,t

with the majority fusion rule detector (see [4]).
• Resolution of a consistent system of K equations ((k, l) =
(1, 2), (1, 3), . . . , (1, K), (2, 3)) or an inconsistent overdetermined

system of
K(K−1)

2
equations (1 ≤ k < l ≤ K) obtained by replac-

ing E(ck,l
t ) by its sample estimate αk,l

T and solving for Θ where

the unknown is the estimate bΘ. We note that first step is essential
for the selection of the K equations and for the resolution of the
overdetermined system.

Note that the random variables (ck,l
t )1≤k<l≤K are not inde-

pendent because ck,l
t = 1 − (cj,k

t ⊕ cj,l
t ) for 1 ≤ j < k < l ≤ K.

Furthermore, given a set of consistent statistics (ck,l
t )1≤k<l≤K , Y

can only take two complementary equally probable values; e.g.,

if (ck,l
t = 1)1≤k<l≤K , (yk,t = 0)1≤k≤K or (yk,t = 1)1≤k≤K .

Consequently, these statistics ck,l
t are sufficient statistics for the

parameter Θ.
In [4], [?], [?], it is claimed that these approaches are opti-

mal and this assertion is supported by two points. The statistic

{(ck,l
t )1≤k<l≤K,t=1,...,T } carries the same information about Θ as

the observation Y , and the random variables ck,l
t are independent.

The reduced statistic {(αk,l
T )1≤k<l≤K}, however, is not a suffi-

cient statistic because the Neyman-Fisher factorization does not
apply.

B. Statistical analysis

After specifying the distribution of the statistic {(ck,l
t )1≤k<l≤K,t=1,...T },

we give the asymptotic distribution of the statistic αk,l
T . This al-

lows us to give the asymptotic distribution as well as closed-form
expressions of the bias and variance of an estimate of Θ given by

an arbitrary algorithm based on the sample moments αk,l
T . It is

also possible to derive the asymptotic lower bound on the variance
of an arbitrary consistent estimator based on these statistics and
the associated Cramer-Rao bound.

Because E(ck,l
t ck′,l′

t ) = P (nk,t = nl,t and nk′,t = nl′,t), it

is straightforward to prove that the
K(K−1)

2
dimensional random

variables (ck,l
t )1≤k<l≤K for t = 1, . . . , T are independent and com-

posed of dependent Bernoulli random variables ck,l
t with parame-

ter θk,l whose covariance matrix is Cα given by

[Cα](k,l),(k′,l′)
def
= Cov(ck,l

t , ck′,l′
t )

=

8
>>><
>>>:

0 if k, l, k′ and l′ are all distinct,
θk,l(1− θk,l) if k = k′ and l = l′,

θm,n,p − θk,lθk′,l′ if only two indices among
k, l, k′, l′ are equal,

(m, n, p are these distinct values)

(IV.1)

with θm,n,p = (1− θm)(1− θn)(1− θp) + θmθnθp. Consequently,
from the standard central limit theorem, the sequence of statistics

αT
def
= (αk,l

T )1≤k<l≤K is asymptotically Gaussian distributed:

√
T (αT −α)

L→ N (0;Cα).

Here α collects the associated (θk,l)1≤k<l≤K .

To consider the asymptotic performance of an arbitrary algo-

rithm based on the statistic (αk,l
T )1≤k<l≤K or on a subset of these

statistics, we adopt a functional approach which consists of rec-
ognizing that the whole process of constructing an estimate ΘT
2 of Θ is equivalent to defining a functional relation linking the
estimate ΘT to the sample statistic αT from which it is inferred.
This functional dependence is denoted ΘT = alg[αT ]. Clearly,
Θ = alg[α], so the different algorithms alg(·) constitute distinct

extensions of the mapping α
def
= (θk,l)1≤k<l≤K → Θ to any statis-

tics αT . If Jalg and (Hk
alg)k=1,...,K denote respectively the Ja-

cobian and the Hessian matrices associated with this mapping at

point α
def
= (θk,l)1≤k<l≤K , the asymptotic bias and variance of

an arbitrary algorithm are respectively:

bias(ΘT ) =
1

2T

2
664

Tr[H1
algCα]

..

.
Tr[HK

algCα]

3
775+ o(

1

T
),

E[(ΘT −Θ)(ΘT −Θ)T ] =
1

T
JalgCαJT

alg + o(
1

T
).

And by the continuity theorem, ΘT is asymptotically Gaussian
distributed:

√
T (ΘT −Θ)

L→ N (0;JalgCαJT
alg).

where Cα denotes the covariance matrix of the statistic αk,l
T in-

volved in the algorithm, deduced from (IV.1).

For example, the algorithm proposed in [4], [?] consists in solv-
ing the following K consistent nonlinear equations

1− θ1,T − θ2,T + 2θ1,T θ2,T = α1,2
T

1− θ1,T − θ3,T + 2θ1,T θ3,T = α1,3
T

.

1− θ1,T − θK,T + 2θ1,T θK,T = α1,K
T

1− θ2,T − θ3,T + 2θ2,T θ3,T = α2,3
T . (IV.2)

We note that the Jacobian and the Hessian matrices associated
with a one-to-one mapping “alg” and its inverse mapping “alg−1”
are connected by the following relations (see e.g., [10]):

Jalg =
“
Jalg−1

”−1

and

2
664

H1
alg

.

..
HK

alg

3
775 = −

„“
Jalg−1

”−1 ⊗ IK

«
2
66664

“
Jalg−1

”−T
H1

alg−1

“
Jalg−1

”−1

..

.“
Jalg−1

”−T
HK

alg−1

“
Jalg−1

”−1

3
77775

,

in addition, it is straightforward to obtain the expressions of

2To emphasize that we are dealing with a sequence of estimates,

we replace in this section the notation bΘ by ΘT .



4

Jalg−1 and Hk
alg−1 from (IV.2):

Jalg−1 =
0
BBBBBBB@

−1 + 2θ2 −1 + 2θ1 0 . . . . . . 0
−1 + 2θ3 0 −1 + 2θ1 0 . . . 0

.

.

. 0
. . .

. . . 0
.
.
.

.

.

.
.
.
. .

. . .
. . . 0

−1 + 2θK 0 . . . . . . 0 −1 + 2θ1
0 −1 + 2θ3 −1 + 2θ2 0 . . . 0

1
CCCCCCCA

[Hk
alg−1 ]

(i,j)
=


2 for (i, j) = (1, 1 + k) and (1 + k, 1)
0 otherwise

, k = 1, . . . , K − 1

[HK
alg−1 ]

(i,j)
=


2 for (i, j) = (2, 3) and (3, 2)
0 otherwise

.

Consequently, Jalg and (Hk
alg)k=1,...,K associated with the algo-

rithm proposed in [4] [5] are deduced. With the expression of Jalg,
we prove the following property:

Property 1: The estimated parameters θk,T given by the Dixit

et al rule (IV.2) have asymptotic variances Var(θk,T ) =
θk+o(Θ)

T
.

Furthermore, if (θk ¿ 1)k=1,..,K , these estimates are asymp-
totically uncorrelated and have asymptotic variances invariant

with respect to the choice of the K selected statistics αk,l
T and

Var(θk,T ) ≈ θk
T

.

As such, in these conditions, the blind estimation achieves
the accuracy obtained with perfect knowledge of the transmitted

bits given by Var(θk,T ) =
θk(1−θk)

T
≈ θk

T
. In practice, since

the relative accuracy on the estimated parameters is given byr
Var(θk,T )

θ2
k

≈ 1√
Tθk

, the number T of bits observed must be

roughly inversely proportional to the least bit error probability θk.

Proof: With θk,l(1−θk,l) = θk +θl+o(Θ) (where limΘ→0
o(Θ)
‖Θ‖ =

0) and θm,n,p−θk,lθl,l′ = θi+o(Θ), (where i is the common indice
among k, l, k′, l′), we have

Cα =

0
BBBBBBBBB@

θ1 + θ2 θ1 . . . . . . θ1 θ2

θ1 θ1 + θ3 θ1

. . . θ1 θ3

.

.

. θ1

. . .
. . .

.

.

. 0

.

.

.
.
.
.

. . .
. . . θ1

.

.

.
θ1 . . . . . . θ1 θ1 + θK 0
θ2 θ3 0 . . . 0 θ2 + θ3

1
CCCCCCCCCA

+ o(Θ).

In the same way, the Jacobians JK associated with K channels

are given by

J3 =

2
4
0
@

−1 −1 0
−1 0 −1
0 −1 −1

1
A+ ε(Θ)

3
5
−1

=
1

2

0
@

−1 −1 1
−1 1 −1
1 −1 −1

1
A+ ε(Θ)

Jk =

2
6666666664

0
BBBBBBBBB@

−1 −1 0 . . . . . . 0

−1 0 −1 0 . . .
.
.
.

.

.

. 0
. . .

. . . .
.
.
.

.

.

.
.
.
. .

. . .
. . .

.

.

.
−1 0 . . . . . . 0 −1

0 −1 −1 . . . . . . 0

1
CCCCCCCCCA

+ ε(Θ)

3
7777777775

−1

for k = 4, ..., K

=
1

2

0
BBBBBBBBBBB@

−1 −1 0 . . . 0 1

−1 1 0 . . .
.
.
. −1

1 −1 0 . . .
.
.
.

.

.

.

.

.

. 1 −2 0
.
.
.

.

.

.

.

.

.
.
.
. 0

. . . 0
.
.
.

1 1 0 0 −2 −1

1
CCCCCCCCCCCA

+ ε(Θ)

with limΘ→0 ε(Θ) = 0. Putting these values in JalgCαJT
alg, we

straightforwardly obtain after some tedious algebraic manipula-
tions:

JalgCαJT
alg = Diag(θ1, θ2, . . . , θK) + o(Θ).

To assess the performance improvement obtained by an al-

gorithm that uses all
K(K−1)

2
available statistics αk,l

T , we now
consider the asymptotic lower bound on the variance of an arbi-
trary consistent estimator based on all these statistics. As with
the Cramer-Rao bound, this bound can be used as a benchmark
against which potential estimates are tested. From the works of
[8] and [9], the asymptotic covariance CΘ of a consistent estimator
of Θ is lower bounded by the symmetric positive definite matrix

(DT C−1
α D)−1 where D is the

K(K−1)
2

× K matrix defined as

[D](:,j)
def
=

dθk,l

dθj
, 1 ≤ k < l ≤ K, (note that the particular order-

ing of the row of D is irrelevant in the expression (DT C−1
α D)−1

if this order is consistent with the ordering of the terms of Cα

defined in (IV.1)).
Finally, to assess the relatively efficiency of the statis-

tic (αk,l
T )1≤k<l≤K , this asympotically minimum variance lower

bound is compared to the Cramer-Rao bound. We note that the
Cramer-Rao bound appears to be prohibitive to compute because
the distribution of yt = (yk,t)k=1,...,K is a mixture of two K-
dimensional Bernoulli distributions. We can use, however, a nu-
merical expression derived from the Fisher information matrix,
i.e.,

CRB(Θ) =
1

T

“
I−1
F

”

with

(IF )k,l =
X

yt∈{0,1}K

„
∂ln p(yt; Θ)

∂θk

«„
∂ln p(yt; Θ)

∂θl

«
p(yt; Θ), k, l = 1, . . . , K,

where3

∂ln p(yt; Θ)

∂θl
=

Q
1≤k 6=l≤K θ

1−yk,t

k (1− θk)yk,t (−1)yl,t +
Q

1≤k 6=l≤K θ
yk,t

k (1− θk)1−yk,t (−1)1−yl,t

QK
k=1 θ

1−yk,t

k (1− θk)yk,t +
QK

k=1 θ
yk,t

k (1− θk)1−yk,t

.

3We note that this score function appears to be prohibitive to
compute at each iteration of a Fisher scoring algorithm.
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V. Optimum bit fusion rule revisited

We revisit in this section the optimal fusion rule, for three pur-
poses. First, we give closed-form expressions of the error proba-
bility given by the optimal fusion detector. Second, we give con-
ditions where this optimal fusion detector reduces to the majority
detector or to the best detector4, and finally we study the sensi-
tivity of the optimal fusion detector to errors in the estimate of
the error probabilities of the different channels.

Assume here: θ1 ≤ θ2 . . . ≤ θK ≤ 1
2
. The optimal fu-

sion rule (II.2) can be interpreted as a weighting of the outputs

y′k,t
def
= 2yk,t−1 ∈ {−1, +1} of the different channels according to

their reliability because the weights wk
def
= ln 1−θk

θk
are decreasing

functions of θk. As for fixed point binary representation of num-
bers, the most significant bits y′1,t . . . tend to impose their signs

compared to the least significant bits . . . .y′K,t.

KX

k=1

wky′k,t bbt(Y ) = 1
>
<

bbt(Y ) = 0
0 t = 1, . . . , T. (V.1)

From this rule, the optimal error probability P K
e is given by

P K
e =

X

y′i:wT y′i<0

 
KY

k=1

θ
yi

k
k (1− θk)(1−yi

k)

!

+
1

2

X

y′i:wT y′i=0

 
KY

k=1

θ
yi

k
k (1− θk)(1−yi

k)

!
(V.2)

where w
def
= (w1, . . . , wK)T , y′i def

= (y′1
i, . . . , y′K

i)T , i =

1, 2, . . . , 2K is associated with yi ∈ {0, 1}K . Consequently the
following property is proved:
Property: The optimal error probability Pe decreases or does not
change if a channel is added. In particular it does not change if
this added channel has an error probability equal to 1

2
.

Proof: If a channel is added, each “word” (yi
1, . . . , yi

K) is split into
two words thanks to the weight wK+1. Consequently, if θK+1 =
1
2
⇔ wK+1 = 0, the optimal fusion rule and the error probability

do not change. But if θK+1 < 1
2
⇔ wK+1 > 0, three cases may

be considered. Firstly, for the first K channels, there is a word
(yi

1, . . . , yi
K) such that wT yi = 0, the two words issued from this

word introduce two terms wT yi of opposite signs and consequently
P K

e decreases. Secondly, for the first K channels, suppose there
is no word (yi

1, . . . , yi
K) such that wT yi = 0, if θK+1 is very close

to 1
2
⇔ wK+1 ≈ 0 such that the two words issued from each word

(yi
1, . . . , yi

K) do not change the sign of wT yi, the optimal fusion
rule and the error probability do not change and if θK+1 is not

very close to 1
2

such that among the two words issued from each

word at least one term (yi
1, . . . , yi

K) changes the sign of wT yi, the
optimal fusion rule changes and the error probability decreases.

The optimal error probability P K
e for K = 2, 3, 4 given by (V.2)

simplifies to

P 2
e = θ1

P 3
e = inf

`
P 2

e , θ1θ2 + θ1θ3 + θ2θ3 − 2θ1θ2θ3

´

P 4
e = inf

`
P 3

e , θ1(θ2 + θ3 + θ4 − θ2θ3 − θ2θ4 − θ3θ4) + θ2θ3θ4

´
,

if we suppose that
PK

k=1 wkyi
k 6= 0 for all words yi. But unfortu-

nately for K ≥ 5 such relations may not be proved by induction.
An interesting problem is to deduce conditions under which the

optimal fusion rule reduces to the majority detector or to the best
detector. If the different probabilities of error θk are equal, the
optimal fusion rule reduces to the majority detector (see (V.1))
and intuitively if these probabilities of error θk are very close to-
gether, then this property remains true. On the other hand, if the
probability of error θ1 of the best channel is very small compared

4An illustrative example is given in [4, Fig.6].

to the probabilities of error of the other channels, then the optimal
fusion rule reduces to the best detector. In the following, we try
to quantify these notions.

From the optimal fusion rule (V.1), because w1 ≥
PK

k=2 wk ⇔
sign(y′1,t) = sign(

PK
k=1 wky′k,t), a necessary and sufficient con-

dition for the optimal fusion rule to reduce to the best detector
is

1− θ1

θ1
>

KY

k=2

1− θk

θk
.

For K even, the optimal fusion rule never reduces to the majority
rule, except if the error probabilities θk are equal. Indeed in the
case of equality of 0 and 1, the majority detector draws lots for its
detection if the error probabilities θk are very close together. For
K odd, a necessary and sufficient condition for the optimal fusion
rule to reduce to the majority detector seems to be very intricate
in the general case. To draw conditions, consider the particular
case where the error probabilities θK satisfy the condition θ1 <
θ2 = . . . = θK . Because sign(

PK
k=1 wky′k,t) = sign(w1

w2
y′1,t +

PK
k=2 y′k,t), sign(

PK
k=1 wky′k,t) = sign(

PK
k=1 y′k,t) ⇔ w1

w2
< 2.

Consequently

1− θ1

θ1
<

„
1− θ2

θ2

«2

is a necessary and sufficient condition for the optimal fusion rule
to reduce to the majority detector.

To study the sensitivity of the optimal fusion detector to errors
in the estimate of the error probability of the different channels,
we first note that the differential of wk satisfies

d(wk) = −dθk

θk

„
1

1− θk

«
= −dθk

„
1

θk(1− θk)

«
.

Consequently, if the relative accuracy is considered, the sensitivity
of the optimal fusion detector increases when the channel degrades
and conversely if the absolute accuracy is considered, the sensi-
tivity of the optimal fusion detector increases when the channel
improves.

VI. Illustrative examples

Our performance analysis is illustrated by two experiments. In
each one, we plot the theoretical and empirical (averaged over 1000
runs) asymptotic variances of estimates of a probability of error
of a particular channel given by different Dixit algorithms and by
the EM algorithm. We also plot the resulting probability of error
given by the ”optimal” fusion (II.2) derived from channel BER“bθk(Y )

”
k=1,..,K

estimated by these Dixit algorithms and by the

EM algorithm.
The first experiment considers the case of three channels where

Θ = (0.1; 0.2; 0.2). The EM algorithm is initialized by the follow-
ing approximation of (IV.2)):

0
@

θ1,0

θ2,0

θ3,0

1
A =

1

2

0
@

1 1 −1
1 −1 1
−1 1 1

1
A
0
@

1− α1,2
T

1− α1,3
T

1− α1,4
T

1
A

Figs 1a and 1b compare the performance of the EM algorithm
to the Dixit (IV.2) rule. We see from Fig.1a, that our theoretic
asymptotic results are valid over a large range of the number T
of observed bits (from T = 100 and T = 350 for the EM and the
Dixit algorithms (IV.2) respectively). Naturally the EM algorithm
outperforms the Dixit (IV.2) rule but their performances are very
close, except from a very small number of samples. We note that
the resulting probability of error given by the ”optimal” fusion

(II.2) derived from channel BER
“bθk(Y )

”
k=1,..,K

estimated by

these algorithms is very close to this ”optimal” fusion derived from
the exact values of (θk)k=1,..,K , excepted for a very small number
of samples (T < 300).
Figs 2a and 2b compare the performance of the EM algorithm to
the Dixit (IV.2) and [6] algorithms for a small number of samples.
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In contrat to the previous figure, the EM algorithm largely out-
performs the Dixit algorithms especially for a very small number
of samples. The algorithms [6] outperforms the Dixit rule issued
from (IV.2) below 200 samples. Note that the Dixit (IV.2) rule
gives very bad estimates for T ≤ 125, whereas the algorithms
[6] keeps on converging. We note that the resulting probability
of error given by the ”optimal” fusion (II.2) derived from chan-

nel BER
“bθk(Y )

”
k=1,..,K

estimated by all these algorithms is ro-

bust to the bad estimate of θ1 given by the Dixit (IV.2) rule.

100 150 200 250 300 350 400 450 500

10
-3

10
-2

 (1)

Sample size

V
a
ri
a
n
c
e

100 150 200 250 300 350 400 450 500
10

-2

10
-1

Sample size

P
ro

b
a

b
ili

ty
 o

f 
e

rr
o

r

(a) (b)
Fig.1 (a) Theoretical (–) and empirical (o) variance given by the
Dixit rule, CRB (- -) and empirical (*) variance given by the EM
algorithm of the parameter θ1 as a function of the sample size.
(b) Probability of error given by the “optimal” fusion (II.2) derived
from channel BER estimated by the Dixit (IV.2) (o) and the EM
(*) algorithms, compared with the “optimal” fusion (–) derived
from the exact values of (θk)k=1,..,K as a function of the sample
size.
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(a) (b)
Fig.2 (a) Theoretical (–) variance given by the Dixit rule, CRB
(- -) and empirical variances given by the Dixit rule (o) and algo-
rithm [6] (+) and the EM algorithm (*) of the parameter θ1 as a
function of the sample size.
(b) Probability of error given by the “optimal” fusion (II.2) de-
rived from channel BER estimated by the Dixit rule (IV.2) (o), [6]
(+) and the EM (*) algorithms respectively, compared with the
“optimal” fusion (–) derived from the exact values of (θk)k=1,..,K

as a function of the sample size.

The second experiment considers the case of four channels where
Θ = (0.05; 0.1; 0.2; 0.2). To see the influence of the choice of the

selected statistics αk,l
T in the Dixit rule (IV.2), Figs 3 and 4 ex-

hibit the case where the different channel BERs are arranged in
ascending or descending values of θk respectively. In other words,

the Dixit rule is based on (α1,2
T , α1,3

T , α1,4
T , α2,3

T ) in Figs 3a and 4a

and (α4,3
T , α4,2

T , α4,1
T , α3,2

T ) in Figs 3b and 4b. We see from Fig.3,
that our theoretic asymptotic results are valid over a large range
of the number T of observed bits, but contrary to the case where
(θk)k=1,..K ¿ 1 (see property 1), the Dixit rule is very sensitive to
the choice of the selected statistics. Naturally the EM algorithm

(initialized by the following approximation of (IV.2)):

0
B@

θ1,0

θ2,0

θ3,0

θ4,0

1
CA =

1

2

0
B@

1 1 0 −1
1 −1 0 1
−1 1 0 1
−1 −1 2 1

1
CA

0
BB@

1− α1,2
T

1− α1,3
T

1− α1,4
T

1− α2,3
T

1
CCA

outperforms the Dixit rule. Fig 4 shows that the probability of
error derived from channel BERs estimated by the EM algorithm
is very close to the “optimal” fusion (II.2) derived from the exact
values of (θk)k=1,...,K . But this probability of error is very robust
to bad estimate of (θk)k=1,..K given by Dixit rules for the second
arrangement of (θk)k=1,..K .
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(a) (b)
Fig.3 Theoretical (–) and empirical (o) asymptotic variance given
by the Dixit algorithm (IV.2), CRB (- -) and empirical (*) asymp-
totic variance given by the EM algorithm of the parameter θ1 as
a function of the sample size.
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Fig.4 Probability of error given by the “optimal” fusion (II.2)
derived from channel BER estimated by the Dixit (IV.2) (o), [6]
(+), and the EM (*) algorithms respectively, compared with the
“optimal” fusion (–) derived from the exact values of (θk)k=1,..,K

as a function of the sample size.

VII. Conclusion

In this paper, we have presented a comprehensive asymptotic
statistical performance analysis of blind estimation of bit error
rates (BERs) of a bank of detectors which have appeared in the
literature (by Dixit et al.). We have proposed a maximum likeli-
hood solution obtained by the standard Expectation Maximization
(EM) algorithm which can be considered as a reference algorithm.
We have proved in particular, that these blind estimators asymp-
totically (in the number of observed bits) achieve the accuracy
obtained with perfect knowledge of the transmitted bits. Finally
the optimal fusion rule is revisited and our theoretical results are
compared with Monte-Carlo simulations.
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