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STAGGERED GRID RESIDUAL DISTRIBUTION SCHEME1

FOR LAGRANGIAN HYDRODYNAMICS∗2

RÉMI ABGRALL† AND SVETLANA TOKAREVA‡3

Abstract. This paper is focused on the Residual Distribution (RD) interpretation of the Do-4
brev et al. scheme [Dobrev et al., SISC, 2012] for the numerical solution of the Euler equations5
in Lagrangian form. The first ingredient of the original scheme is the staggered grid formulation6
which uses continuous node-based finite element approximations for the kinematic variables and cell-7
centered discontinuous finite elements for the thermodynamic parameters. The second ingredient of8
the Dobrev et al. scheme is an artificial viscosity technique applied in order to make possible the9
computation of strong discontinuities. The aim of this paper is to provide an efficient mass matrix10
diagonalization method in order to avoid the inversion of the global sparse mass matrix while keep-11
ing all the accuracy properties and to construct a parameter-free stabilization of the scheme to get12
rid of the artificial viscosity. In addition, we study the conservation and entropy properties of the13
constructed RD scheme. To demonstrate the robustness of the proposed RD scheme, we solve several14
one-dimensional shock tube problems from rather mild to very strong ones. This paper also illus-15
trates a general technique that enables, from a non conservative formulation of a system that has a16
conservative formulation, how to design a numerical approximation that will provably give sequences17
of solution converging to a weak solution of the problem. This enable to use directly variables that18
are more pertinent, from an engineering point of view, than the standard conserved variables: here19
the specific internal energy.20
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1. Introduction. We are interested in the numerical solution of the Euler equa-23

tions in Lagrangian form. It is very well known there are two formulations of the fluid24

mechanics equations, depending whether the formulation is done in a fixed frame25

(Euler formulation) or a reference frame moving at the fluid speed (Lagrangian for-26

mulation). There is also an intermediate formulation, the ALE (for Arbitrary Eulerian27

Lagrangian) formulation where the reference frame is moving a speed that is generally28

neither zero nor the fluid velocity. Each of these formulations have advantages and29

drawback. The Eulerian one is conceptually the simplest because the reference frame30

is not moving; in term of numerics this translates by a fixed grid. The two other31

are conceptually more complicated because of a moving reference frame; in term of32

numerics this translates into a moving grid with the possibility of having a tangling33

mesh. However, the situation is not as simple. In computing compressible flows,34

one has to be able to compute two kinds of discontinuity: the shock waves and the35

slip lines. Slip lines are difficult to compute, most of the time not because of stability36

problems as for shock waves, but because of numerical dissipation. Hence dealing with37

a mesh that moves somewhat with the flow speed, and in this respect, the Lagrangian38

formulation is ideal, is a straightforward way to minimize the numerical dissipation39

attached to slip lines: they are steady in the Lagrangian frame. Of course the price to40

pay is how to handle moving meshes and the tangling problems, but this nice prop-41

erty of a relatively simple and efficient way to deal with slip lines has motivated many42

researchers, starting from the seminal work of von Neumann and Richtmyer [34], to43

more recent works such as [13, 25, 6, 28, 14, 15].44

Most of these works deal with schemes that are formally second order accurate.45
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2 R. ABGRALL AND S. TOKAREVA

Up to our knowledge, there are much less works dealing with (formally) high order46

methods: either they are of discontinuous Galerkin type [31, 32, 33], use a staggered47

finite element formulation [16] or an ENO/WENO formalism [14], see also the recent48

developments in [8, 18, 9, 17, 7, 11, 10].49

In the discontinuous Galerkin (DG) formulation, all variables are described inside50

elements, while in the staggered grid formulation, the approximations of the thermo-51

dynamic parameters (such as pressure, specific internal energy or volume/density) are52

cell-centered, and thus possibly discontinuous across elements as in the DG method,53

while the velocity approximation is node-based, that is, it is described by a function54

that is polynomial in each element and globally continuous in the whole computa-55

tional domain. In a way this is a natural extension of the Wilkins’ scheme [35] to56

higher order of accuracy.57

This paper is focused on Dobrev et al. [16] formulation. This formulation, that58

we describe in more detail below, uses two ingredients. First, starting from the fi-59

nite element formulation, one needs to introduce a global mass matrix that is block60

diagonal on the thermodynamic parameters (as in DG method) but leads to a sparse61

symmetric matrix for the velocity components (as in finite element method). Hence,62

the treatment of the mass matrix consists of an inversion1 of a block diagonal matrix,63

which is cheap, but also of a sparse symmetric positive definite matrix, which is more64

expensive both in terms of CPU time and memory. In addition, every time when65

mesh refinement or remapping is needed (which is typical for Lagrangian methods),66

this global matrix needs to be recomputed. The second ingredient of the Dobrev et al.67

scheme is an artificial viscosity technique applied in order to make possible the com-68

putation of strong discontinuities. Note that the staggered formulation automatically69

guaranties linear stability.70

The aim of this paper is to give answers to two questions: (i) can we avoid71

the inversion of the large sparse global mass matrix while keeping all the accuracy72

properties and (ii) can we construct a parameter-free artificial viscosity? In order73

to answer these questions, we rely on the Residual Distribution (RD) interpretation74

of the Dobrev et al. scheme and show how to modify it without introducing any75

additional complexity in the formulation.76

The format of this contribution is as follows. We first give the formulation of the77

Euler equations in Lagrangian form and then recall Dobrev et al. formulation. Next,78

we introduce the RD formulation and show how to guarantee, when the scheme is79

stable, the convergence to a weak solution. Of course Dobrev et al. method satisfies80

these conditions, but the analysis presented in this paper opens new doors. Using the81

RD formulation, we show how to construct a simple first order scheme and how to82

increase the spatial accuracy. The next step is to explain the diagonalization of the83

global sparse mass matrix without the loss of accuracy: this is obtained by applying84

ideas coming from [27, 3]. We conclude by considering several one-dimensional shock85

tube problems from rather mild to very strong blast problems and a comparison86

between the Eulerian and lagrangian formulations.87

2. Governing equations. We summarize here the derivation of the Euler equa-88

tions in Lagrangian coordinates, more details can be found in [21, 29]. We consider89

a fluid domain Ω0 ⊂ Rd, d = 1, 2, 3 that is deforming in time through the movement90

of the fluid, the deformed domain is denoted by Ωt. In what follows, X denotes any91

point of Ω0, while x denotes any point of Ωt, the domain obtained from Ω0 under92

1By saying ”inversion of a matrix” we mean the solution of a linear system with the corresponding
matrix.
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STAGGERED GRID RD SCHEME FOR LAGRANGIAN HYDRODYNAMICS 3

deformation. We assume the existence of a one-to-one mapping Φ from Ω0 to Ωt such93

that x = Φ(X, t) ∈ Ωt for any X ∈ Ω0. We will call X the Lagrangian coordinates94

and x the Eulerian ones. The Lagrangian description corresponds to the one of an95

observer moving with the fluid. In particular, its velocity, which coincides with the96

fluid velocity, is given by:97

(1) u(x, t) =
dx

dt
=
∂Φ

∂t
(X, t).98

We also introduce the deformation tensor J (Jacobian matrix),99

(2) J(x, t) = ∇XΦ(X, t) where x = Φ(X, t).100

Hereafter, the notation ∇X corresponds to the differentiation with respect to La-101

grangian coordinates, while ∇x — to the Eulerian ones.102

It is well known that the equations describing the evolution of fluid particles are103

consequences of the conservation of mass, momentum and energy, as well as a technical104

relation, the Reynolds transport theorem. It states that for any scalar quantity α(x, t),105

we have:106

(3)
d

dt

∫
ωt

α(x, t) dx =

∫
ωt

∂α

∂t
(x, t) dx+

∫
∂ωt

α(x, t)u·n dσ =

∫
ωt

(
dα

dt
+u·∇xα

)
dx107

In this relation, the set ωt is the image of any set ω0 ⊂ Ω0 by Φ, i.e. ωt = Φ(ω0, t),108

dσ is the measure on the boundary of ∂ωt and n is the outward unit normal. The109

gradient operator is taken with respect to the Eulerian coordinates.110

The conservation of mass reads: for any ω0 ⊂ Ω0,111

d

dt

∫
ωt

ρ dx = 0, ωt = Φ(ω0, t),112

so that we get, defining J(x, t) = det J(x, t),113

(4) J(x, t)ρ(x, t) = ρ(X, 0) := ρ0(X).114

Using Reynolds’ transport theorem (3), we get that for any function f (real or115

vectorial),116

(5)
d

dt

∫
ωt

ρf dx =

∫
ωt

ρ
df

dt
dx.117

Newton’s law states that the acceleration is equal to the sum of external forces,118

so that119
d

dt

∫
ωt

ρu dx = −
∫
∂ωt

pn dσ,120

and thus, using (3),121

(6) ρ
du

dt
+∇xp = 0.122

The pressure p(x, t) is a thermodynamic characteristic of a fluid and in the simplest123

case a function of two independent thermodynamic parameters, for example the spe-124

cific energy ε and the density,125

(7) p = p(ρ, ε).126

This manuscript is for review purposes only.



4 R. ABGRALL AND S. TOKAREVA

The total energy of a fluid particle is ρe = ρε + 1
2ρu

2. Using the first principle127

of thermodynamics, the variation of energy is the sum of variations of heat and the128

work of the external forces. Assuming an isolated system, we get129

d

dt

∫
ωt

ρ(ε+
1

2
u2) dx = −

∫
∂ωt

pu · n dσ,130

i.e.131

(8) ρ
dε

dt
+ p∇x · u = 0.132

In this paper, we are interested in solving the set of equations (1)(2), (4) and (8)133

with the EOS of the form (7):134

u(x, t) =
dx

dt
,x = Φ(X, t)

J(x, t)ρ(x, t) = ρ(X, 0) := ρ0(X),

ρ
du

dt
+∇xp = 0

ρ
dε

dt
+ p∇x · u = 0.

(9a)135

where136

(9b) p = p(ρ, ε).137

In addition, we have the constraint that the physical specific entropy s is increasing
across shock waves

ds

dt
> 0.

Introducing the specific volume v = 1
ρ , from the Gibbs relation Tds = dε + pdv,this

amounts to
dε

dt
+ p

dv

dt
> 0.

138

3. Staggered grid scheme of Dobrev et al. Here we briefly recall the main139

ideas of the staggered grid method proposed in [16]. The semi-discrete approximation140

of (9) is sought for such that the velocity field u belongs to a kinematic space V ⊂141 (
H1(Ω0)

)d
of finite dimension; it has a basis denoted by {wiV}iV∈DV , the set DV142

is the set of kinematic degrees of freedom (DOFs) with the total number of DOFs143

given by #DV = NV . The thermodynamic quantities such as the internal energy ε144

are sought for in a thermodynamic space E ⊂ L2(Ω0). As before, this space is finite145

dimensional, and its basis is {φiE}iE∈DE . The set DE is the set of thermodynamical146

degrees of freedom with the total number of DOFs #DE = NE . In the following, the147

subscript V (resp. E) refers to kinematic (resp. thermodynamic) degrees of freedom.148

The fluid particle position x is approximated by:149

(10a) x = Φ(X, t) =
∑

iV∈DV

xiV (t)wiV (X).150

The domain at time t is then defined by151

Ω(t) = {x ∈ Rd such that ∃X ∈ Ω0 : x = Φ(X, t)}152

This manuscript is for review purposes only.
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where Φ is given by (10a).153

The velocity field is approximated by:154

(10b) u(x, t) =
∑

iV∈DV

uiV (t)wiV (X),155

and the specific internal energy is given by:156

(10c) ε(x, t) =
∑
iE∈DE

εiE (t)φiE (X).157

Considering the weak formulation of (9), we get:158

1. For the velocity equation, for any iV ∈ DV , denoting by n the outward point-159

ing unit vector of ∂Ω(t),160

(10d)

∫
Ωt

ρ
du

dt
wiV dx = −

∫
Ωt

τ : ∇xwiV dx +

∫
∂Ωt

n · τ · wiV dσ161

where for now, the stress tensor τ is defined as τ = −pIdd.2162

Using (10b), we get3163 ∑
jV

(∫
Ωt

ρwjVwiV dx

)
dujV
dt

= −
∫

Ωt

τ : ∇xwiV dx +

∫
∂Ωt

n · τ · wiV , dσ.164

Introducing the vector û with components uiV and F the force vector given165

by the right-hand side of the above equation, we get the formulation166

MV
dû

dt
= F.167

The kinematic mass matrix MV = (MViVjV ) has components168

MViVjV =

∫
Ωt

ρwjVwiV dx.169

Thanks to the Reynolds transport theorem (3) and mass conservation, MV170

does not depend on time, see [16] for details.171

2. For the internal energy, we get a similar form,172

(10e)

∫
Ωt

ρ
dε

dt
φiE dx =

∫
Ωt

φiEτ : ∇xu dx,173

which leads to174

ME
dε̂

dt
= W,175

where ε̂ is the vector with components εiE , the thermodynamic mass matrix176

ME = (MEiEjE ) with entries MEiEjE =
∫

Ωt
φiEφjE dx is again independent of177

time and W is the right-hand side of (10e).178

3. The mass satisfies:179

(10f) det J(x, t)ρ(x, t) = ρ0(X)180

where ρ0 ∈ E . The deformation tensor J is evaluated according to (10a).181

2Here, if X is a tensor and y is a vector, X · y is the usual matrix-vector multiplication.
3Here, if X and Y are tensors, X : Y is the contraction X : Y = trace(XT Y).
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6 R. ABGRALL AND S. TOKAREVA

4. The positions xiV satisfy:182

(10g)
dxiV
dt

= uiV (xiV , t)183

It remains to define the spaces V and E . To do this, we consider a conformal184

triangulation of the initial computational domain Ω0 ⊂ Rd, d = 1, 2, 3, which we shall185

denote by Th. We denote by K any element of Th and assume for simplicity that186

∪KK = Ω0. The set of boundary faces is denoted by B and a generic boundary face is187

denoted by f , thus ∪f∈B = ∂Ω0. As usual, denoting by Pr(K) the set of polynomials188

of degree r defined on K, we consider two functional spaces (with integer r > 1):189

V = {v ∈ L2(Ω0)d,∀K,v|K ∈ Pr(K)d} ∩ C0(Ω0)190

and191

E = {θ ∈ L2(Ω0),∀K, θ|K ∈ Pr−1(K)}.192

Clearly, for any t, x ∈ Ωt, the Jacobian J is a priori not continuous across the193

faces of elements, and hence the relation (10f) is to be understood in the interior of194

elements. The matrix ME is symmetric positive definite block-diagonal while MV is195

only a sparse symmetric positive definite matrix.196

The fundamental assumption made here is that the mapping Φ is bijective. In197

numerical situations, this can be hard to achieve for long term simulations, and thus198

mesh remapping and re-computation of the matrices ME and MV must be done from199

time to time; this issue is however outside of the scope of this paper, see [29] for200

detailed discussion.201

The scheme defined by (10) is only linearly stable. Since we are looking for202

possibly discontinuous solutions, in the original scheme of Dobrev et al. a mechanism203

of artificial viscosity is added. The idea amounts to modifying the stress tensor204

τ = −pIdd by τ = −pIdd + τ a(x, t), where the term τ a(x, t) specifies the artificial205

viscosity. We refer to [16] for details on the construction of τ a(x, t).206

It is possible to rewrite the system (9), and in particular the relations (10d) and207

(10e) in a slightly different way. Let K be any element of the triangulation Th, and for208

the kinematic degrees of freedom iV ∈ DV and the thermodynamic degrees of freedom209

iE ∈ DE consider the quantities210

ΦK
V,iV =

∫
K

τ : ∇xwiV dx−
∫
∂K

τ̂nwiVdσ,211

ΦK
E,iE = −

∫
K

φKiEτ : ∇xu dx,212
213

where τ̂n is any numerical flux consistent with τ · n, see e. g. [30].214

Using the compactness of the support of the basis functions wiV and φiE , we can215

rewrite the relations (10d) and (10e) as follows4:216

(11a)

∫
Ωt

ρ
du

dt
wiV dx +

∑
K3iV

ΦK
V,iV = 0217

4In what follows, given a quantity {aKiV} defined for each element K and each velocity degree of
freedom contained in that element (hence, for one velocity degree of freedom, we can have several
values, depending from which element we are looking at iV ), and given any velocity degree of freedom
iV , the sum

∑
K3iV aKiV represents the sum of all the terms aKiV for all the element that share this

degree of freedom. A similar notation is used for the thermodynamic degree of freedom. See figure
1 for a graphical illustration.
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iV

1

iV

2

iV

3

Fig. 1. The shaded area represent the union of the neighboring elements containing the degree
of freedom iVin diverse configurations.

and218

(11b)

∫
Ωt

ρ
dε

dt
φiE dx +

∑
K3iE

ΦK
E,iE = 0,219

and we notice that on each element K, we have:220

221

(11c)
∑
iE∈K

ΦK
E,iE +

∑
iV∈K

uiV ·ΦK
V,iV222

= −
∑
iE∈K

∫
K

φKiEτ : ∇xu dx +
∑
iV∈K

(
uiV ·

∫
K

τ : ∇xwiV dx− uiV ·
∫
∂K

τ̂nwiV dσ

)
223

= −
∫
K

τ : ∇xu dx +

∫
K

τ : ∇xu dx−
∫
∂K

τ̂n · u dσ = −
∫
∂K

τ̂n · u dσ.224
225

There is no ambiguity in the definition of the last integral in (11c) because u is226

continuous across ∂K and the numerical flux τ̂n is well defined.227

Since we have the relation (11c) and a similar relation for the total momentum,228

namely229

(12)
∑
iV∈K

ΦK
V,iV = −

∫
∂K

τ · n dσ,230

and since the flux τ̂n is consistent with τ · n, one can easily show using the same231

argument as in [5] that:232

1. if we use a sequence of meshes which typical mesh size tends to 0, while233

staying shape regular in the sense of classical finite element,234

2. if the numerical solution stay component-wise bounded in L∞, converges235

(component-wise) in L2 towards some function (u, e)236

then this solution is a weak solution of the initial problem.237

In addition, we have a positive balance of entropy as soon as τ a : ∇u > 0 in each238

element since239

240 ∫
K

ρT
ds

dt
dx =

∫
K

ρ

(
dε

dt
+ p

d(1/ρ)

dt

)
dx241

=

∫
K

(
ρ
dε

dt
+ p∇xu

)
dx =

∫
K

(
τ a : ∇xu

)
dx > 0.242

243
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8 R. ABGRALL AND S. TOKAREVA

4. Residual distribution formulation. In this section, we briefly recall the244

concept of residual distribution schemes for the following problem in Ω ⊂ Rd:245

∂u

∂t
+∇x · f(u) = 0246

with the initial condition u(x, 0) = u0(x). For simplicity we assume that u is a real-247

valued function. Again, we consider a triangulation Th of Ω. We want to approximate248

u in249

Vh = {u ∈ L2(Ω), for any K ∈ Th, u|K ∈ Pr} ∩ C0(Ω).250

The set {ϕi} is a basis of Vh, and ui are such that u =
∑
i uiϕi. As usual, h represents251

the maximal diameter of the element of Th. We use the same notations as before, and252

here the index i denotes a generic degree of freedom.253

We start by the steady version of this problem,254

∇x · f(u) = 0255

and omit, for the sake of simplicity, the boundary conditions, see [1] for details. We256

consider schemes of the form:257

(13)
∑
K3i

ΦKi (u) = 0 ∀i,258

with259

ΦKi (u) =

∫
K

ϕi∇x · f(u) dx.260

The residuals must satisfy the conservation relation: for any K,261

(14)
∑
i∈K

ΦKi (u) =

∫
∂K

fh · n dσ := ΦK(u).262

Here, fh · n is an (r + 1)-th order approximation of f(u) · n. Given a sequence of263

meshes that are shape regular with h→ 0, one can construct a sequence of solution.264

In [5], it is shown that , if (i) this sequence of solutions stays bounded in L∞, (ii)265

a sub-sequence of it converges in L2(Ω) towards a limit u and (iii) the residuals are266

continuous with respect to u, then the conservation condition guaranties that u is a267

weak solution of the problem.268

A typical example of such residual is the Rusanov residual,269

ΦK,Rus
i (u) = −

∫
K

∇xϕi · fh dx +

∫
∂K

fh · nϕi dσ + αK(ui − ūK),270

where271

ūK =
1

NK

∑
j∈K

uj272

with NK being the number of degrees of freedom inside an element K and273

αK > max
x∈K,n,||n||=1

ρ
(
∇uf(u) · n

)
.274

Here, ρ(A) is the spectral radius of the matrix A.275
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This residual can be rewritten as276

ΦK,Rus
i (u) =

∑
j∈K

cKij (ui − uj)277

with cKji > 0. It is easy to see that using the Rusanov residual leads to very dissipative278

solutions, but the scheme is easily shown to be monotonicity preserving in the scalar279

case, see for example [5]. In the system case, one can see that . There is a systematic280

way of improving the accuracy. One can show [5] that if the residuals satisfy, for any281

degree of freedom i,282

ΦKi (uhex) = O(hk+d),283

where uex is the exact solution of the steady problem, uhex is an interpolation of order284

k + 1 and d is the dimension of the problem, then the scheme is formally of order285

k + 1. It is shown in [5] how to achieve a high order of accuracy while keeping the286

monotonicity preserving property. A systematic way of achieving this is to set:287

(15) ΦKi (u) = βKi (u)ΦK(u),288

where289

(16) βKi (u) =
max

(ΦK,Rus
i

ΦK , 0
)

∑
j∈K

max
(ΦK,Rus

j

ΦK , 0
)290

and ΦK is defined by (14). Some refinements exist in order to get an entropy inequal-291

ity, see [4, 1] for example. Note that βKi (u) is constant on K.292

It is easy to see that one can rewrite (15) in a Petrov-Galerkin fashion:293

294

ΦKi (u) =

∫
K

βKi (u)∇x · fh dx =

∫
K

ϕi∇x · fh dx +

∫
K

(
βKi (u)− ϕi

)
∇uf · ∇xu dx295

= −
∫
K

∇xϕi · f dx +

∫
∂K

ϕi f · n dσ +

∫
K

(
βKi (u)− ϕi

)
∇uf · ∇xu dx,296

297

so that from (13) we get298

0 = −
∫

Ω

∇xϕi · f dx +

∫
∂Ω

ϕif(u) · n dσ +
∑
K3i

∫
K

(
βKi (u)− ϕi

)
∇uf · ∇xu dx.299

Inspired by this formulation, we would naturally discretize the unsteady problem300

as:301
302

(17) 0 =

∫
Ω

ϕi
∂u

∂t
dx−

∫
Ω

∇xϕi · f dx +

∫
∂Ω

ϕi f(u) · n dσ303

+
∑
i3K

∫
K

(
βKi (u)− ϕi

)(∂u
∂t

+∇uf · ∇xu

)
dx.304

305

The formulation (17) can be as well derived from (13) by introducing the ”space-306

time” residuals (the value of βKi is not relevant at this stage)307

(18) ΦKi (u) = βKi (u)

∫
K

(
∂u

∂t
+∇x · f(u)

)
dx.308
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10 R. ABGRALL AND S. TOKAREVA

The semi-discrete scheme (17) requires an appropriate ODE solver for time-stepping.309

A straightforward discretization of (17) would lead to a mass matrix M = (Mij)i,j310

with entries311

Mij =

∫
Ω

ϕiϕj dx +
∑
i3K

∫
K

(
βKi (u)− ϕi

)
ϕj dx.312

Unfortunately, this matrix has no special structure, might not be invertible (so the313

problem is not even well posed!), and in any case it is highly non linear since βKi314

depends on u. A solution to circumvent the problem has been proposed in [27].315

The main idea is to keep the spatial structure of the scheme and slightly modify the316

temporal one without violating the formal accuracy. A second order version of the317

method is designed in [27] and extension to high order is explained in [3]. For the318

purposes of this paper and for comparison with [16] we only need the second order319

case.320

Here we describe the idea of the modified time stepping from [27]. We start with321

the description of our time-stepping algorithm based on a second order Runge-Kutta322

scheme for an ODE of the form323

y′ + L(y) = 0.324

Given an approximate solution yn at time tn, for the calculation of yn+1 we325

proceed as follows:326

1. set y(0) = yn;327

2. compute y(1) defined by328

y(1) − y(0)

∆t
+ L(y(0)) = 0;329

3. compute y(2) defined by330

y(2) − y(0)

∆t
+
L(y(0)) + L(y(1))

2
= 0;331

4. set yn+1 = y(2).332

We see that the generic step in this scheme has the form333

δky

∆t
+ L(y(0), y(k)) = 0334

with335

L(a, b) =
L(a) + L(b)

2
336

and337

δky = y(k+1) − y(0), k = 0, 1.338

Coming back to the residuals (18), we write for each element K and k = 0, 1:339

340

βKi (u)

∫
K

(
δku

∆t
+ L(u(0), u(k))

)
dx341

=

∫
K

ϕi

(
δku

∆t
+ L(u(0), u(k))

)
dx +

∫
K

(
βKi (u)− ϕi

)(δku
∆t

+ L(u(0), u(k))

)
dx342

≈
∫
K

ϕi

(
δku

∆t
+ L(u(0), u(k))

)
dx +

∫
K

(
βKi (u)− ϕi

)( δ̃ku
∆t

+ L(u(0), u(k))

)
dx343

344
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with345

δ̃ky =

{
0 if k = 0,
u(1) − u(0) if k = 1.

346

We see that347
348 ∫

K

ϕi

(
δku

∆t
+ L(u(0), u(k))

)
dx +

∫
K

(
βKi (u)− ϕi

)( δ̃ku
∆t

+ L(u(0), u(k))

)
dx349

=

∫
K

ϕi

(
δku

∆t
− δ̃ku

∆t

)
dx + βKi (u)

∫
K

(
δ̃ku

∆t
+ L(u(0), u(k))

)
dx.350

351

This relation is further simplified if mass lumping can be applied: letting352

(19) CKi =
∑
j∈K

∫
K

ϕiϕj dx =

∫
K

ϕi dx353

and354

(20) Ci =

∫
Ω

ϕi dx =
∑
K3i

∫
K

ϕi dx,355

for the degree of freedom i and the element K we look at the quantity356

CKi

(
δkui
∆t
− δ̃kui

∆t

)
+ βKi (u)

∫
K

(
δ̃ku

∆t
+ L(u(0), u(k))

)
dx,357

i.e.358

CKi
u

(k+1)
i − u(k)

i

∆t
+ βKi (u)

∫
K

(
δ̃ku

∆t
+ L(u(0), u(k))

)
dx.359

Here βKi (u) is evaluated using (16) where ΦK,Rus
i is replaced by the modified space-360

time Rusanov residuals361

ΦK,Rus
i =

∫
K

ϕi

(
δ̃ku

∆t
+ L(u(0), u(k))

)
dx +

1

2

(
α

(0)
K

(
u

(0)
i − ū

(0)
K

)
+ α

(k)
K

(
u

(k)
i − ū

(k)
K

))
,362

where363

ū(l) =
1

NK

∑
j∈K

u
(l)
j , l = 0, k,364

with NK being the number of degrees of freedom in an element K and αK large365

enough and, finally,366

ΦK(u) =
∑
i∈K

ΦK,Rus
i .367

Then the idea is to use (13) at each step of the Runge-Kutta method with the residuals368

given by369

370

(21) ΦKi (u) =

∫
K

ϕi

(
δku

∆t
+ L(u(0), u(k))

)
dx371

+

∫
K

(
βKi (u)− ϕi

)( δ̃ku
∆t

+ L(u(0), u(k))

)
dx,372

373
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12 R. ABGRALL AND S. TOKAREVA

so that the overall step writes: for k = 0, 1 and any i,374

(22) Ci
u

(k+1)
i − u(k)

i

∆t
+
∑
K3i

ΦK,Li,ts = 0,375

where we have introduced the limited space-time residuals376

(23) ΦK,Li,ts = βKi

∫
K

(
δku

∆t
+ L(u(0), u(k))

)
dx.377

One can easily see that each step of (22) is purely explicit.378

One can show that this scheme is second order in time. The key reason for this379

is that we have380 ∑
i∈K

∫
K

(
ϕi − βKi (u)

)
dx = 0,381

see [27, 4, 1] for details.382

Remark 4.1. We need that Ci > 0 for any degree of freedom. This might not383

hold, for example, for quadratic Lagrange basis. For this reason, we will use Bézier384

elements for the approximation of the solution.385

5. Residual distribution scheme for Lagrangian hydrodynamics. In this386

section, we explain how to adapt the previous framework to the equations of La-387

grangian hydrodynamics. We consider the same functional spaces as in section 3,388

namely the kinematic space V and the thermodynamic space E .389

In the case of a simplex K ⊂ Rd, one can consider the barycentric coordinates as-390

sociated to the vertices of K and denoted by {Λj}j=1,d+1. By definition, the barycen-391

tric coordinates are positive on K and we can consider the Bézier polynomials of392

degree r: define r = i1 + . . .+ id+1, then393

(24) Bi1...id+1
=

r!

i1! · · · id+1!
Λi11 . . .Λ

id+1

d+1 .394

Clearly, Bi1...id+1
> 0 on K and using the binomial identity395

∑
i1,...,id+1,

∑d+1
1 ij=r

Bi1...id+1
=

( d+1∑
i=1

Λi

)r
= 1.396

It is left to define the residuals for the equations of the Lagrangian hydrodynamics.397

Since the PDE on the velocity is written in conservation form, this is only a mild398

adaptation of the derivations presented in the previous section, at least in the 1D399

case when the velocity is a scalar. In the multidimensional case, one can follow [27].400

However, we need to introduce some modifications for the thermodynamics. To this401

end, we first focus on the spatial term, in the spirit of [27, 4]. We construct a first402

order monotone scheme, and using the technique of [4], we design a formally high403

order accurate scheme. Therefore, we introduce the total residuals404

(25) ΦK =

∫
∂K

p̂n dσ and ΨK =

∫
K

p∇x · u dx,405
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where p ∈ E , u ∈ V and p̂n is a consistent numerical flux which depends on the left406

and right state at ∂K. Next, the Galerkin residuals are given by407

ΦKiV = −
∫
K

p∇xφiV dx +

∫
∂K

φiV p̂n dσ,

ΨK
iE =

∫
K

ψiEp∇x · u dx.
(26)408

From (26), we define the Rusanov residuals409

(27) ΦK,Rus
iV

(u, ε) = ΦKiV (u, ε) + αK(uiV − ū), ū =
1

NK
V

∑
iV∈K

uiV410

and411

(28) ΨK,Rus
iE

(u, ε) = ΨK
iE (u, ε) + αK(εiE − ε̄), ε̄ =

1

NK
E

∑
iE∈K

εiE412

where αK is an upper bound of the Lagrangian speed of sound ρc on K and NK
V413

(resp. NK
E ) is the number of degrees of freedom for the velocity (resp. energy) on K.414

The temporal discretization is done using the technique developed in the previous415

section. We introduce the modified space-time Rusanov residuals, for k = 0, 1:416

(29) ΦK,Rus
iV ,ts

=

∫
K

ϕiVρ
δ̃ku

∆t
dx +

1

2

(
ΦK,Rus
iV

(u(0), ε(0)) + ΦK,Rus
iV

(u(k), ε(k))

)
417

and418

(30) ΨK,Rus
iE ,ts

=

∫
K

ψiEρ
δ̃kε

∆t
dx +

1

2

(
ΨK,Rus
iE

(u(0), ε(0)) + ΨK,Rus
iE

(u(k), ε(k))

)
.419

Finally, the high-order limited residuals are computed similarly to (15) as420

(31) ΦK,LiV ,ts
= βKiV ΦKts , ΨK,L

iE ,ts
= βKiE ΨK

ts ,421

where the space-time Rusanov residuals (29) and (30) are used in expressions analo-422

gous to (16) to calculate βKiV and βKiE , respectively:423

(32) βKiV =
max

(ΦK,Rus
iV ,ts

ΦK
ts

, 0
)

∑
jV∈K

max
(ΦK,Rus

jV ,ts

ΦK
ts

, 0
) ,424

425

(33) βKiE =
max

(ΨK,Rus
iE ,ts

ΨK
ts

, 0
)

∑
jE∈K

max
(ΨK,Rus

jE ,ts

ΨK
ts

, 0
) ,426

and427

ΦKts =
∑
iV∈K

ΦK,Rus
iV ,ts

=

∫
K

(
ρ
δ̃ku

∆t
+

1

2

(
∇xp

(0) +∇xp
(k)
))

dx,428

ΨK
ts =

∑
iE∈K

ΨK,Rus
iE ,ts

=

∫
K

(
ρ
δ̃kε

∆t
+

1

2

(
p(0)∇x · u(0) + p(k)∇x · u(k)

))
dx.429

430
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14 R. ABGRALL AND S. TOKAREVA

Next, we introduce431

CV,KiV
=

∫
K

ρϕiV dx, CE,KiE
=

∫
K

ρψiE dx.432

After applying the mass lumping as in (19), (20), the mass matrices MV for the ve-433

locity and ME for the thermodynamics become diagonal with entries at the diagonals434

given by435

CViV =

∫
Ω

ρϕiV dx =
∑
K3iV

∫
K

ρϕiV dx,436

CEiE =

∫
Ω

ρψiE dx =
∑
K3iE

∫
K

ρψiE dx.437

438

Both matrices are invertible because ϕiV > 0 and ψiE > 0 in the element since439

we are using Bézier basis. Note that we could have omitted the mass lumping for the440

thermodynamic relation because the mass matrix is block diagonal.441

By construction, the scheme is conservative for the velocity, however, nothing442

is guaranteed for the specific energy. In order to solve this issue, inspired by the443

calculations of section 3, and given a set of velocity residuals {ΦKiV} and internal444

energy residuals {ΨK
iE
}, we slightly modify the internal energy evaluation by defining445

(34) ΨK,c
iE ,ts

= ΨK,L
iE ,ts

+ riE ,446

where the correction term riE is chosen to ensure the discrete conservation properties447

and will be specified in the following section.448

With all the above definitions, the resulting residual distribution scheme is written449

as follows: for k = 0, 1450

(35a) CViV
u

(k+1)
iV

− u
(k)
iV

∆t
+
∑
K3iV

ΦK,LiV ,ts
= 0,451

452

(35b) CEiE
ε

(k+1)
iE

− ε(k)
iV

∆t
+
∑
K3iE

ΨK,c
iE ,ts

= 0,453

454

(35c)
x

(k+1)
iV

− xniV
∆t

=
1

2

(
uniV + u

(k)
iV

)
.455

Note that the discretization (35c) is nothing but a second-order SSP RK scheme.456

6. Conservation and entropy production. Here we first derive the expres-457

sion for the term riE to ensure the local conservation property of the residual distri-458

bution scheme (35) and then give some conditions on the discrete entropy production.459

6.1. Discrete conservation. The continuous problem satisfies the following460

conservation property for the specific total energy e = 1
2u2 + ε:461

(36)

∫
K

ρ
de

dt
dx+

∫
∂K

pu · n dσ = 0.462
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The numerical scheme has to satisfy a conservation property analogous to (36) at463

the discrete level. To achieve this, the thermodynamic residual has been modified464

according to (34).465

The term riE is chosen such that:466

467

(37)
∑
iV∈K

uiV

(
CV,KiV

(
δkuiV

∆t
− δ̃kuiV

∆t

)
+ ΦK,LiV

)
468

+
∑
iE∈K

(
CE,KiE

(
δkεiE
∆t

− δ̃kεiE
∆t

)
+ ΨK,L

iE ,ts
+ riE

)
= 0.469

470

Since we have only one constraint, we impose in addition that riE = r for any iE ,471

so that from (37) we can derive472

473

(38) riE =
1

NK
E

(∫
∂K

p̂nu dσ −
∑
iV∈K

uiV ΦK,LiV
+
∑
iV∈K

CV,KiV

δ̃kuiV
∆t

474

−
∑
iE∈K

ΨK,L
iE

+
∑
iE∈K

CE,KiE

δ̃kεiE
∆t

)
,475

476

where p̂n is the approximation of the pressure flux pn at the boundary of the element477

K.478

So far, we have indicated a way to recover local conservation by adding a term to479

the internal energy equation. This term depends on the residuals that are themselves480

constructed from first order residuals and in turn depend on the pressure flux, so481

that the conservation property is valid for any pressure flux. It is possible to add482

further constraints for better conservation properties and in this section we show how483

to impose a local (semi-discrete) entropy inequality. We also state two results that484

are behind the construction.485

6.2. Entropy balance. Since at the continuous level486

T
ds

dt
=
dε

dt
+ p

dv

dt
,487

where v = 1/ρ is the specific volume, and knowing that488

ρ
dv

dt
= ∇x · u,489

we look at the entropy inequality490

(39)

∫
K

ρT
ds

dt
=

∫
K

ρ

(
dε

dt
+ p

dv

dt

)
dx =

∫
K

(
ρ
dε

dt
+ p∇x · u

)
dx > 0491

and try to derive its discrete counterpart.492

For the sake of simplicity we demonstrate the discrete entropy balance conditions493

on the first-order version of the scheme (35). Taking the sum over the degrees of494

freedom of an element K in equation (35b) and noting that in the first-order scheme495
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δ̃kε/∆t = 0 and ΨK,L
iE

= ΨK,Rus
iE

, we get496

497

(40)
∑
iE∈K

CE,KiE

δkεiE
∆t

+
∑
iE∈K

ΨK,c
iE

498

=
∑
iE∈K

(∫
K

ρψiE dx

)
δkεiE
∆t

+
∑
iE∈K

(
ΨK,Rus
iE

+ riE
)

=

∫
K

ρ
δkε

∆t
dx + ΨK +

∑
iE∈K

riE499

=

∫
K

(
ρ
δkε

∆t
+ p∇x · u

)
dx +

∑
iE∈K

riE = 0.500

501

The first term in (40) is a discrete analogue of (39), therefore we can require502 ∫
K

(
ρ
δkε

∆t
+ p∇x · u

)
dx > 0,503

which yields another constraint on riE :504

(41)
∑
iE∈K

riE 6 0.505

We note that the derivation of the entropy condition for a general high-order scheme506

is slightly more tedious, however, it leads to exactly the same condition (41) and is507

therefore not presented here.508

Let us show that the entropy condition (41) holds for the first order residual509

distribution scheme. From the conservation condition (38) we have510

riE =
1

NK
E

(∫
∂K

p̂nu dσ −
∑
iV∈K

uiV ΦK,Rus
iV

−
∑
iE∈K

ΨK,Rus
iE

)
,511

and therefore512
513

(42)
∑
iE∈K

riE =

∫
∂K

p̂nu dσ −
∑
iV∈K

uiV ΦK,Rus
iV

−
∑
iE∈K

ΨK,Rus
iE

514

=

∫
∂K

p̂nu dσ −
∑
iV∈K

uiV ΦKiV − αK
∑
iV∈K

uiV (uiV − ū)−
∑
iE∈K

ΨK
iE − αK

∑
iE∈K

(εiE − ε̄)515

=

∫
∂K

p̂nu dσ −
∫
K

u · ∇xp dx− αK
∑
iV∈K

(uiV − ū)2 −
∫
K

p∇x · u dx516

= −αK
∑
iV∈K

(uiV − ū)2 6 0,517

518

where we have taken into account that519 ∑
iV∈K

uiV (uiV − ū) =
∑
iV∈K

(uiV − ū)2, and
∑
iE∈K

(εiE − ε̄) = 0.520

Therefore, the entropy condition (41) is satisfied with any αK > 0.521

For high order schemes it doesn’t seem to be possible to recast the entropy con-522

dition (41) explicitly in terms of αK as it is done in (42) for the first order scheme523

since αK is only implicitly used to calculate the limiting coefficients βKiV and βKiE , by524
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(32), (33). Therefore, in practice, in order to ensure the entropy inequality in the525

high order scheme we add an edge stabilization term to the velocity residual:526

(43) ΦK,stabiV
=
∑
e∈∂K

h2θ

∫
e

[∇x · u][∇xϕiV ] · ndσ,527

where θ > 0 is a coefficient that can be estimated and [f ] = f+ − f− is the jump of528

f at the interface, see [12] for more details.529

6.3. Results on conservation and entropy inequality. Using the same tech-530

nique as in [5], we can easily state the following two results:531

Proposition 6.1 (Conservation). Assume that we are given a set of regular532

meshes which characteristic size h tends to zero. Consider the time t > 0 so that the533

meshes mapped by the transformation (1) stay regular. Assume that the scheme (35),534

with the residuals defined as in section 5 generate solutions that are bounded in L∞535

by a constant that only depends on the family of meshes and the initial conditions. If536

a sub-sequence of these solutions converges towards u, ε, then this is a weak solution537

of the Euler equations.538

A weak solution satisfies an entropy inequality under certain conditions which are539

specified by the following result.540

Proposition 6.2 (Entropy). If in addition to the assumptions of Proposition 6.1541

the energy correction satisfies (41), then the limit solution satisfies542

ρT
ds

dt
> 0543

in the sense of distributions.544

7. Second order scheme in one-dimensional case. In this section, we spec-545

ify in detail the algorithm of the second order residual distribution scheme in the546

one-dimensional case. Hereafter, X and x denote the Lagrangian and Eulerian coor-547

dinates, respectively, and the scalar velocity is denoted by u.548

Lets start by giving the one dimensional version of (9). We have549

u(x, t) =
dx

dt
, x = Φ(X, t)

J(x, t)ρ(x, t) = ρ(X, 0) := ρ0(X),

ρ
du

dt
+
∂p

∂x
= 0

ρ
dε

dt
+ p

∂u

∂x
= 0.

(44)550

551

We assume that X ∈ [a, b] = Ω0 and introduce a moving grid with nodes xi,552

i = 0, . . . , N and set K := [xj , xj+1]. The kinematic space V is formed by the553

continuous quadratic Bézier elements in Ω0 while the thermodynamic space E has a554

piecewise-linear basis. As before, we denote by DV (resp. DE) the set of degrees of555

freedom in V (resp. E).556

The algorithm of the one-dimensional second order scheme for integrating (44)557

consists of two steps.558
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Step 1: calculate u(1), ε
(1)
h , x

(1)
h . For any iV ∈ DV and iE ∈ DE559

CViV
u

(1)
iV
− uniV

∆t
+
∑
K3iV

βKiV

∫
K

∂pnh
∂x

dx = 0,

CEiE
ε

(1)
iE
− εniE

∆t
+
∑
K3iE

[
βKiE

∫
K

pnh
∂un

∂x
dx+ r

(0)
iE

]
= 0,

x
(1)
iV
− xniV

∆t
= uniV ,

560

where βKiV (resp. βKiE ) is evaluated using (32) (resp. (33)) with k = 0, and the561

correction term r
(0)
iE

is defined via (38).562

Step 2: calculate un+1, εn+1
h , xn+1

h . For any iV ∈ DV and iE ∈ DE ,563

CViV
un+1
iV
− u(1)

iV

∆t
+
∑
K3iV

βKiV

∫
K

(
ρnh
u(1) − un

∆t
+

1

2

(∂pnh
∂x

+
∂p

(1)
h

∂x

))
dx = 0,

CEiE
εn+1
iE
− ε(1)

iE

∆t
+
∑
K3iE

[
βKiE

∫
K

(
ρnh
ε

(1)
h − εnh

∆t
+

1

2

(
pnh
∂un

∂x
+ p

(1)
h

∂u(1)

∂x

))
dx+ r

(1)
iE

]
= 0,

xn+1
iV
− xniV

∆t
=

1

2

(
uniV + u

(1)
iV

)
,

564

where again βKiV (resp. βKiE ) is defined using (32), (resp. (33)) for k = 1, and the565

correction term r
(1)
iE

is calculated via (38).566

The density ρ(x, t), when needed, is evaluated via the local relation ρ(x, t) =567

J(x, t)ρ0(X), where J is the Jacobian of the coordinate transformation, i.e. determi-568

nant of the matrix defined by (2) and ρ0 is the density in the initial configuration.569

Note that the mesh is legal as long as J stays strictly positive.570

8. Numerical results. To assess the accuracy and robustness of the proposed571

residual distribution scheme we solve a series of shock tube problems. For numerical572

experiments of this section we shall use the following EOS:573

• ideal EOS: p = (γ − 1)ρε, where γ > 1,574

• stiffened EOS: p = (γ − 1)ρε− γps,575

• Jones-Wilkins-Lee (JWL) EOS: p = (γ − 1)ρε+ fj(ρ), where576

fj(ρ) = A1

(
1− (γ − 1)ρ

R1ρ̄

)
exp

(
− R1ρ̄

ρ

)
+A2

(
1− (γ − 1)ρ

R1ρ̄

)
exp

(
− R1ρ̄

ρ

)
.577

If not explicitly specified, the gas is supposed to be modeled by the ideal EOS with578

γ = 1.4.579

We use the technique proposed in [20] to control the time step and in all numerical580

tests the CFL number is set to 0.5.581

8.1. Numerical convergence study. We test the accuracy of our scheme on a582

smooth isentropic flow problem similar to the test case introduced in [15]. The initial583

data for our test problem is the following:584

ρ0(x) = 1 + 0.9999995 sin(2πx), u0(x) = 0, p0(x) = ργ(x, 0), x ∈ [−1, 1].585
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with polytropic index γ = 3 and periodic boundary conditions.586

The exact density and velocity in this case can be obtained by the method of587

characteristics and is explicitly given by588

ρ(x, t) =
1

2

(
ρ0(x1) + ρ0(x2)

)
, u(x, t) =

√
3
(
ρ(x, t)− ρ0(x1)

)
,589

where for each coordinate x and time t the values x1 and x2 are solutions of the590

nonlinear equations591

x+
√

3ρ0(x1)t− x1 = 0,592

x−
√

3ρ0(x2)t− x2 = 0.593594

Fig. 2 shows the errors of the flow parameters in the L1-norm with respect to the595

number of DOFs at time T = 0.08 for three different residual distribution schemes596

using Bezier basis: first-order RD scheme with modified time stepping and mass597

lumping (denoted by ”B1/B0”), second-order RD scheme with modified time stepping598

and mass lumping (”B2/B1”) and the second-order RD scheme with classical second-599

order Runge-Kutta time stepping (”B2/B1 RK2”). It can be clearly seen that the first-600

order ”B1/B0” and second-order ”B2/B1” schemes reach the expected convergence601

rates for the velocity and a little bit more than first order for the thermodynamical602

variables. The order of the formally second-order ”B2/B1 RK2” scheme drops to first,603

which is the result of the loss of accuracy due to mass lumping applied in a standard604

time stepping algorithm.

101 102 103

N

10−4

10−3

10−2

10−1

L
1
-e

rr
or

Convergence of rho

B1/B0
order 1
B2/B1
order 2
B2/B1, RK2

101 102 103

N

10−4

10−3

10−2

10−1

100

L
1
-e

rr
or

Convergence of p

B1/B0
order 1
B2/B1
order 2
B2/B1, RK2

(a) density (b) pressure

101 102 103

N

10−4

10−3

10−2

10−1

100

L
1
-e

rr
or

Convergence of v

B1/B0
order 1
B2/B1
order 2
B2/B1, RK2

101 102 103

N

10−4

10−3

10−2

10−1

100

L
1
-e

rr
or

Convergence of eps

B1/B0
order 1
B2/B1
order 2
B2/B1, RK2

(c) velocity (d) internal energy

Fig. 2. Convergence history for the smooth isentropic test problem
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8.2. The Sod shock tube. The Sod’s shock tube is a classical test problem for606

the assessment of the numerical methods for solving the Euler equations. Its solution607

consists of a left rarefaction, a contact and a right shock wave. The initial data for608

this problem is given as follows:609

(ρ0, u0, p0) =

{
(1.0, 0.0, 1.0), x < 0,

(0.125, 0.0, 0.1), x > 0.
610

The results for first-order (”B1/B0”) and second-order (”B2/B1”) schemes are611

shown in Fig. 3. Obviously, the second-order scheme provides better resolution of612

the smooth flow regions such as the left rarefaction wave, while both schemes give an613

accurate approximation of the contact discontinuity and the right shock wave. On Fig.
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Fig. 3. Solution of the Sod shock tube problem at T = 0.16

614

3-(d), the reader can see that the internal energy exhibits an overshoot at the contact,615

this one is connected to the small undershoot of the density on Fig. 3-(a), while the616

velocity and the pressure behave as expected over the contact. This phenomena is617

typical of Lagrangian schemes, one can consult for example [26] for similar results618

with first and higher order schemes, or [24] for a series of benchmark tests such as619

Sod’s and the blast wave case we consider in section 8.5 where a similar behaviour620

exist. The reason is that there is no diffusion mechanism across interface, since mesh621

points move exactly at the speed of the contact. In Eulerian methods, or ALE ones,622

where the mesh point do not move or move at velocities that are not the fluid ones,623

this drawback do not exist. But some diffusion exist accros the contact lines: all624

depends on the physics that one wish to capture accurately.625

8.3. 123-problem. The 123-problem [30] is a classical benchmark case to test626

the behavior of the numerical method for low-density and low-pressure flows. The627
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initial data is the following:628

(ρ0, u0, p0) =

{
(1.0,−2.0, 0.4), −4 6 x < 0,

(1.0, 2.0, 0.4), 0 < x 6 4.
629

The solution of this problem consists of two rarefaction waves traveling in opposite630

directions, so that a low-density and low-pressure region is generated in between.631

The numerical solution illustrated in Fig. 4 shows that the low intermediate den-632

sity and pressure are captured correctly by both first-order and second-order RD633

scheme, the latter being more accurate for the internal energy. The insufficient res-634

olution of the flow near the vacuum is a well-known phenomenon for Lagrangian635

schemes, and is related to the strong heating phenomenon, see e.g. [15, 32, 33].636
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Fig. 4. Solution of the 123-problem at T = 0.15

8.4. Strong shock. This test case is actually the left half of the blast wave637

problem of Woodward and Colella [36]. It’s a severe test problem containing a left638

rarefaction wave, a contact discontinuity and a strong right shock wave and it is often639

used to assess the robustness of the numerical methods for fluid dynamics [30]. The640

initial data for this test problem is641

(ρ0, u0, p0) =

{
(1.0, 0.0, 1000.0), x < 0,

(1.0, 0.0, 0.01), x > 0.
642

The simulation results shown in Fig. 5 indicate that both first and second-order643

schemes are robust and can accurately resolve strong shocks.644
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Fig. 5. Solution of the strong shock problem at T = 0.012

8.5. Interaction of blast waves. The interaction of blast waves is a standard645

low energy benchmark problem involving strong shocks reflecting from the walls of646

the tube with further mutual interaction. The initial data is the following:647

ρ0 = 1, u0 = 1, p0 =


103, 0 6 x < 0.1,

10−2, 0.1 < x < 0.9,

102, 0.9 < x 6 1.

648

Reflective boundary conditions are applied at x = 0 and x = 1.649

The results are displayed on Fig. 6. We can make the same comments as above,650

namely that the contacts are very well represented with a slight overshoot of the651

thermodynamical variables across the contact.652

8.6. Gas-liquid shock tube. This severe water-air shock tube problem is used653

to assess the performance of the numerical schemes for multi-material flows with a654

strong interfacial contact discontinuity. In this problem, the fluid to the left-hand side655

of the membrane initially located at x = 0.3 is a perfect gas with γ = 1.4 in the ideal656

EOS, while the fluid to the right of the membrane is water modeled by the stiffened657

EOS with γ = 4.4 and ps = 6 · 108. The initial parameters of the two fluids are the658

following:659

(ρ0, u0, p0) =

{
(5.0, 0.0, 105), 0 6 x < 0.3,

(103, 0.0, 109), 0.3 < x 6 1.
660

The computational results for the first and second-order RD schemes shown in661

Fig. 7 demonstrate a very good agreement with the exact solution and, what is im-662
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Fig. 6. Solution of the Woodward-Colella blast wave interaction problem at T = 0.038

portant, a very accurate resolution of the interfacial contact discontinuity by both663

schemes.664

8.7. Underwater TNT explosion. This 1D spherically symmetric underwater665

detonation problem [19] is often used as a benchmark to test the robustness of the666

methods for multi-phase problems with general equation of state. The initial condition667

consists of the detonation products phase on the left of the initial discontinuity and668

the water phase to the right. We consider the stiffened version of the classical TNT669

explosion problem proposed in [15], which is more likely to produce negative density670

and/or internal energy.671

To the left of the interface initially located at x = 0.16, the gaseous product of the672

detonated explosive is modeled by the JWL EOS with A1 = 3.712·105, A2 = 3.23·103,673

R1 = 4.15, R2 = 0.95, ρ̄ = 1.63 · 10−3 and γ = 1.3. On the right of the interface,674

the water is described through the stiffened EOS with γ = 7.15 and ps = 3.309 · 102.675

Initial data for this test problem is:676

(ρ0, u0, p0) =

{
(1.63 · 10−3, 0.0, 8.381 · 103), 0 6 x < 0.16,

(1.025 · 10−3, 0.0, 1.0), 0.16 < x 6 3.
677

The results are shown in Fig.8. Clearly, both first and second-order RD schemes678

capture the interfaces very accurately, while second-order scheme is more accurate in679

the regions of smooth flow.680

8.8. Comparison with the Eulerian version of the scheme. The Eulerian681

version of the scheme uses a collocated mesh and the one dimensional variant of the682

scheme described in [27] with mass lumping. We compare on a soft case (Sod, Fig. 9)683
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Fig. 7. Solution of the gas-liquid shock tube problem at T = 0.00024

and a more difficult one (Collela and Woodward, Fig. 10). The results are in good684

agreement: the shock travel at the same speed. We can notice that the density is more685

accurate across the contact discontinuity for the Lagrangian simulation as expected.686

There are two shocks, one for x ≈ 0.7 and one for x ≈ 0.9. The first one seems sharper687

for the Lagrangian scheme, the second one by the Eulerian one. In the two cases, it is688

not a surprise since the mesh density becomes higher at the shock for the Lagrangian689

simulations. The contact are also crisper for the Lagrangian simulation, We also see690

that the fan seems better represented for these versions of the schemes, without clear691

reason.692

9. Conclusions. In this paper we have proposed a Residual Distribution (RD)693

scheme for the Lagrangian hydrodynamics based on the staggered finite element for-694

mulation of [16]. We have developed an efficient mass matrix diagonalization algo-695

rithm which relies on the modification of the time-stepping scheme and gives rise696

to an explicit high order accurate scheme. Moreover, the scheme is parameter-free697

and doesn’t require any artificial viscosity. The one-dimensional numerical tests con-698

sidered in this paper show the robustness of the method for problems involving very699

strong shock waves. A comparison between the Lagrangian and Eulerian formulations700

confirms that contact discontinuities are very well described.701

One of the contributions of this paper is to show how one can discretise a non702

conservative version of the Euler equation and guarantee that the correct weak solu-703

tions are recovered. This problem has already be considered by other authors such as704

[23, 22], but we believe our strategy is simpler and can work for any order of accuracy.705

It has been further illustrated on multifluid and multiphase problems, see [2].706

Further research includes the extension of the present method to multiple dimen-707
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Fig. 8. Solution of the underwater TNT explosion problem at T = 0.00025

sions and higher order in space and time.708
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(a) Density (b) Velocity

(c) Pressure

Fig. 9. Comparison of the present scheme (B2/B1) and its second order Eulerian version for
the Sod case. The meshes have 200 cells, the CFL=0.25 for the Lagrangian scheme and 0.5 for the
Eulerian one.
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(a) Density (b) Velocity

(c) Pressure

Fig. 10. Comparison of the present scheme (B2/B1) and its second order Eulerian version for
the Colella case. The meshes have 1000 cells, the CFL=0.25 for the Lagrangian scheme and 0.5 for
the Eulerian one.
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