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STAGGERED GRID RESIDUAL DISTRIBUTION SCHEME
FOR LAGRANGIAN HYDRODYNAMICS*

REMI ABGRALL' AND SVETLANA TOKAREVA?

Abstract. This paper is focused on the Residual Distribution (RD) interpretation of the Do-
brev et al. scheme [Dobrev et al., SISC, 2012] for the numerical solution of the Euler equations
in Lagrangian form. The first ingredient of the original scheme is the staggered grid formulation
which uses continuous node-based finite element approximations for the kinematic variables and cell-
centered discontinuous finite elements for the thermodynamic parameters. The second ingredient of
the Dobrev et al. scheme is an artificial viscosity technique applied in order to make possible the
computation of strong discontinuities. The aim of this paper is to provide an efficient mass matrix
diagonalization method in order to avoid the inversion of the global sparse mass matrix while keep-
ing all the accuracy properties and to construct a parameter-free stabilization of the scheme to get
rid of the artificial viscosity. In addition, we study the conservation and entropy properties of the
constructed RD scheme. To demonstrate the robustness of the proposed RD scheme, we solve several
one-dimensional shock tube problems from rather mild to very strong ones. This paper also illus-
trates a general technique that enables, from a non conservative formulation of a system that has a
conservative formulation, how to design a numerical approximation that will provably give sequences
of solution converging to a weak solution of the problem. This enable to use directly variables that
are more pertinent, from an engineering point of view, than the standard conserved variables: here
the specific internal energy.

Key words. Residual distribution scheme, Lagrangian hydrodynamics, finite elements

AMS subject classifications. 65M60, 7T6N15, 761,05

1. Introduction. We are interested in the numerical solution of the Euler equa-
tions in Lagrangian form. It is very well known there are two formulations of the fluid
mechanics equations, depending whether the formulation is done in a fixed frame
(Euler formulation) or a reference frame moving at the fluid speed (Lagrangian for-
mulation). There is also an intermediate formulation, the ALE (for Arbitrary Eulerian
Lagrangian) formulation where the reference frame is moving a speed that is generally
neither zero nor the fluid velocity. Each of these formulations have advantages and
drawback. The Eulerian one is conceptually the simplest because the reference frame
is not moving; in term of numerics this translates by a fixed grid. The two other
are conceptually more complicated because of a moving reference frame; in term of
numerics this translates into a moving grid with the possibility of having a tangling
mesh. However, the situation is not as simple. In computing compressible flows,
one has to be able to compute two kinds of discontinuity: the shock waves and the
slip lines. Slip lines are difficult to compute, most of the time not because of stability
problems as for shock waves, but because of numerical dissipation. Hence dealing with
a mesh that moves somewhat with the flow speed, and in this respect, the Lagrangian
formulation is ideal, is a straightforward way to minimize the numerical dissipation
attached to slip lines: they are steady in the Lagrangian frame. Of course the price to
pay is how to handle moving meshes and the tangling problems, but this nice prop-
erty of a relatively simple and efficient way to deal with slip lines has motivated many
researchers, starting from the seminal work of von Neumann and Richtmyer [34], to
more recent works such as [13, 25, 6, 28, 14, 15].

Most of these works deal with schemes that are formally second order accurate.

*This work was funded by SNFS via the grant # 200021_153604

Institute of Mathematics, University of Zurich, Switzerland (remi.abgrall@math.uzh.ch).
fInstitute of Mathematics, University of Zurich, Switzerland (svetlana.tokareva@math.uzh.ch).
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2 R. ABGRALL AND S. TOKAREVA

Up to our knowledge, there are much less works dealing with (formally) high order
methods: either they are of discontinuous Galerkin type [31, 32, 33], use a staggered
finite element formulation [16] or an ENO/WENO formalism [14], see also the recent
developments in [8, 18, 9, 17, 7, 11, 10].

In the discontinuous Galerkin (DG) formulation, all variables are described inside
elements, while in the staggered grid formulation, the approximations of the thermo-
dynamic parameters (such as pressure, specific internal energy or volume/density) are
cell-centered, and thus possibly discontinuous across elements as in the DG method,
while the velocity approximation is node-based, that is, it is described by a function
that is polynomial in each element and globally continuous in the whole computa-
tional domain. In a way this is a natural extension of the Wilkins’ scheme [35] to
higher order of accuracy.

This paper is focused on Dobrev et al. [16] formulation. This formulation, that
we describe in more detail below, uses two ingredients. First, starting from the fi-
nite element formulation, one needs to introduce a global mass matrix that is block
diagonal on the thermodynamic parameters (as in DG method) but leads to a sparse
symmetric matrix for the velocity components (as in finite element method). Hence,
the treatment of the mass matrix consists of an inversion® of a block diagonal matrix,
which is cheap, but also of a sparse symmetric positive definite matrix, which is more
expensive both in terms of CPU time and memory. In addition, every time when
mesh refinement or remapping is needed (which is typical for Lagrangian methods),
this global matrix needs to be recomputed. The second ingredient of the Dobrev et al.
scheme is an artificial viscosity technique applied in order to make possible the com-
putation of strong discontinuities. Note that the staggered formulation automatically
guaranties linear stability.

The aim of this paper is to give answers to two questions: (i) can we avoid
the inversion of the large sparse global mass matrix while keeping all the accuracy
properties and (ii) can we construct a parameter-free artificial viscosity? In order
to answer these questions, we rely on the Residual Distribution (RD) interpretation
of the Dobrev et al. scheme and show how to modify it without introducing any
additional complexity in the formulation.

The format of this contribution is as follows. We first give the formulation of the
Euler equations in Lagrangian form and then recall Dobrev et al. formulation. Next,
we introduce the RD formulation and show how to guarantee, when the scheme is
stable, the convergence to a weak solution. Of course Dobrev et al. method satisfies
these conditions, but the analysis presented in this paper opens new doors. Using the
RD formulation, we show how to construct a simple first order scheme and how to
increase the spatial accuracy. The next step is to explain the diagonalization of the
global sparse mass matrix without the loss of accuracy: this is obtained by applying
ideas coming from [27, 3]. We conclude by considering several one-dimensional shock
tube problems from rather mild to very strong blast problems and a comparison
between the Eulerian and lagrangian formulations.

2. Governing equations. We summarize here the derivation of the Euler equa-
tions in Lagrangian coordinates, more details can be found in [21, 29]. We consider
a fluid domain Qg C RY, d = 1,2, 3 that is deforming in time through the movement
of the fluid, the deformed domain is denoted by €2;. In what follows, X denotes any
point of ¢, while x denotes any point of €, the domain obtained from €y under

1By saying ”inversion of a matrix” we mean the solution of a linear system with the corresponding
matrix.
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STAGGERED GRID RD SCHEME FOR LAGRANGIAN HYDRODYNAMICS 3

deformation. We assume the existence of a one-to-one mapping ® from 2y to £2; such
that x = ®(X,t) € Q; for any X € Qp. We will call X the Lagrangian coordinates
and x the Eulerian ones. The Lagrangian description corresponds to the one of an
observer moving with the fluid. In particular, its velocity, which coincides with the
fluid velocity, is given by:

dx 09

= (X, 1).

(1) u(x,t) = Pty

We also introduce the deformation tensor J (Jacobian matrix),
(2) J(x,t) = Vx®(X, t) where x = (X, 1).

Hereafter, the notation Vx corresponds to the differentiation with respect to La-
grangian coordinates, while V4 — to the Eulerian ones.

It is well known that the equations describing the evolution of fluid particles are
consequences of the conservation of mass, momentum and energy, as well as a technical
relation, the Reynolds transport theorem. It states that for any scalar quantity a(x,t),

we have:
@ % [ anix= [ Lo [ axounio= [ (9 uv.a)ax
dt w wy t Owy dt

wt

In this relation, the set w; is the image of any set wy C Qg by @, i.e. wy = ®(wo, 1),
do is the measure on the boundary of Jw; and n is the outward unit normal. The
gradient operator is taken with respect to the Eulerian coordinates.

The conservation of mass reads: for any wg C 2,

7/ de:Ou Wt :(I)((“)Oat)v

so that we get, defining J(x,t) = det J(x,1),

(4) T(x,)p(x,) = p(X, 0) = po(X).

Using Reynolds’ transport theorem (3), we get that for any function f (real or
vectorial),

(5) jt/w/)fdx‘/ o ¥ i

Newton’s law states that the acceleration is equal to the sum of external forces,
so that p
— pudx:—/ pndo,
dt /wt Owe

du
(6) pgp T VR =0.

and thus, using (3),

The pressure p(x,t) is a thermodynamic characteristic of a fluid and in the simplest
case a function of two independent thermodynamic parameters, for example the spe-
cific energy ¢ and the density,

(7) p=p(p,€).

This manuscript is for review purposes only.
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4 R. ABGRALL AND S. TOKAREVA

The total energy of a fluid particle is pe = pe + % pu?. Using the first principle
of thermodynamics, the variation of energy is the sum of variations of heat and the
work of the external forces. Assuming an isolated system, we get

d 1
p wtp(s+2u2)dx_—/8wtpu~nda,
ie.
de
8 = o u=0.
(8) pg HPVx-u

In this paper, we are interested in solving the set of equations (1)(2), (4) and (8)
with the EOS of the form (7):

dx
t) = —,x=d(X,t
u(x7 ) dt 7X ( K )
J(x,t)p(x,t) = p(X,0) := po(X),
(9a) du
pa + pr =0
de
Ln +pVx-u=0.
where
(9b) p=p(p,e).

In addition, we have the constraint that the physical specific entropy s is increasing
across shock waves

ds

— =0

dt
Introducing the specific volume v = %, from the Gibbs relation T'ds = de + pdv,this
amounts to

de  dv
at " Par 7

3. Staggered grid scheme of Dobrev et al. Here we briefly recall the main
ideas of the staggered grid method proposed in [16]. The semi-discrete approximation
of (9) is sought for such that the velocity field u belongs to a kinematic space V C
(Hl(QO))d of finite dimension; it has a basis denoted by {w;, }i,en,,, the set Dy
is the set of kinematic degrees of freedom (DOFs) with the total number of DOFs
given by #Dy = Ny. The thermodynamic quantities such as the internal energy e
are sought for in a thermodynamic space & C L?(£2y). As before, this space is finite
dimensional, and its basis is {@i. }icep.. The set Dg is the set of thermodynamical
degrees of freedom with the total number of DOFs #Dg = N¢. In the following, the
subscript V (resp. &) refers to kinematic (resp. thermodynamic) degrees of freedom.

The fluid particle position x is approximated by:

(10a) x=0(X,t)= > X (Hw;, (X).
iy €Dy

The domain at time ¢ is then defined by

Q(t) = {x € R% such that 3X € Q : x = &(X, )}

This manuscript is for review purposes only.
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STAGGERED GRID RD SCHEME FOR LAGRANGIAN HYDRODYNAMICS

where ® is given by (10a).
The velocity field is approximated by:

(10b) u(x,t) = Z w;,, (H)w;,, (X),
iy €Dy

and the specific internal energy is given by:

(10c) e(x, )= > eip(t)die (X).
ig€Dg

Considering the weak formulation of (9), we get:

1. For the velocity equation, for any iy € Dy, denoting by n the outward point-

ing unit vector of 9€(t),

(10d) / p(fi—ltlwivdx:—/ T:waivdx—k/ n-T-w;,, do
Q Q. 90,

where for now, the stress tensor 7 is defined as 7 = —plIdy.?
Using (10b), we get®

du.
Z </ PWjy, Wiy, dX) v = 7/ T: vxwiv dx + / n-r- wiv7do—'
o dt Q 99,

Jv

Introducing the vector &1 with components u;,, and F the force vector given

by the right-hand side of the above equation, we get the formulation

da
My— =F.
Vit
The kinematic mass matrix My = (M} ;) has components

v —
M, 7/@ pwj, w;,, dX.
t

Thanks to the Reynolds transport theorem (3) and mass conservation, My

does not depend on time, see [16] for details.
2. For the internal energy, we get a similar form,

d
(10e) / pd—igzﬁig dx = @i T : Vxudx,
Q¢ Q
which leads to

dé
“ _w
Sdt )

where € is the vector with components €;,, the thermodynamic mass matrix
with entries ME . = th @i @jc dx is again independent of

Me = (Miijs) igje

time and W is the right-hand side of (10e).
3. The mass satisfies:

(10f) det J(x,t)p(x,t) = po(X)

where pg € £. The deformation tensor J is evaluated according to (10a).

2Here, if X is a tensor and y is a vector, X -y is the usual matrix-vector multiplication.

3Here, if X and Y are tensors, X : Y is the contraction X : Y = trace(XTY).

This manuscript is for review purposes only.
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6 R. ABGRALL AND S. TOKAREVA

4. The positions x;,, satisfy:

(10g)

It remains to define the spaces V and £. To do this, we consider a conformal
triangulation of the initial computational domain Qy C R%, d = 1,2, 3, which we shall
denote by T,. We denote by K any element of 7, and assume for simplicity that
Urg K = Qq. The set of boundary faces is denoted by B and a generic boundary face is
denoted by f, thus Usep = 09Qy. As usual, denoting by P"(K) the set of polynomials
of degree r defined on K, we consider two functional spaces (with integer r > 1):

V= {veL*(Q)"VK,v g € P'(K)"} N C°Q)

and
E={0€ L*(Q),VK,0x € P""H(K)}.

Clearly, for any ¢, x € €, the Jacobian J is a priori not continuous across the
faces of elements, and hence the relation (10f) is to be understood in the interior of
elements. The matrix Mg is symmetric positive definite block-diagonal while My, is
only a sparse symmetric positive definite matrix.

The fundamental assumption made here is that the mapping ® is bijective. In
numerical situations, this can be hard to achieve for long term simulations, and thus
mesh remapping and re-computation of the matrices Mg and My, must be done from
time to time; this issue is however outside of the scope of this paper, see [29] for
detailed discussion.

The scheme defined by (10) is only linearly stable. Since we are looking for
possibly discontinuous solutions, in the original scheme of Dobrev et al. a mechanism
of artificial viscosity is added. The idea amounts to modifying the stress tensor
7 = —pldy by 7 = —pldy + T.(x,t), where the term 7,(x,t) specifies the artificial
viscosity. We refer to [16] for details on the construction of 7,(x,1).

It is possible to rewrite the system (9), and in particular the relations (10d) and
(10e) in a slightly different way. Let K be any element of the triangulation 7y, and for
the kinematic degrees of freedom iy, € Dy, and the thermodynamic degrees of freedom
ie € D¢ consider the quantities

'Iﬁ[,(,iv :/ T : Vxw;, dx —/ Tnw;, do,
K oK

‘I’gig = —/Kd)fgr : Vyeudx,

where 7, is any numerical flux consistent with 7 - n, see e. g. [30].
Using the compactness of the support of the basis functions w;,, and ¢;,, we can
rewrite the relations (10d) and (10e) as follows®:

du 1%
(11a) [ oG ax e Y i, =0
t K>iy

4In what follows, given a quantity {afg} defined for each element K and each velocity degree of
freedom contained in that element (hence, for one velocity degree of freedom, we can have several
values, depending from which element we are looking at ¢y,), and given any velocity degree of freedom
iy, the sum ZKaiV aiK represents the sum of all the terms aZK for all the element that share this
degree of freedom. A similar notation is used for the thermodynamic degree of freedom. See figure
1 for a graphical illustration.

This manuscript is for review purposes only.
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STAGGERED GRID RD SCHEME FOR LAGRANGIAN HYDRODYNAMICS 7

FiG. 1. The shaded area represent the union of the neighboring elements containing the degree
of freedom iVin diverse configurations.

and

de
(11b) /Q pgp Die dx + > @ef,. =0,

K>ige

and we notice that on each element K, we have:

(1) Y@L, + > w9,

ic€EK iveEK
= _ Z / ¢f§‘r : Vyudx + Z (uiv / T Vxw;, dx —u;, / T Wi, da)
icek K iveK K oK

:—/T:qudx—l—/rzvxudx—/ %n-uda:—/ Tn-udo.
K K oK oK

There is no ambiguity in the definition of the last integral in (11c¢) because u is
continuous across 0K and the numerical flux 7, is well defined.

Since we have the relation (11c) and a similar relation for the total momentum,
namely

(12) S ek :f/ r-ndo,

ivEK oK

and since the flux 7, is consistent with 7 - n, one can easily show using the same
argument as in [5] that:
1. if we use a sequence of meshes which typical mesh size tends to 0, while
staying shape regular in the sense of classical finite element,
2. if the numerical solution stay component-wise bounded in L°°, converges
(component-wise) in L? towards some function (u,e)
then this solution is a weak solution of the initial problem.
In addition, we have a positive balance of entropy as soon as 7, : Vu > 0 in each
element since

ds de d(1/p)
T gx = 4 d
/Kp dat /Kp<dt+p a )

= / <pd€ —I-pqu> dx = / (Ta : qu) dx > 0.
K\ dt K

This manuscript is for review purposes only.
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8 R. ABGRALL AND S. TOKAREVA

4. Residual distribution formulation. In this section, we briefly recall the
concept of residual distribution schemes for the following problem in  C R%:

ou
E—vaf(u)—o

with the initial condition u(x,0) = u(x). For simplicity we assume that u is a real-
valued function. Again, we consider a triangulation 7, of 2. We want to approximate
% in
Vi = {u € L*(Q), for any K € Ty, uix € P"} N CY(Q).
The set {;} is a basis of V4, and u; are such that u = ), u;¢;. As usual, h represents
the maximal diameter of the element of 7;,. We use the same notations as before, and
here the index ¢ denotes a generic degree of freedom.
We start by the steady version of this problem,

Vi -f(u)=0

and omit, for the sake of simplicity, the boundary conditions, see [1] for details. We
consider schemes of the form:

(13) > ef(u)=0 Vi,
K>i

with

DK (u) = /@ivx - f(u) dx.
K

The residuals must satisfy the conservation relation: for any K,

KU: h~n0:: K'LL.
(14) S 0K () /Mf do = & ()

€K

Here, f* - n is an (r + 1)-th order approximation of f(u) - n. Given a sequence of
meshes that are shape regular with h — 0, one can construct a sequence of solution.
In [5], it is shown that , if (i) this sequence of solutions stays bounded in L*°, (ii)
a sub-sequence of it converges in L?(Q) towards a limit u and (iii) the residuals are
continuous with respect to u, then the conservation condition guaranties that u is a
weak solution of the problem.

A typical example of such residual is the Rusanov residual,

@f(’R“S(u):—/ Vi - fhdx + ' np;do + ax(u; — k),
K 0K

where 1
with Nk being the number of degrees of freedom inside an element K and

ag = max p(Vuf(u) -n).
x€K,n,||n[[=1 ( () )

Here, p(A) is the spectral radius of the matrix A.
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STAGGERED GRID RD SCHEME FOR LAGRANGIAN HYDRODYNAMICS 9

This residual can be rewritten as

K Rus
C’Lj .7

JjeEK

with cﬁ > 0. It is easy to see that using the Rusanov residual leads to very dissipative
solutions, but the scheme is easily shown to be monotonicity preserving in the scalar
case, see for example [5]. In the system case, one can see that . There is a systematic
way of improving the accuracy. One can show [5] that if the residuals satisfy, for any
degree of freedom 1,

;' (ug,) = O(h*),

where u,, is the exact solution of the steady problem, u!_ is an interpolation of order
k + 1 and d is the dimension of the problem, then the scheme is formally of order
k 4+ 1. It is shown in [5] how to achieve a high order of accuracy while keeping the
monotonicity preserving property. A systematic way of achieving this is to set:

(15) Of (u) = B (w)@" (w),

where

(16) 55 () = 225 ‘I;i Zr0)
];( max ( , O)

and ®¥ is defined by (14). Some refinements exist in order to get an entropy inequal-
ity, see [4, 1] for example. Note that 3K (u) is constant on K.
It is easy to see that one can rewrite (15) in a Petrov-Galerkin fashion:

K u):/ ﬁzK(u)Vx.fhdx:/ LF’iVx.fholx—i—/ (@‘K(U)—s@i)vuf-vxudx
K K X«

_/ Vx%~fdx—|-/ %f-nda—i-/ (BE(u) — ;) Vuf - Viudx,
K oK K

so that from (13) we get

/Vx% fdx+/ wif( ndo—l—Z/ ﬁK npi)Vuf-qudx.

K>i

Inspired by this formulation, we would naturally discretize the unsteady problem
as:

(17) 0—/<plgudx—/vxcpl fdx+/ i f(u)-ndo
+Z/ BK )(681;+Vf qu>d

DK

The formulation (17) can be as well derived from (13) by introducing the ”space-
time” residuals (the value of BX is not relevant at this stage)

(18) 010 = 510 [ (G Vert)) ax

This manuscript is for review purposes only.



10 R. ABGRALL AND S. TOKAREVA

309 The semi-discrete scheme (17) requires an appropriate ODE solver for time-stepping.
310 A straightforward discretization of (17) would lead to a mass matrix M = (M;,;); ;
311  with entries
312 Mij = / YiPj dx + Z/ (ﬁf(’u,) — ()01)()07 dx.

Q isK VK
313 Unfortunately, this matrix has no special structure, might not be invertible (so the
314 problem is not even well posed!), and in any case it is highly non linear since 3%
315 depends on u. A solution to circumvent the problem has been proposed in [27].
316  The main idea is to keep the spatial structure of the scheme and slightly modify the
317 temporal one without violating the formal accuracy. A second order version of the
318 method is designed in [27] and extension to high order is explained in [3]. For the
319 purposes of this paper and for comparison with [16] we only need the second order
320 case.
321 Here we describe the idea of the modified time stepping from [27]. We start with
322 the description of our time-stepping algorithm based on a second order Runge-Kutta
323 scheme for an ODE of the form

324 y' + L(y) = 0.
325 Given an approximate solution y, at time t", for the calculation of 3,41 we
326 proceed as follows:
327 1. set y© = ym;
328 2. compute y(!) defined by
(1) _ (0)

Y Y O —_ 0.
329 —+L =0

A TLWT) =0
330 3. compute y defined by
- y2 — y© N L(y©) + L(y™) o
' At 2 ’
332 4. set y"t =y,
333 We see that the generic step in this scheme has the form

Sy
334 —Z 4+ Ly, y*y =0
Ar TEWT )

335  with I L(b
336 L(a,b) = La) + L)
337 and
338 §Fy =yt — O k=0, 1.
339 Coming back to the residuals (18), we write for each element K and k =0, 1:

340

k
341 @K(U)/ <(5Au —i—ﬁ(u(o),u(k))) dx
K t

d*u ©) (k) K 8 u ©) (k)
342 = | @il — + LW u™) ) dx+ [ (B (u) — ;) + L™, u'™) | dx

0tu (©)_ ) K i (©) )
343 ~ | ool — + L u) ) dx+ [ (BF(u) — i) | — + L@, u®)) ) dx
T\ A . At

344
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STAGGERED GRID RD SCHEME FOR LAGRANGIAN HYDRODYNAMICS 11

with
— 0 if k=0,
oty = { W itk = 1.

We see that
5k Sk
/ (At + L(u 0),u(k))) dx +/ (BE(u) — ¢:) (A + L(u?, u<k>)> dx

5k (5’c ku
— . K i 0) (R
/@z( ; t)dx—i—ﬁ ()/ ( t-|—£(u , U ))dx.

This relation is further simplified if mass lumping can be applied: letting

(19) Z/ Vip; dx_/ @i dx

JjeEK

and

(20) C; = /gozdx—Z/ i dx,

K>1

for the degree of freedom 4 and the element K we look at the quantity

cf( A At>+ﬂf<(u)/ <At+£(u(0 u(k))> dx,

B _ 8 SFu

Here B85 (u) is evaluated using (16) where ®; KRus s replaced by the modified space-
time Rusanov residuals

5’“ 1
<I>1K’P”us = / (At + L, uk ))> dx + 2( (0)( EO) — af,?)) + ozg?) (uz(-k) — ﬂy;))),

where

ie.

—(z)_izu 1=0.k,

JGK

with N being the number of degrees of freedom in an element K and oy large
enough and, finally,
— Z (I)K,Rus

i€K
Then the idea is to use (13) at each step of the Runge-Kutta method with the residuals
given by

(21) @f(u):/ ((Zt+£( ©) u(k))> dx

s [ - o) (S £ ) ) ax
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12 R. ABGRALL AND S. TOKAREVA

so that the overall step writes: for £ = 0,1 and any ¢,

(k+1) (k) KL
(22) Cl + Z @z ts T 7
K>i

where we have introduced the limited space-time residuals

Sk
(23) ol = g /K (A;‘ - c(u<0>,u<k>)> dx.

One can easily see that each step of (22) is purely explicit.
One can show that this scheme is second order in time. The key reason for this
is that we have

see [27, 4, 1] for details.

REMARK 4.1. We need that C; > 0 for any degree of freedom. This might not
hold, for example, for quadratic Lagrange basis. For this reason, we will use Bézier
elements for the approximation of the solution.

5. Residual distribution scheme for Lagrangian hydrodynamics. In this
section, we explain how to adapt the previous framework to the equations of La-
grangian hydrodynamics. We consider the same functional spaces as in section 3,
namely the kinematic space V and the thermodynamic space &.

In the case of a simplex K C R%, one can consider the barycentric coordinates as-
sociated to the vertices of K and denoted by {A;};=1,a+1. By definition, the barycen-
tric coordinates are positive on K and we can consider the Bézier polynomials of
degree r: define r =iy + ...+ i441, then

! )
r i
24 B;. = AZ1 A
( ) Ueetdt1 il dgaq! d+1

Clearly, B;, .. > 0 on K and using the binomial identity

Ad41

> B, ZHI:(%A)T:L

; d+1;
Q1seenybdt1,p oy | 45=T

It is left to define the residuals for the equations of the Lagrangian hydrodynamics.
Since the PDE on the velocity is written in conservation form, this is only a mild
adaptation of the derivations presented in the previous section, at least in the 1D
case when the velocity is a scalar. In the multidimensional case, one can follow [27].
However, we need to introduce some modifications for the thermodynamics. To this
end, we first focus on the spatial term, in the spirit of [27, 4]. We construct a first
order monotone scheme, and using the technique of [4], we design a formally high
order accurate scheme. Therefore, we introduce the total residuals

(25) @K:/ Ppndo  and \IIK:/pVx~udx,
oK K
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where p € £, u € V and p,, is a consistent numerical flux which depends on the left
and right state at 0K. Next, the Galerkin residuals are given by

B = [ Vatidx+ [ onndor
\I/fz :/ Vi pVx - U dX.
K
From (26), we define the Rusanov residuals
_ 1
(27) @fi’RUS(u, e) = ®F (u,e) + ag(u;, — ), = WK Z
Ny vEK
and
(28) \I/i’Rus(uv 5) = \Ilzli (u> E) + aK(Eis - é) = Z Eig
iceK
where ax is an upper bound of the Lagrangian speed of sound pc on K and Né(

(resp. NX) is the number of degrees of freedom for the velocity (resp. energy) on K.
The temporal discretization is done using the technique developed in the previous
section. We introduce the modified space-time Rusanov residuals, for k = 0, 1:

us 5]6\/ 1 us us
(29) o :/K(piva;ldx+2<(I)fivR (@) 4 KR (uwc),g(k)))

and

us 6/};:3\ 1 us us
(30) \Ili i /Kwif'oft dx + 2<W£,R (u(0)75(0)) + \PZ{Z,R (u(k),s(k))>.
Finally, the high-order limited residuals are computed similarly to (15) as

’LV ts — ts» ig, ts ts»

where the space-time Rusanov residuals (29) and (30) are used in expressions analo-
gous to (16) to calculate B{g and B{;, respectively:

( K,Rus )
max (=20
o5
(32) zl\i = S Rus )
> max(q)” -, 0)
JjveEK
( K,Rus )
max (—£2-.0
vk >
(33) 5 = \;K Rus )
> max (—5,0)
je€K

and

- Shu 1
off = Z ;i = /K <pAt t3 (pr(o) + pr(k))) dx,

ivyEK

ok 1
vl = 30w = [ (5 L (0Veu® ) )
ig€K
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14 R. ABGRALL AND S. TOKAREVA

Next, we introduce
Ci = / pon, dx,  CF = / pie dx.
K K

After applying the mass lumping as in (19), (20), the mass matrices My, for the ve-
locity and Mg for the thermodynamics become diagonal with entries at the diagonals
given by

cy :/P‘Pw dx =Y / Py dx,

K3iy

/ P dx =y / Pie dx.

K>ig

Both matrices are invertible because ¢;,, > 0 and ;. > 0 in the element since
we are using Bézier basis. Note that we could have omitted the mass lumping for the
thermodynamic relation because the mass matrix is block diagonal.

By construction, the scheme is conservative for the velocity, however, nothing
is guaranteed for the specific energy. In order to solve this issue, inspired by the
calculations of section 3, and given a set of velocity residuals {@fi} and internal
energy residuals {\Ilfg }, we slightly modify the internal energy evaluation by defining
(34) \Pi is ‘I’fi th + Tig,
where the correction term r;, is chosen to ensure the discrete conservation properties
and will be specified in the following section.

With all the above definitions, the resulting residual distribution scheme is written
as follows: for k = 0,1

u(k-i-l) (k)
(35&) Ov lv =+ Z q)z\; ts —
K3iyp
€<k+1> (k)
(35b) Cg - W + Z \I/’Lg ts —
K>ig
KB+ n
X, X, 1( (k))
(35¢) A 2 u? +u .

Note that the discretization (35¢) is nothing but a second-order SSP RK scheme.

6. Conservation and entropy production. Here we first derive the expres-
sion for the term r;, to ensure the local conservation property of the residual distri-
bution scheme (35) and then give some conditions on the discrete entropy production.

6.1. Discrete conservation. The continuous problem satisfies the following
conservation property for the specific total energy e = %u2 +e:

(36) / Zt dm+/pu-nda:0.

K 0K
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The numerical scheme has to satisfy a conservation property analogous to (36) at
the discrete level. To achieve this, the thermodynamic residual has been modified
according to (34).

The term r;, is chosen such that:

5Fu, (5/’“;/
VK i i K,L
(37) Z <CZV ( Atv - Atv > + in >

iveEK
Ske, 5/’“:
E,K 2 2 _
> (C“ ( At Atg) B “H“) -

iseK

Since we have only one constraint, we impose in addition that r;, = r for any ig¢,
so that from (37) we can derive

1 ok uZ
(38) 1. = NgK</ ppudo — Z u;, d Z V.EZ v

ivEK iveK
K(S &
S D St Yo ”),
ie€K ie€K

where p,, is the approximation of the pressure flux pn at the boundary of the element
K.

So far, we have indicated a way to recover local conservation by adding a term to
the internal energy equation. This term depends on the residuals that are themselves
constructed from first order residuals and in turn depend on the pressure flux, so
that the conservation property is valid for any pressure flux. It is possible to add
further constraints for better conservation properties and in this section we show how
to impose a local (semi-discrete) entropy inequality. We also state two results that
are behind the construction.

6.2. Entropy balance. Since at the continuous level

ds de dv

at ~ar " Par
where v = 1/p is the specific volume, and knowing that

dv

pazv,yu,

we look at the entropy inequality

ds de dv de
= >
(39) / pTdt / (dt+pdt>d / ( pr + pVyx - u)dx/O

and try to derive its discrete counterpart.

For the sake of simplicity we demonstrate the discrete entropy balance conditions
on the first-order version of the scheme (35). Taking the sum over the degrees of
freedom of an element K in equation (35b) and noting that in the first-order scheme
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(%—:/At =0 and \I!fZ’L = OB e get

e

(40) ZCK‘SEZwZ\p

ic€K 1£€K
us 5k
:.Z (/przgdx> KR —l—m-g):/ de"'\PK—'—.Z Tig
ie €K ic€K
§ke
:/ ( Ar TPV “) dx+ > ri; =0

ic€K

The first term in (40) is a discrete analogue of (39), therefore we can require

/((Zj—l—pvx u) x>0,

which yields another constraint on r;,:
(41) Z Tie < 0

We note that the derivation of the entropy condition for a general high-order scheme
is slightly more tedious, however, it leads to exactly the same condition (41) and is
therefore not presented here.

Let us show that the entropy condition (41) holds for the first order residual
distribution scheme. From the conservation condition (38) we have

1 K,Rus K,Rus
2 iveK is€K
and therefore

(42) Z Tie = / prudo — Z u;, P KRUS - Z \I!K Rus

ic€EK ivEK ic€K

:/{; ppudo — Z uZV — QK Z uiv(uiv —ﬁ)— Z \If,fz — QK Z (Eig —5_‘)

ivyEK iy EK ig€K ig€K

z/ f)nudcr—/ u-Vypdx — ax Z(uiv—ﬁ)Q—/pVx~udx
oK K K

ivyEK
—\2
= —ax E (w;, — )" <0,
ivEK

where we have taken into account that
Z uw;, (u;,, —0) = Z (w;, —@)?, and Z (e — &) =0.
ivyEK ivyeEK ig€K

Therefore, the entropy condition (41) is satisfied with any ax > 0.

For high order schemes it doesn’t seem to be possible to recast the entropy con-
dition (41) explicitly in terms of ax as it is done in (42) for the first order scheme
since ag is only implicitly used to calculate the limiting coefficients 6K and BX > by
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(32), (33). Therefore, in practice, in order to ensure the entropy inequality in the
high order scheme we add an edge stabilization term to the velocity residual:

(43) Kstab Z h2 / < 11 x@z\;] IldO'

ecOK

where 6 > 0 is a coefficient that can be estimated and [f] = f* — f~ is the jump of
f at the interface, see [12] for more details.

6.3. Results on conservation and entropy inequality. Using the same tech-
nique as in [5], we can easily state the following two results:

PROPOSITION 6.1 (Conservation). Assume that we are given a set of regular
meshes which characteristic size h tends to zero. Consider the time t > 0 so that the
meshes mapped by the transformation (1) stay regular. Assume that the scheme (35),
with the residuals defined as in section 5 generate solutions that are bounded in L
by a constant that only depends on the family of meshes and the initial conditions. If
a sub-sequence of these solutions converges towards u, €, then this is a weak solution
of the Euler equations.

A weak solution satisfies an entropy inequality under certain conditions which are
specified by the following result.

PROPOSITION 6.2 (Entropy). If in addition to the assumptions of Proposition 6.1
the energy correction satisfies (41), then the limit solution satisfies

ds
T— >0
Prat ”

in the sense of distributions.

7. Second order scheme in one-dimensional case. In this section, we spec-
ify in detail the algorithm of the second order residual distribution scheme in the
one-dimensional case. Hereafter, X and = denote the Lagrangian and Eulerian coor-
dinates, respectively, and the scalar velocity is denoted by u.

Lets start by giving the one dimensional version of (9). We have

u(zx,t) = Z—f,x =o(X,1)
J(x,t)p(x,t) = p(X 0) = pO(X)a

(1) Lo
Ox
de +p ou 0
Pat "Por —
We assume that X € [a,b] = €y and introduce a moving grid with nodes z;,

i =0,...,N and set K := [zj,2j41]. The kinematic space V is formed by the
continuous quadratic Bézier elements in )y while the thermodynamic space £ has a
piecewise-linear basis. As before, we denote by Dy, (resp. Dg) the set of degrees of
freedom in V (resp. &).

The algorithm of the one-dimensional second order scheme for integrating (44)
consists of two steps.
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(1) ()

Step 1: calculate u(V), e . For any iy € Dy and ig € D¢

(1)

eyt “’+Zﬂ/aphd

K3iy
. € ( ) _ u” ©
1,5 —
Cer A T Z [ / o W =0
(1) n
x;) — T, _aun
At 7

where S (resp. BE) is evaluated using (32) (resp. (33)) with k& = 0, and the

correction term 7'( ) is defined via (38).

Step 2: calculate untt gt gntl

un+1 51) ICH D apr  Op (1)
o ”+Z S g (G ) a0

For any iy, € Dy and ig € Dg,

K3iy
el 1) _n n (1)
€ € 1 ou ou
G 5 o [ e ) et <o
K>ig
2Tl — gn 1
= (e )

where again BiKv (resp. 65) is defined using (32), (resp. (33)) for kK = 1, and the
correction term rgl) is calculated via (38).

The density p(z,t), when needed, is evaluated via the local relation p(z,t) =
J(x,t)po(X), where J is the Jacobian of the coordinate transformation, i.e. determi-
nant of the matrix defined by (2) and pg is the density in the initial configuration.

Note that the mesh is legal as long as J stays strictly positive.

8. Numerical results. To assess the accuracy and robustness of the proposed
residual distribution scheme we solve a series of shock tube problems. For numerical
experiments of this section we shall use the following EOS:

e ideal EOS: p = (y — 1)pe, where v > 1,
o stiffened EOS: p = (v — 1)pe — vps,
e Jones-Wilkins-Lee (JWL) EOS: p = (v — 1)pe + f;(p), where

(v—=1p Rip (v—=1p Rip
0= (1 O Do (- 12) - 210 ()
f J (p) 1 Rip p P) Rip p P
If not explicitly specified, the gas is supposed to be modeled by the ideal EOS with
v=1.4.
We use the technique proposed in [20] to control the time step and in all numerical
tests the CFL number is set to 0.5.

1. Numerical convergence study. We test the accuracy of our scheme on a
smooth isentropic flow problem similar to the test case introduced in [15]. The initial
data for our test problem is the following:

po(z) =14 0.9999995sin(27wz), wo(xz) =0, po(x)=p"(z,0), ze€[-1,1].
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with polytropic index v = 3 and periodic boundary conditions.
The exact density and velocity in this case can be obtained by the method of
characteristics and is explicitly given by

(1) = 5 pola) + po(2), (e t) = Vol 1) — polan)),

where for each coordinate x and time ¢ the values x; and x9 are solutions of the
nonlinear equations

x4+ V3po(xy)t — x1 =0,
x —V/3po(z2)t — 29 = 0.

Fig. 2 shows the errors of the flow parameters in the Li-norm with respect to the
number of DOFs at time T' = 0.08 for three different residual distribution schemes
using Bezier basis: first-order RD scheme with modified time stepping and mass
lumping (denoted by "B1/B0”), second-order RD scheme with modified time stepping
and mass lumping ("B2/B1”) and the second-order RD scheme with classical second-
order Runge-Kutta time stepping ("B2/B1 RK2”). It can be clearly seen that the first-
order ”B1/B0” and second-order "B2/B1” schemes reach the expected convergence
rates for the velocity and a little bit more than first order for the thermodynamical
variables. The order of the formally second-order "B2/B1 RK2” scheme drops to first,
which is the result of the loss of accuracy due to mass lumping applied in a standard
time stepping algorithm.

Convergence of p

Convergence of tho -

10!

=—a BUBO

- order1
o B2BI
ol -~ order2
+— B2/B1, RK2

=—a B1/B0

- order1l
o—e B2/B1

- order2
+— B2/B1, RK2

107

107

o 0 w0 "o 107 0
N N

(a) density (b) pressure

Convergence of v Convergence of eps

10" 10"
=—a B1/B0O =—a BI1/B0O

- order1 - order1
o B2/B1 oo B2/B1

- order2 101 -~ order2

+—+ B2/B1, RK2 +—+ B2/B1, RK2

10°?

107 h 107

104 104 .
107 107 10 10" 107 10*

N N

(c) velocity (d) internal energy

Fi1c. 2. Convergence history for the smooth isentropic test problem
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8.2. The Sod shock tube. The Sod’s shock tube is a classical test problem for
the assessment of the numerical methods for solving the Euler equations. Its solution
consists of a left rarefaction, a contact and a right shock wave. The initial data for
this problem is given as follows:

(1.0,0.0,1.0), <0,

(po, o, o) = {(0_125,0.070.1), z > 0.

The results for first-order ("B1/B0”) and second-order ("B2/B1”) schemes are
shown in Fig. 3. Obviously, the second-order scheme provides better resolution of
the smooth flow regions such as the left rarefaction wave, while both schemes give an
accurate approximation of the contact discontinuity and the right shock wave. On Fig.

" B1/B0. 200 cells —— A " B1/B0, 200 cells ——
B2/B1, 200 cells —— W B2/B1, 200 cells ——
—_— exact

02 i 4 01 b

0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1

(a) density (b) pressure

" B1/80, 200 cells —— " B1/80, 200 cells ——
2451, 200 cells —<— B2/BY) 200 cells —~—
t— o exact ——

B

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

(c) velocity (d) internal energy

Fic. 3. Solution of the Sod shock tube problem at T = 0.16

3-(d), the reader can see that the internal energy exhibits an overshoot at the contact,
this one is connected to the small undershoot of the density on Fig. 3-(a), while the
velocity and the pressure behave as expected over the contact. This phenomena is
typical of Lagrangian schemes, one can consult for example [26] for similar results
with first and higher order schemes, or [24] for a series of benchmark tests such as
Sod’s and the blast wave case we consider in section 8.5 where a similar behaviour
exist. The reason is that there is no diffusion mechanism across interface, since mesh
points move exactly at the speed of the contact. In Eulerian methods, or ALE ones,
where the mesh point do not move or move at velocities that are not the fluid ones,
this drawback do not exist. But some diffusion exist accros the contact lines: all
depends on the physics that one wish to capture accurately.

8.3. 123-problem. The 123-problem [30] is a classical benchmark case to test
the behavior of the numerical method for low-density and low-pressure flows. The
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initial data is the following:

( ) (1.0,-2.0,0.4), —4< <0,
U, =

POHOPO) =N (1.0,2.0,04), 0<a <4

The solution of this problem consists of two rarefaction waves traveling in opposite
directions, so that a low-density and low-pressure region is generated in between.

The numerical solution illustrated in Fig. 4 shows that the low intermediate den-
sity and pressure are captured correctly by both first-order and second-order RD
scheme, the latter being more accurate for the internal energy. The insufficient res-
olution of the flow near the vacuum is a well-known phenomenon for Lagrangian
schemes, and is related to the strong heating phenomenon, see e.g. [15, 32, 33].

81/B0, 500 cells ——
B2/BI. 500 cells —+—

B1/B0, 500 cells ——
B2B1,500 colls
oxact — —

(a) density

81/B0, 500 cells ——
B2/B1,500 cells

81/B0, 500 cells ——
‘\ cells —<—
2 — 2f \ —

B2/B1, 500

(c) velocity (d) internal energy

Fic. 4. Solution of the 123-problem at T = 0.15

8.4. Strong shock. This test case is actually the left half of the blast wave
problem of Woodward and Colella [36]. It’s a severe test problem containing a left
rarefaction wave, a contact discontinuity and a strong right shock wave and it is often
used to assess the robustness of the numerical methods for fluid dynamics [30]. The
initial data for this test problem is

(1.0,0.0,1000.0), z <0,

(Po, w0, po) = {(1,0,0.0,0.01), z>0.

The simulation results shown in Fig. 5 indicate that both first and second-order
schemes are robust and can accurately resolve strong shocks.
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1000 T v g
B1/B0. 200 cells ——
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(a) density (b) pressure

3000

" B1/80, 200 colls ——
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oxact
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oxact

2500

2000 [

1500 -

1000 -

500 -

(c) velocity (d) internal energy

Fia. 5. Solution of the strong shock problem at T = 0.012

8.5. Interaction of blast waves. The interaction of blast waves is a standard
low energy benchmark problem involving strong shocks reflecting from the walls of
the tube with further mutual interaction. The initial data is the following:

103, 0<2<0.1,
po=1, wy=1 po= 1072, 0.1 <z<0.9,
102, 09<z <1

Reflective boundary conditions are applied at z =0 and = 1.

The results are displayed on Fig. 6. We can make the same comments as above,
namely that the contacts are very well represented with a slight overshoot of the
thermodynamical variables across the contact.

8.6. Gas-liquid shock tube. This severe water-air shock tube problem is used
to assess the performance of the numerical schemes for multi-material flows with a
strong interfacial contact discontinuity. In this problem, the fluid to the left-hand side
of the membrane initially located at x = 0.3 is a perfect gas with v = 1.4 in the ideal
EOS, while the fluid to the right of the membrane is water modeled by the stiffened
EOS with v = 4.4 and ps = 6 - 108. The initial parameters of the two fluids are the
following:

(5.0,0.0,10°), 0<z <0.3,

7u7 -
(po, tio; po) {mﬁamm%,03<x<L

The computational results for the first and second-order RD schemes shown in
Fig. 7 demonstrate a very good agreement with the exact solution and, what is im-
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F1a. 6. Solution of the Woodward-Colella blast wave interaction problem at T = 0.038

portant, a very accurate resolution of the interfacial contact discontinuity by both
schemes.

8.7. Underwater TINT explosion. This 1D spherically symmetric underwater
detonation problem [19] is often used as a benchmark to test the robustness of the
methods for multi-phase problems with general equation of state. The initial condition
consists of the detonation products phase on the left of the initial discontinuity and
the water phase to the right. We consider the stiffened version of the classical TNT
explosion problem proposed in [15], which is more likely to produce negative density
and/or internal energy.

To the left of the interface initially located at x = 0.16, the gaseous product of the
detonated explosive is modeled by the JWL EOS with 4; = 3.712-10°, A, = 3.23-103,
Ry = 415, Ry = 0.95, p = 1.63- 1073 and v = 1.3. On the right of the interface,
the water is described through the stiffened EOS with v = 7.15 and p, = 3.309 - 10.
Initial data for this test problem is:

(1.63-1073,0.0,8.381 - 10%), 0 < 2 < 0.16,

7u ) =
(po, o, po) {(1.025 -1073,0.0, 1.0), 0.16 < z < 3.
The results are shown in Fig.8. Clearly, both first and second-order RD schemes

capture the interfaces very accurately, while second-order scheme is more accurate in
the regions of smooth flow.

8.8. Comparison with the Eulerian version of the scheme. The Eulerian
version of the scheme uses a collocated mesh and the one dimensional variant of the
scheme described in [27] with mass lumping. We compare on a soft case (Sod, Fig. 9)
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Fia. 7. Solution of the gas-liquid shock tube problem at T' = 0.00024

and a more difficult one (Collela and Woodward, Fig. 10). The results are in good
agreement: the shock travel at the same speed. We can notice that the density is more
accurate across the contact discontinuity for the Lagrangian simulation as expected.
There are two shocks, one for z =~ 0.7 and one for x ~ 0.9. The first one seems sharper
for the Lagrangian scheme, the second one by the Eulerian one. In the two cases, it is
not a surprise since the mesh density becomes higher at the shock for the Lagrangian
simulations. The contact are also crisper for the Lagrangian simulation, We also see
that the fan seems better represented for these versions of the schemes, without clear
reason.

9. Conclusions. In this paper we have proposed a Residual Distribution (RD)
scheme for the Lagrangian hydrodynamics based on the staggered finite element for-
mulation of [16]. We have developed an efficient mass matrix diagonalization algo-
rithm which relies on the modification of the time-stepping scheme and gives rise
to an explicit high order accurate scheme. Moreover, the scheme is parameter-free
and doesn’t require any artificial viscosity. The one-dimensional numerical tests con-
sidered in this paper show the robustness of the method for problems involving very
strong shock waves. A comparison between the Lagrangian and Eulerian formulations
confirms that contact discontinuities are very well described.

One of the contributions of this paper is to show how one can discretise a non
conservative version of the Euler equation and guarantee that the correct weak solu-
tions are recovered. This problem has already be considered by other authors such as
[23, 22], but we believe our strategy is simpler and can work for any order of accuracy.
It has been further illustrated on multifluid and multiphase problems, see [2].

Further research includes the extension of the present method to multiple dimen-
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Fic. 8. Solution of the underwater TNT explosion problem at T' = 0.00025

25

Acknowledgments. We thank Dr. A. Barlow from AWE, UK, for introducing
us to this problem. We have had several very interesting conversations on this topic,
and the selection of numerical examples has also been influenced by these discus-
sion. The authors thanks the financial support of the Swiss SNF via the grant #
200021_153604 ("High fidelity simulation for compressible material”). R.A. has been

partially supported by this grant and S.T. has been fully supported by this grant.

This manuscript is for review purposes only.



26 R. ABGRALL AND S. TOKAREVA

1 T T v T T T v T T v T

Eulerian == Eulerian 7
Lagrangian — Lagrangian

(a) Density (b) Velocity

08

06

(c) Pressure
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