
HAL Id: hal-01327102
https://hal.science/hal-01327102

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Integrated Conceptual Design Evaluation of
Mechatronic Systems: The SysDICE Approach

Mohammad Chami, Jean-Michel Bruel

To cite this version:
Mohammad Chami, Jean-Michel Bruel. Towards an Integrated Conceptual Design Evaluation of
Mechatronic Systems: The SysDICE Approach. International Conference on Computational Science
(ICCS 2015), Jun 2015, Reykjavik, Iceland. pp. 650-659. �hal-01327102�

https://hal.science/hal-01327102
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15428

The contribution was presented at :
http://www.iccs-meeting.org/iccs2015/

Official URL: http://dx.doi.org/10.1016/j.procs.2015.05.180

To cite this version : Chami, Mohammad and Bruel, Jean-Michel Towards an
Integrated Conceptual Design Evaluation of Mechatronic Systems: The SysDICE
Approach. (2015) In: International Conference on Computational Science (ICCS
2015), 1 June 2015 - 3 June 2015 (Reykjavik, Iceland).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

Towards an Integrated Conceptual Design Evaluation of
Mechatronic Systems: The SysDICE Approach

Abstract

Mohammad Chami1'2 and Jean-Michel Bruel2

1 Bombardier Transportation GmbH
mohammad.chami@de.transport.bombardier.com

2 IRIT /University of Toulouse
bruel@irit.fr

Mechatronic systems play a significant role in different types of industry, especially in trans­
portation, aerospace, automotive and manufacturing. Although their multidisciplinary nature
provides enormous functionalities, it is still one of the substantial challenges which frequently
impede their design process. Notably, the conceptual design phase aggregates various engi­
neering disciplines, project and business management fields, where different methods, modeling
languages and software tools are applied. Therefore, an integrated environment is required to
intimately engage the different domains together. This paper outlines a model-based research
approach for an integrated conceptual design evaluation of mechatronic systems using SysML.
Particularly, the state of the art is highlighted, most important challenges, remaining problems
in this field and a novel solution is proposed, named SysDICE, combining madel based system
engineering and artificial intelligence techniques to support for achieving efficient design.

Keywords: SysML, System Modeling, Mechatronics Design, Design Evaluation, SysDICE

1 Introduction

Mechatronics engineering, with its "synergetic integration of mechanical engineering, electrical
engineering and computer science" [24], has been considered as one of the main innovation leader
in industry. N amely, it provides new prospects for higher level of innovation, higher performance
products and a wide range of functionalities. Traditionally, the design and development process
of mechatronic systems iterates over three phases: synthesis, analysis and evaluation [23]. In
each of these phases, a wide range of languages, methods, and tools are used. Particularly,
the conceptual design phase is the part of the design process where a "solution principle" is
specified and here with "evaluation" it is meant to determine the value, usefulness or strength
of a solution with respect to a given objective [16]. System engineers play a crucial role in
performing such an evaluation as they hold the knowledge base of all involved domains (from
requirements, dawn into functions and high-level design solutions) and their dependencies.

SubsystemsComponentsPortsInterfacesPropertiesContriants

RequirementsLinksAttributes
FunctionsContextConcepts

TestsValidationSaftey
ions TTe

s
tey

M1

M2
M3T3
T2

M4

M5

M6

M7

T5

T6
T7

T4

T1

....

: GapsMi: Method (i)Ti: Tool (i)

Legend
: Mi:

Lege

2 Background and State of the Art

2.1 Methodologies, Processes, Frameworks and Tools

From mechatronics engineering perspective, the methodology is defined as the way how products
are designed, developed and produced. Tomiyama et al. [23] present an excellent description
of the design theory and methodology (DTM) and an evaluation of its application in practice.
Obviously, several methodologies have been developed, with a lot in common, as for Pahl and
Beitz [16] and the VDI2206 [24]. Nevertheless, one have to accept the fact that from literature
side, it is agreed that there is no "one accepted methodology" [23] and from other practical side,
this problem seams to be hardly solved as companies are individually developing their own
methodologies. Moreover, it is definitely crucial to take into account the methodologies' usage
in practice, focus on their evaluation and consider the goals behind applying them.

From system engineering perspective, a process defines what activities are performed and
does not generally give details on how they are clone [6]. Several process approaches have evolved
within the system engineering (as the Traditional, Top-Dawn Systems Engineering (TTDSE)
process [19]), to other standards as IEEE1220 and IS015288. Moreover, software engineers
have also evolved several approaches, from waterfall process, to spiral development, and more
recently to the abject oriented design. Although, these approaches have solved sorne of the
organizational and technical problems, they are also rarely applied in the big industries.

In addition to mechatronic methodologies and system engineering processes, several frame­
works have matured to apply them. For instance, the Department of Defense Architecture
Framework (DoDAF) [5], supports the defense industry by defining the architecture's opera­
tion, system and technical views, but it is still considered complicated and extensive for specifie
systems. Whereas, the Madel Driven Architecture® (MDA ®) [14] aims at deploying, main­
taining and integrating with lower costs by using models in software development. Hereby,
engineering tools are a key factor in forming such productive frameworks. Generally speaking,
tools used during the design process can be categorized into three types:
(1) Domain-Specifie Tools (DST), for instance mechanical engineers employ different CAD
tools for their engineering drawings and analysis, which is the similar case for electrical and
control engineers for simulation, whereas software engineers still focus during the design process
more on code rather then modeling.
(2) Domain-Coupling Tools (DCT), such as MATLAB/Simulink, Simscape, Modelica, are
used intensively in industry. These tools have been popular by stepping one way towards the
system level and involving more then one discipline during the development and simulation.
(3) One-Tool Concept (OTC), which consider large heterogeneous systems, exist on the mar­
ket, e.g., Mechatronics Concept Designer and Dassault Systèmes Enovia®. Such tools support
integration but require a multidisciplinary knowledge about the system and they still can be
hardly competitive with the DSTs.

Although the DSTs are the most popular, their integration remains extremely challenging
and they are often used beyond their scope of applicability. Additionally, problems still lie
ahead while dealing with complexity, variant management, and tools' updates. Therefore, it
is well agreed that DSTs should not be used on a high-level and for multidisciplinary systems.
Instead the system modeling tools should be applied. Thus, we see a great benefit by integrating
bath DSTs and DCTs with the system modeling tools rather then providing a new OTC.

Tools integration problems, seams to be solved with the new promising open community,
the Open Service for Lifecycle Collaboration (OSLC) [15], which is developed for enabling the
integration of software development and more broadly Application Lifecycle Management and
Product lifecycle Management products. However, it is still in its early stages of development.

2.2 Modeling and The Common Language Challenge

One of the challenges of mechatronics design is a successful integrated modeling method, where
a common language to madel the different disciplines is required [9]. Although, various domain­
independent modeling methods have been used, for instance, the bond graph, Petri nets, N­
squared charts and Finite-state machine. A formai representation of the common information
combining these methods is still missing. Therefore, this common representation is still often
specified in a document-based manner and hardly mapped to the actual models' information.

The common language challenge have been the tapie of several research approaches since
decades. Many researches have followed a component based approach to represent the elements
of a mechatronics system for their own needs as in [4, 22]. Zhang et al. [26] developed their own
multi-view modeling paradigm to support the collaboration work of designers. Chen et al. [4]
propose a constraint modeling-based approach by modeling the components of mechatronic sys­
tems as abjects with attributes, and by identifying and modeling the constraints between these
attributes. Unfortunately, these approaches highlight one piece of the puzzle, the "modeling
language" piece. While applying them to different type of systems and with different modeling
goals, other puzzle pieces, i.e, the "method" and the "tool" limits their application.

Others have followed a UML-based modeling for the mechatronic design, such as the Mecha­
tronic UML [20] which allows a model-driven development while supporting verification and
code generation. Hereby, SysML came after UML to solve sorne limitations for system engi­
neering applications. In the following, we highlight the SysML related work and its execution.

2.2.1 SysML Related Work

Although SysML is only few years old, a wide range of researchers and industries have applied
it for their different needs. SysML-based information models have been proven to be useful for
formai information and knowledge capturing. As previously mentioned, a generalized common
language for modeling the multidisciplinary information in mechatronics design is still missing.
Generally, SysML with its diagrams deals with this problem and has been already successfully
adopted during the last few years for modeling mechatronic systems as in [3, 17, 21, 22]. Namely,
in [3, 17] the system-level modeling with SysML was adopted to support mechatronic design.
In [21] SysML profiles were particularly applied to support the multi-view modeling approach
and in [22] SysML was used to specify the central view-model of the mechatronics system.

From a requirements engineering point of view, various methods dealing with requirements
analysis and traceability have been proposed. However, the linking between requirements and
other madel entities (i.e., components, properties) is hardly documented. Although SysML
supports in requirements modeling and consider particularly this linking, the industrial us­
age of SysML for requirements analysis and requirements engineering is still not so mature.
Commonly, requirements are imported to SysML tools in arder to be linked to other SysML
elements. This importing mechanism is still ineffi.cient and requires high maintenance effort.
Hereby, OSLC [15] salves this problem however, it is still in early development phase and not
yet applied in productive industrial applications.

2.2.2 AI applications for System Models' Formalization and Execution

AI methods have been proposed to aid the mechatronic design process. For instance, in [13]
the design activity optimization was solved using a heuristic-based hybrid search algorithm and
in [25] a maximum likelihood estimation method for determining the unknown design param­
eters based on given information was conducted. The application of ant colony optimization

(ACO) for combinational optimization and particle swarm optimization (PSO) for continu­
ous optimization is described in [1]. An efficient swarm intelligence (SI) based algorithm for
multi-objective optimization is presented in [18] where the corporation of a Pareto dominance
relation into PSO was proposed. It is generally agreed that the main problem in these existing
approaches relates to the high effort in capturing the interdisciplinary information to be used
in AI. Although others [11], proposed an integrated design evaluation, with graph based models
and usage of PSO for encoding such models, they are considered as non-generalizable due to
the limitations of the graph based modeling approach.

The formalization of SysML models has been also considered. For instance, Petri nets and
temporallogic LTL are used in [12] to formalize the system behavior and requirements, and in
[7] sorne SysML diagrams are encoded with description logic for formal semantics. Compared to
these approaches we aim to take a step further in incorporating noisy models (i.e., models which
don't exist in reality) and uncertainties (having a configurable error range) that are typically
not available once adopting logical descriptions. Actually, we use a Gaussian noise to allow
the values of requirements and properties to be uncertain. This mechanism tends to generate
noisy-models with bigger solution-space. These models are later used as input knowledge for a
particular evaluation objective(s) in order to find the most suitable solution (real-model).

3 Research Objective and SysDICE Approach

Our research scope concerns mainly the usability of MBSE approaches and AI techniques for
supporting the mechatronic design. This scope environment is the result of previous inves­
tigations and published work. Starting from [3], a SysML-based integration framework was
proposed to bring the different disciplines together for a better collaboration. Particularly,
different general purpose modeling languages have been analyzed and SysML have been seen
to be the most promising approach for this manner. Moreover, to achieve the collaboration,
SysML model elements were transfered into a multi-agents system and mapped to other agents
from the process model elements. Afterwords, the scope was extended towards adopting AI
techniques for executing the SysML model while supporting the system design evaluation [2].

In Summary, an early integrated evaluation of the system design, as a whole, in a sequel
of making the procedure adaptable, efficient and intelligent is what this research work aim
to pursue. Notably, a SysML-based method is proposed for an Integrated Conceptual Design
Evaluation of mechatronic systems, abbreviated as SysDICE. This aims at attaining an efficient
system design process and thus leading for short time and cost effective mechatronic products.
In the following, the overall framework and methodology of SysDICE is described. Notice that
the tool implementation is still in its early stages and it is outside the scope of this paper.

SysDICE Overall Framework and Methodology. Figure 2 presents a high level scheme
of the proposed framework. We categorize the human factors involved into (1) Discipline and
(2) System engineers. For the first group, a discipline-specifie information can be represented
in SysML while assuring that the SysML details level is restricted to only the amount of
information needed for achieving a cross-discipline mapping. For the second category, system
engineers, can model system requirements, functions, the abstract conceptual solution (i.e.,
structure, behavior and constraints) and manage the system model using SysML. They are able
to evaluate the system design model through the tool solver which is running in the background
to provide the execution of the SysML model. Furthuremore, the top part of Figure 2 shows
three main steps of SysDICE general methodology:

Step 1: The system mo del
generation, where a SysML
tool is used with the support of
the SysDICE profile for form­
ing the system model. Sys­
DICE profiles are used to ex­
tend the SysML metamodel for
modeling the domain specifie
aspects. On the one hand, they
should support in validating
the activities' outcomes and on
the other hand they handle
the identification of model el-

System Model
Generation

Evaluati on

Method Activities

System Model
Transformation

System Model
Evaluation

SysML Model

~
Qj

o. ..
-o

SysML Tool ~
(SysDICE Profile Views) ~

M ATLAB/SIMU LI NK

gj
CAO

L
Engineering

IT-Tools

ements and mapping it to dis- Figure 2: SysDICE overall framework
cipline tools' elements via the
tool adapters. Figure 2 indicates further six types of modeling activities (evaluation, require­
ments, functional, structure, behavior and constraints). Each of these activities results in a set
of SysML elements and relations shown with the respective SysML diagrams. These from the
multidisciplinary system model, which we split here into three levels:

1. The system's requirements which are classified as (a) numerical requirements with their
desired numerical values and weighted priorities (e.g., total weight of 2 Kg with 70%
priority) and (b) non-numerical requirements with their desired textual description and
weighted priorities (e.g., lowest possible response time with 90% priority).

2. The system's functions which refine and describe the non-numerical requirements more
in details and clarify its text based information with functions indicating what the user
expects from the product, and

3. the system's conceptual design solution which includes (a) the hierarchy of the components
together with their respective parameters and behavior (i.e., components here can be
interdisciplinary, mechatronics, such as a motor with motor board controller or discipline­
specifie; chassis as mechanical, electronic board as electrical or pure software code) and (b)
the interrelationships between disciplines through the constraints with their corresponding
input and output properties (e.g., power consumption, operational time, total priee).

Step 2: The system model transformation, which implicitly includes the mathematical
formulation of the system model and assures transferring it to an executable version. Actually,
the generated model is parsed and converted into a mathematical solver (i.e. the actual used
mathematical solver tool is MATLAB) for evaluating different model configurations performed
by system engineers. Hereby, consistency and model validation are major parts which reports
about the quality of the generated model before performing the evaluation step.

Step 3: The system model evaluation, which involves the evaluation activity (seen in
Figure 2) starts with capturing and identifying the design evaluation criteria (by stereotyping
the respective requirements as evaluation goals) and ends with providing them to the transferred
model for applying the mathematical algorithms. The evaluation results represent the feedback­
loop for optimizing the conceptual solution upon particular evaluation goals' configuration.

Certainly, the three steps of of SysDICE general methodology are performed in an iterative
and evolutionary manner until the system engineer come to the required optimum solution. In
the following section we demonstrate this with an application example.

4 Preliminary Work and Application Example

The design of a two wheel differentiai drive robot illustrates the application SysDICE for mod­
eling the robot with SysML (via MagicDraw tool) and applying the mathematical formulation
to find the optimal combination of components alternatives for a specifie evaluation goals. This
is described in the following three fundamental steps of SysDICE:

Step 1: Generate the SysML robot model. During early design stages a set of require­
ments spanned over the various domains is provided. With SysDICE, each of these requirements
is modeled using the «:.requirement~ block within the req diagram (Figure 3(1)). To be fully
able to specify a numerical design requirement, we extend the existing SysML requirement by
stereotyping it to include its "value", vd and its corresponding "priority", w, (shown on the
"Total Weight" requirement). We call this stereotype, «:.EvaluationGoal~ as it represents later
for the optimization engine the evaluation objectives source information. We further identify a
non-numerical requirement to indicate the necessity of associating it toits respective function
with the «:.refine~ association. Regarding the functional modeling, SysML doesn't offer a
particular functional diagram but it offers the use case diagram instead where a highest level
of abstraction is represented for the interaction between the system and its external actors [10].
The use case diagram have been used in [6, 10] to refine the functional requirements. Hereby,
this method is adopted for representing each of these functions using the «:. usecase~ element
and further represent their hierarchy using the «:.include~ association as shown in Figure 3(2).

After the design requirements have been settled, system engineers commence to generate
a conceptual solution. At this stage, the system evolves from a black box to detailed subsys­
tems reaching the component levels. Following a similar trend, our framework then decom­
poses the robot into its constituent subsystems and their corresponding components. This is
achieved through the SysML «:.black~ element, which is stereotyped as «:.component~, and the
«:.composition~ association within the bdd diagram. Each component of the robot could have
various alternatives which are stereotyped as «:.AlternativeComponent~, in order to represent
their uniqueness in a possible design solution, and related to the respective component with the
«:.Variant~ generalization relation (Figure 3(3)). Moreover, they are specified by their corre­
sponding properties (such as weight, priee, power consumption). The relations between these
properties are modeled using the «:.constraintProperty~ within the par diagram (Figure 3(5)),
and the interfaces between the components are modeled within the ibds (Figure 3(4)).

Additionally, Figure 3(6) shows the «:.satisfy~ and «:.refine~ relationships matrix between
the properties and use cases respectively towards the requirements. At this stage a SysML
model, which incorporates all the disciplines, is generated. Therefore, the necessary information
for system engineers is ready for evaluation and the integration burden is solved.

Step 2: Formulate and transfer the SysML robot model. The mathematical formal­
ization of the weighted requirement satisfaction problem with the multi-alternative mechanism
is divided into two levels of abstraction:

Abstraction Level One: Given a set of k requirements, vd = [v~1), ... , v~k)JT E JRkxl

is defined to represent the different desired values of each of the numerical requirements, and
W k,k = diag(w) to be the diagonal matrix representing the priorities of each of these require­
ments. We further define v = [v1, ... , vk], to represent the output of the constraintProperty
equations which relate a set of properties as its inputs.

It is assumed that these values are uncertain (having a configurable error range), noisy with
a Gaussian noise, and that the requirements are weighted in each of the k directions according
to their priorities. Therefore, the likelihood for a desired value to occur is defined by:

1

23

4

5

6

7

Satisfy and refine relationships between conceptual solution and requirements

Step 3: Evaluate the best components combinat ion of the SysML robot model. To
better evaluate the framework, we have conducted various experiments with different priorities
and desired requirements' values. Moreover, the system was provided with different alternatives
having various properties and the madel is parsed in arder to provide the required information
for the algorithm. After the GPs were approximated, conjugate gradient descent was applied
to find the optimal alternative suiting the requirements. Figure 3(7) shows the results from
MATLAB providing the different values and priorities. The three axis of the graph represent the
components, properties and the alternatives respectively. The different planes are the optimal
alternatives resulting from different requirements values and priorities. Each of these priorities
and/or properties change represents a different design focus. For instance, in the middle plane
the focus was more towards having a relatively medium priee (i.e., 90), where the total priee
was given a priority of 70%. The upper one correspond to a focus towards having a cheap priee
of 70 with a high priority (i.e., 90%). It becomes obvious from Figure 3(7) that the platform
captures different optimal alternatives suiting different design focuses and requirements and
thus being adaptable and generalizable to different requirement and or priority values.

5 Conclusion

In this paper, we explored the application of MBSE and AI for supporting the mechatronics
design. SysDICE, contributed by making use of SysML as a common language between system
and discipline engineers. Furthermore, it was capable of representing the interdisciplinary
interrelations that usually complicate the design process. SysDICE method was described with
an application example. The madel generation phase showed how SysML diagrams were used
to madel the requirements, functions, and conceptual solution entities. The method further
made use of Gaussian Processes in arder to find a functional mapping at the system-design
level. These were then used to solve for the best alternative combination that optimally suits
a set of configured requirements. Experiments conducted on the design of the robot show the
accessibility and adaptability of the approach, whereby the framework was capable of bridging
the system engineering level communication problems, attaining optimal alternatives to a set
of requirements, and producing adaptable solutions to various design focuses.

There are a lot of interesting directions for future work. Here we aim to extend the solution
space and clarify concrete steps regarding the method and tool development. In this paper,
we solved the weighted requirement satisfaction problem only for the numerical requirements
and thus our next goal is to caver also the non-numerical requirements. On a higher level, the
actual system madel will be divided into a generic and project specifie parts. lt is aimed to
support reusability and knowledge sharing via using the generic part in different projects. Thus
we would be able also to perform design evaluations of of Systems of Systems design models.

References

[1] Christian Blum and Xiaodong Li. Swarm Intelligence in Optimization. Springer, Natural Com­
puting Series, Swarm Intelligence, Part I, 2008.

[2] Mohammad Chami, Haitham Bou Ammar, Holger Voos, Karl Tuyls, and Gerhard Weiss. Swarm­
based evaluation of nonparametric sysml mechatronics system design. IEEE International Con­
ference on Mechatronics, ICM 2013, IEEE, 2013.

[3] Mohammad Chami, Holger Seemller, and Holger Voos. A sysml-based integration framework for
the engineering of mechatronic systems. IEEE/ ASME International Conference on Mechatronic
and Embedded Systems and Applications, IEEE, 2010.

[4] Kenway Chen, Jonathan Bankston, Jitesh H. Panchal, and Dirk Schaefer. A F'ramework for
Integrated Design of Mechatronic Systems, chapter 2, pages 37-70. Springer, 2009.

[5] DoDAF. "US Department of Defense Architecture Framework Working Group, Department of
Defense Architecture Framework (DoDAF), Version 1.0" ., February 2004.

[6] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML: The Systems
Modeling Language. Elsevier, Morgan Kaufmann OMG Press, 2008.

[7] Henson Graves and Yvonne Bijan. Modeling structure in description logic. DL2011, 2011.

[8] Object Management Group. "OMG Systems Modeling Language (OMG SysML™)". available
at http: 1 /www. omgsysml. org, November 2008.

[9] Jon Holt. UML for System Engineering: watching the wheels. Institution of Engineering and
Technology, second edition, 2004.

[10] Jon Holt and Simon Perry. SysML for Systems Engineering. The Institution of Engineering and
Technology, London, United Kingdom, 2008.

[11] Feng-Yi Huang and Yuan-Jye Tseng. An integrated design evaluation and assembly sequence
planning model using a particle swarm optimization approach. 2011.

[12] Marcos V. Linhares, Romulo S. de Oliveira, Jean-Marie Farines, and Francois Vernadat. Intro­
ducing the modeling and verification process in sysml. In IEEE International Conference. on.
Emerging Technologies and Factory Automation (ETFA), 2007.

[13] Ouael Mouelhi, Pierre Couturier, and Tanneguy Redarce. An Artificial Intelligence Approach for
the Multicriteria Optimization in Mechatronic Products Design. In Proceedings of the 2009 IEEE
International Conference on Mechatronics and Automation, pages 1731-1736, 2009.

[14] OMG. ModeZ Driven Architecture (MDA) Guide, 2003. OMG doc. ab/2003-06-01.

[15] OSLC. "Open Services for Lifecycle Collaboration". available at http://open-services.net/.

[16] Gerhard Pahl, Wolfgang Beitz, Jrg Fledhusen, and Karl-Heinrich Grote. Engineering Design A
Systematic Approach. Springer, third edition edition, 2007.

[17] Ahsan Qamar, Jan Wikander, and Carl During. Designing mechatronic systems: A madel­
integration approach. In In Proceedings of the 18th International Conference on Engineering
Design (ICED11), volume 4, pages 145-156, 2011.

[18] M. Janga Reddy and D. Nagesh Kumar. An efficient multi-objective optimization algorithm based
on swarm intelligence for engineering design, 2007.

[19] Andrew P. Sage. Systems Engineering. Wiley, New York., 1992.

[20] Wilhelm Schaefer and Heike Wehrheim. Model-driven development with mechatronic uml. In
Graph Transformations and Model-Driven Engineering, volume 5765 of Lecture Notes in Computer
Science, pages 533-554. Springer, 2010.

[21] Aditya A .. Shah, Dirk Schaefer, and Christiaan J.J. Paredis. Enabling multi-view modeling with
sysml profiles and model transformations. In International Conference on Product Lifecycle Man­
agement, page 10. Inderscience Enterprises Ltd, 2009.

[22] Kleanthis Thramboulidis. The 3+1 sysml view-model in model integrated mechatronics. Journal
of Software Engineering and Applications (JSEA), 3(2):109-118, 2010.

[23] T Tomiyama, P Gu, Y Jin, D Lutters, CH Kind, and F Kimura. Design methodologies: Industrial
and educational applications, 2009.

[24] VDI. VDI 2206 Design methodology for mechatronic systems. Beuth Verlag GmbH, Düsseldorf,
Germany, June 2004.

[25] Xinsheng Xu, Linyun Fu, and Shuiliang Fang. Research on Product Variant Design with Uncer­
tainty Information. In Proceedings of the 7th World Congress on Intelligent Control and Automa­
tion, Chongqing, China, 2008.

[26] Heming Zhang, Hongwei Wang, David Chen, and Gregory Zacharewicz. A model-driven approach
to multidiciplinary collaborative simulation for virtual product development, 2010.

