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Abstract In order to approximate transandental functions, several algorithms
were proposed. Historically, polynomial interpolation, infinite series, · · · and
other +,×,− and / based algorithms were studied for this purpose.

The CORDIC (COordinate Rotation DIgital Computer) introduced by
Jack E. Volder in 1959, and generalized by J. S. Walther a few years later, is a
hardware based algorithm for the approximation of trigonometric, hyperbolic
and logarithmic functions.

As a consequence, CORDIC is used for applications in diverse areas such
as signal and image processing. For these reasons, several modified versions
were proposed.

In this article, we present an overview of the CORDIC algorithm for the
computation of the circular functions, essentially the scaling free version, and
we will give a substential improvement to the commonly used one.

1 Introduction

In 1959, Volder [17], introduced the CORDIC algorithm in order to compute
approximations of trigonometric functions. This method is still used because
of its adequacy to hardware design. It is a recursive method using only shift-
and-add operations.

A decade later, J. S. Walther in [18], generalized this method to other
transendantal functions used in engineering fields.
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The development of the CORDIC algorithm and architectures [8] has taken
place for achieving the highest throughput rate and reduction of hardware-
complexity as well as the computational latency of implementation. Some of
the typical approaches for reducing complexity implementation are targeted on
minimization of using the scaling-operation and complexity of barrel-shifters
and adders in the CORDIC engine. However, one of the problems associated
with the classical CORDIC formulation is that the scale factor depends of
the angle, and is not constant. The complexity of the computation of the scale
factor is in principle comparable to that of the basic CORDIC process itself. In
a recent work, [6], a new algorithm, CORDIC II, is proposed that substitutes
the CORDIC micro-rotation by a new angle set.

Aiming to eliminate scale multiplication in conventional CORDIC, scale
free CORDIC was used to eliminate the scale factor, see the piooneering papres
[3,1] and also [12,10,9]. The scale free CORDIC algorithm for cosine and sine
functions is proved to be faster and efficient in terms of area and accuracy
compared to conventional CORDIC.

We give in this paper a method in order to minimize the number of itera-
tions ine the CORDIC method. This is given by computing the closest elemen-
tary angle to the residual one at each iteration. Our second contribution is the
correction of the Taylor series used for the composed functions. We will prove
that with our polynomial approximation, we will get faster computation for
the same acuity. The CORDIC algorithm operates either in, rotation mode or
vectoring mode, following linear, circular or hyperbolic coordinate trajectories.
In this paper, we focus on rotation mode CORDIC using circular trajectories.

2 The CORDIC algorithm.

The idea behind conventional CORDIC algorithm is the rotation of a vec-
tor [xin yin]

T in cartesian coordinate which can be expressed in (1), where
[xout yout]

T is the output vector produced after rotation and θ is the angle of
rotation.

(

xout

yout

)

=

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(

xin

yin

)

(1)

This can also be written as
(

xout

yout

)

= cos(θ)

(

1 − tan(θ)
tan(θ) 1

)(

xin

yin

)

(2)

We split the rotation angle in a sum of angles, and carries out the rotation by a
series of the so called micro-rotation by these angles. The idea is to decompose
any angle θ into a sum of some ”elemntary” angles

θ = α1 + · · ·+ αn (3)

where αk = ± arctan(2−l).
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If we use the fact that, if Rθ denotes the matrix of the 2D rotation of angle
θ:

Rθ × Rθ′ = Rθ+θ′

We can translate the equation (3) into the matrix product :

Rθ = Rα1
× · · · ×Rαn

2.1 The conventional CORDIC

The conventional CORDIC method performs a sequence of rotations by ele-
mentary angles. Any rotation θ on the plan can be decomposed into a compo-
sition (matrix product) of n elementary rotations.

When taking θk = arctan(2−k), the equation (2) becomes:

Rθk =
1√

1 + 22k

(

1 −2−k

2−k 1

)

Using also the identity

R−θ = cos(θ)

(

1 tan(θ)
− tan(θ) 1

)

we obtain, for εk = ±1,

Rεkθk =
1√

1 + 22k

(

1 −εk2
−k

εk2
−k 1

)

The idea is that the angles used are constant, so we have a constant scale
K =

∏n

k=1

1√
1+22k

, which approximately equals, according to the litterature

[13], 0.60725. For this aim, we construct a sequence of vectors [xk yk zk]
T by

the recurrence schema:




x0

y0
z0



 =





xin

yin
θ



 (4)

and






xk+1 = xk − εk2
−kyk

yk+1 = εk2
−kxk + yk

zk+1 = zk − εkθk

(5)

After the fixed number of iterations, we mutiply the resulting vector by the
constant K, this means [xout yout] = K[xn yn].

The essence of the CORDIC algorithm is that he is multiplication free (only
shift-and-add operations). The scale multiplication, also called compensation,
to get an output vector isometric to the input one, causes a problem.

The introduction of the scale free CORDIC is then legitimated.
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2.2 The correct scale free CORDIC for sine and cosine

The scale free CORDIC for circular functions is based on the Taylor series

sin(x) =

∞
∑

n=0

(−1)n · x2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
+ · · ·

cos(x) =

∞
∑

n=0

(−1)n · x2n

(2n)!
= 1− x2

2
+

x4

24
+ · · ·

arctan(x) =

∞
∑

n=0

(−1)n · x2n+1

2n+ 1
= x− x3

3
+

x5

5
+ · · ·

The approximation Taylor polynomial of the composed functions to order 5:

sin(arctan(x)) ≈
(

x− x3

3
+

x5

5

)

− 1

6

(

x− x3

3
+

x5

5

)3

+

+
1

120

(

x− x3

3
+

x5

5

)5

cos(arctan(x)) ≈ 1− 1

2

(

x− x3

3
+

x5

5

)2

+
1

24

(

x− x3

3
+

x5

5

)4

When we truncate the polynomials to the order 5, we obtain the right equa-
tions:

cos(arctan(x)) ≈ 1− 1

2
x2 +

3

8
x4 (6)

sin(arctan(x)) ≈ x− 1

2
x3 +

3

8
x5 (7)

We can observe that sin(arctan(x)) = x cos(arctan(x)), this is simply due to
the fact that

sin(arctan(x))

cos(arctan(x))
= tan(arctan(x)) = x (8)

We the obtain, for the elementary angles θk = arctan(2−k), and remarking
that 3

8
= 1

4
+ 1

8

sin(arctan(2−k)) ≈ 2−k − 2−3k−1 + 2−5k−2 + 2−5k−3

cos(arctan(2−k)) ≈ 1− 2−2k−1 + 2−4k−2 + 2−4k−3

The rotation matrix Mθk becomes:
(

1− 2−2k−1 + 3 · 2−4k−3 −2−k + 2−3k−1 − 3 · 2−5k−3

2−k − 2−3k−1 + 3 · 2−5k−3 1− 2−2k−1 + 3 · 2−4k−3

)

(9)

As we know, all the works we have seen uses the Taylor series for sine and
cosine functions and replace θk = arctan(2−k) by 2−k, see [3,1] and also [12,10,
9]. The error is that when using a Taylor polynomial of a composite function
f ◦ g, we have to use the same degree and truncate the resulting polynomial
at the demanded degree, you can see [14].

In order to give an empirical proof, we will compare the orders 3, 4 and 5
of ou method to the recent works [12,1].



An efficient mathematically correct scale free CORDIC 5

3 Benchmark of scale free CORDIC for circular functions

In order to minimize the number of iterations of the CORDIC algorithm, we
choose the microrotations to be the closest arctan(2−k) to the residual angle.
This can be done by choosing the closest power of 2 to tan(θ), where θ represent
the risidual angle.

Due of the continuity of the function arctan, if tan(θ) is close to 2−k, then
so is θ to θk. This leads us to choose k such that, the closest θk = arctan(2−k)
to θ the following way:

k = Round

(

log2

(

1

|θ|

))

(10)

we replace arctan(θ) by θ without any loss of acuity because θ is very close to
arctan(θ) for θ in [0, π

4
].

As an example:
π

16
= θ1 − θ4 − θ7 − θ10 + θ12(±10−5)

For a hardware design, the translation of our method for the binary represen-
tation |θ| = 0.ε1 · · · εi · · · where εi ∈ {0, 1}
– if for i ≥ 1 we have ∀j < i; εj = 0 and εi = 1 and εi+1 = 0 then k = i
– if for i ≥ 1 we have ∀j < i; εj = 0 and εi = εi+1 = 1 then k = i− 1

In this section, we will compare our approximation to the one given in [1] and
[12] for order 3 Taylor approximations. The range of angles used is [0, π

4
]. This

range is enough, using the trigonometric identities, to can calculate any sine
or cosine of any angle.

In [1], cos(arctan(2−k)) is approximated by 1−2−2k−1, and sin(arctan(2−k))
is approximated by 2−k − 2−3k−3. The authors in [12], use the approximation
cos(arctan(2−k)) ≈ 1 − 2−2k−1, and sin(arctan(2−k)) ≈ 2−k − 2−3k−2. The
proposed method use the approximation cos(arctan(2−k)) ≈ 1 − 2−2k−1, and
sin(arctan(2−k)) ≈ 2−k − 2−3k−1, which is the mathematically correct devel-
oppement.

The quadratic errors for cosine and sine function for the three method are
summarized in the tables (1 and 2).

Method in [1] Method in [12] Our method
3 iterations 3.0689e-004 2.9954e-004 2.8737e-004
4 iterations 2.3721e-004 2.2688e-004 2.0907e-004
5 iterations 2.2780e-004 2.1798e-004 2.0142e-004

Table 1 Comparison of methods for cosine function

In the table (3) below, we compare the quadratic errors of our method in
different order Taylor approximation.

In figures (2 and 1), a MatLab simulation of our method is given. In blue,
the graph of our method, in red, the graph of the matlab function and in green
the difference between them.
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Fig. 1 sin approximation (in green the difference)
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Fig. 2 cos approximation (in green the difference)

Method in [1] Method in [12] Our method
3 iterations 0.001 8.0567e-004 4.9741e-004
4 iterations 8.2720e-004 5.4129e-004 5.3537e-005
5 iterations 8.0516e-004 5.1872e-004 5.5402e-005

Table 2 Comparison of methods for sine function

4 Hardware implementation

Common Hardware implementations of CORDIC algorithms are either iter-
ative or pipelined [16,4]. The main computation CORDIC unit is iterated
in both cases. It is unrolled in the first class and rolled in the former using
pipelined registers to store intermediate computations [5,15].
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Order 5 Order 4 Order 3
3 iterations sin 5.0811e-004 4.9698e-004 4.9741e-004

cos 1.6967e-004 1.6960e-004 2.8737e-004
4 iterations sin 5.3826e-005 5.6214e-005 5.3537e-005

cos 1.4850e-005 1.3429e-005 2.0907e-004
5 iterations sin 8.4192e-006 5.0036e-005 5.5402e-005

cos 1.0283e-005 1.1531e-005 2.0142e-004

Table 3 Comparison of different orders of Taylor polynomials

Fig. 3 Design of the CORDIC architecture.

A new design of the main computation unit is proposed in this paper and
compared to the conventional CORDIC one. This is mainly a study to check
if the theoretical results are feasible and simple to embed. Optimizations,
complete CORDIC computation schemes, advanced CORDIC architectures
and comparisons, which are based on the underlined computing unit, are future
works.

The proposed scale-free CORDIC algorithm is based on Taylor polynomi-
als. Three orders are evaluated for benchmarking the theoretical study (see
Table 3). As the complexity of hardware architecture grows in function of the
development order, only the order 3 is implemented in the hardware side. How-
ever, the impact of Taylor’s order on hardware performances is also ongoing.
It is not the focus of this paper.

Hence, the implemented hardware architecture is restricted to the main
computation unit and the order 3 of Taylor series. It is composed of 4 blocks:
dynamic index predictor, shifting processor, storing angles ROM and FSM
controller. Figure 3 gives general description of the architecture. A detailed
description is presented in the following sub-sections. The section ends with a
summary of the main hardware results.



8 Yassine HACHAÏCHI, Younes LAHBIB

4.1 FSM controller

The controller is a finite state machine with three states. In the initial state,
the signal load is set to initiate the initial values of the CORDIC core, namely
X0 = 1, Y0 = 0 and the angle θ. The second state is processed 2N cycles
according to an N -bits counter which fixes the number of CORDIC iterations.

For a given iteration, new intermediate values Xn and Yn are obtained by
shifting previous Xn−1 and Yn−1 according to the closest micro-rotation as
given in equation 10. The third and final state sets the done signal. Cosine
and sine of the angle θ are computed and stored in the output registers.

4.2 Dynamic Index predictor

The main theoretical result proved in section 2. (see theoretical result) is imple-
mented in the Index Predictor. The computation of the next index is the main
improvement of the proposed hardware architecture. It estimates the optimal
index with which we address the ROM and read the closest CORDIC micro-
rotation for a given iteration. The determined angle is compared with the
ongoing error Z in order to compute the new direction of the micro-rotation.
Xn and Yn are then shifted index positions to right. The next listing describes
the behavior of this block. The hardware implementation is based on a 32
bits comparator. When the first sequence of ’11’ bits are detected the block
returns the corresponding K-index. Otherwise the first sequence of ’10’ is
cheeked, but the (K − 1)-index is returned in this case. In this way, the most
significant power of 2 micro-rotation is obtained.

IndexEstim: process(Zerror)

begin

for index in 31 downto 1 loop

if(Zerror (index)=’1’ and Zerror (index-1) =’1’) then

Inxt <= std_logic_vector(to_unsigned(31-index,32));

exit;

elsif(Zerror(index) =’1’ and Zerror(index-1) =’0’) then

Inxt<= std_logic_vector(to_unsigned(31-(index-1),4));

exit;

else

Inxt <= (others => ’0’);

end if;

end loop;

end process IndexEstim;

4.3 Storing angles ROM

Radix values of arctangent of 2−k are stored in a ROM as constants, for k
within the range 0 to 31. The ROM values are not addressed inclemently as
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done in the conventional implementation of CORDIC. The closest 4 micro-
rotations are read instead of 32 in the case of conventional CORDIC; The 4
indexes are estimated dynamically by the Index Predictor Block.

Listing below shows the addressing behavior the stored arctangent values.

IndexAccess: process(INDEX)

begin

case Index is

when "00000" => MicroRotI <= X"3243f6a8";

_____

when "11000" => MicroRotI <= X"0000003f";

_____

when "11111" => MicroRotI <= X"00000000";

end Case;

end process IndexAccess;

4.4 Shifting processor

X and Y intermediate signals are computed as presented in listing below.
This corresponds to processing equations in section 2. They are 32-bit coded
signals in 2-complement format. Control signals sgn and Index are dynamically
estimated and set by the Index predictor block. Note that listing below gives
the behavior computing of the signal Y , it is similar in the case of X .

The VHDL code behavior of the corresponding processing is similar to the
listing below.

sinShift:process(Xsgn)

begin

Yshift_tmp((31-I) downto 0) <= Xsgn(31 downto I);

if Xsgn(31) = ’0’ then

Yshift_tmp(31 downto (32-I)) <= (others => ’0’);

else

Yshift_tmp(31 downto (32-I)) <= (others => ’1’);

end if;

end process sinShift;

4.5 Synthesis of the iterative CORDIC design

The proposed iterative design based on the described computation unit is
implemented on the Nexys3 spartan6 FPGA. Compared to the conventional
architecture we reach the same cosine and sine results for only 4 iterations
versus 32 iterations in the conventional case. The precision error is about
10−3 in both cases. Hardware performances such as power, frequency and area
are summarized in table 4. Implementation results show a degradation of the
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Proposed Iterative CORDIC Conventional Iterative CORDIC
Area Power Frequency

1020 Slices 100 mW 85.05 Mhz
Area Power Frequency

541 Slices 72 mW 208.05 Mhz

Table 4 Comparison of iterative architectures

hardware performances of the proposed architecture. By an in-depth Analysis
of sub-blocks, we find that the Index predictor block consumes alone 20 mw
and uses 240 slices. The shifting processor block on the other side consumes
also 20 mw and uses 540 slices.

The index predictor is an extra block in our case which explains the extra
values against the conventional architecture. However, we think that the main
reason is our coding style of the VHDL design which was behavioral. The
behavioral synthesis infers the use of LUTs rather than basic logics. Hence,
more optimized implementation should lead to less logic slices.

4.6 Synthesis of the pipelined CORDIC design

A pipelined CORDIC architecture consists of rolling the main computation
unit by storing intermediate computation into registers. In the case of the
conventional architecture the main unit is rolled 32 times when processed data
is 32-bit coded. The main improvement of our proposed architecture is rolling
the same unit 3 or 4 times whatever the size of the processed data. More rolled
units can be implemented if more precision is needed. With 3 units a precision
of 10−2 is reached and 10−3 when 4 units are used. Figure 4 shows the proposed
pipelined architecture. The index predictor which is resources consuming is
instantiated only one time. The FSM controller enables the communication
with only one pipeline stage. As shown in table 5 significant results compared
to the iterative architecture are obtained. We save almost 50% of area and
power with a speedup of 10 Mhz, against only 16-bit conventional architecture.

Proposed Pipelined CORDIC Conventional Pipelined CORDIC (16-BIT)
Area Power Frequency

4180 Slices 180 mW 55 Mhz
Area Power Frequency

8200 Slices 300 mW 45 Mhz

Table 5 Comparison of pipelined architectures

5 Conclusion

CORDIC algorithm has several applications in several domains, for an overview
the reader can read [11]. The popularity of this method is due to the simplicity
of its hardware implementation, see [8] for example.
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Fig. 4 Design of the pipelined CORDIC architecture.

In this paper two improvements were made. First, we have minimized the
number of iterations for some fixed error by calculating the closest elementary
angle to the residual one. Second, we gave the correct polynomial approxima-
tion for the scale free CORDIC. The comparison between our method and two
other famous methods is given to confirm empirically our theoretical proof.
In our simulation, we remark that the order of approximation of Taylor series
used meets the accuracy requirements.

In section 3, we showed that these methods have a simple hardware im-
plementation, in order to meet the objectives of the CORDIC’s introduction.
The iterative and pipelined architectures were implemented, and significant
improvements of hardware performance were denoted in the pipelined case.
The future works will focus on the improvement of the hardware architecture.
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