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ANALYSIS OF MARKOV-MODULATED INFINITE-SERVER QUEUES

IN THE CENTRAL-LIMIT REGIME

JOKE BLOM ?, KOEN DE TURCK †, MICHEL MANDJES •,?

Abstract. This paper focuses on an infinite-server queue modulated by an independently evolving

finite-state Markovian background process, with transition rate matrix Q ≡ (qij)
d
i,j=1. Both arrival

rates and service rates are depending on the state of the background process. The main contribution

concerns the derivation of central limit theorems for the number of customers in the system at time

t ≥ 0, in the asymptotic regime in which the arrival rates λi are scaled by a factor N , and the

transition rates qij by a factor Nα, with α ∈ R+. The specific value of α has a crucial impact on

the result: (i) for α > 1 the system essentially behaves as an M/M/∞ queue, and in the central

limit theorem the centered process has to be normalized by
√
N ; (ii) for α < 1, the centered process

has to be normalized by N1−α/2, with the deviation matrix appearing in the expression for the

variance.
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1. Introduction

The infinite-server queue has been intensively studied, perhaps owing to its wide applicability and

attractive computational features. In these systems jobs arrive according to a given arrival process,

go into service immediately, are served in parallel, and leave when their service is completed.

An important feature of this model is that there is no waiting: jobs do not interfere with each

other. The infinite-server queue was originally developed to analyze the probabilistic properties

of the number of calls in progress in a trunk in a communication network, as an approximation

of the corresponding system with many servers. More recently, however, various other application

domains have been identified, such as road traffic [17] and biology [15].

In the most standard variant of the infinite-server model, known as the M/M/∞ model, jobs arrive

according to a Poisson process with a fixed rate λ, where the service times are i.i.d. samples from

an exponential distribution with mean µ−1 (independent of the job arrival process). A classical

result states that the stationary number of jobs in the system has a Poisson distribution with mean

λ/µ. Also the transient behavior of this queueing system is well understood.

In many practical situations, however, the assumptions underlying the standard infinite-server

model are not valid. The arrivals often tend to be ‘clustered’ (so that the assumption of a fixed

arrival rate does not apply), while also the service distribution may vary over time. This explains

the interest in Markov-modulated infinite-server queues, so as to incorporate ‘burstiness’ into the

queue’s input process. In such queues, the input process is modulated by a finite-state (of dimension

d ∈ N) irreducible continuous-time Markov process (J(t))t∈R, often referred to as the background

process or modulating process, with transition rate matrix Q ≡ (qij)
d
i,j=1. If J(t) is in state i, the

arrival process is (locally) a Poisson process with rate λi and the service times are exponential with

mean µ−1i (while the obvious independence assumptions are assumed to be fulfilled).

The Markov-modulated infinite-server queue has attracted some attention over the past decades

(but the number of papers on this type of system is relatively modest, compared to the vast

literature on Markov-modulated single-server queues). The main focus in the literature so far has

been on characterizing the steady-state number of jobs in the system; see e.g. [6, 8, 9, 12, 14] and

references therein. Interestingly, there are hardly any explicit results on the probability distribution

of the (transient or stationary) number of jobs present: the results are in terms of recursive schemes

to determine all moments, and implicit characterizations of the probability generating function.

An idea to obtain more explicit results for the distribution of the number of jobs in the system,

is by applying specific time-scalings. In [2, 10] a time-scaling is studied in which the transitions

of the background process occur at a faster rate than the Poisson arrivals. As a consequence, the

limiting input process becomes essentially Poisson (with an arrival rate being an average of the
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λi s); a similar property applies for the service times. Under this scaling, one gets in the limit the

Poisson distribution for the stationary number of jobs present. Recently, related transient results

have been obtained as well, under specific scalings of the arrival rates and transition times of the

background process [2, 4].

Contribution. Our work considers a time-scaling featuring in [2, 4] as well. In this scaling, the

arrival rates λi are inflated by a factor N , while the background process (J(t))t∈R is sped up by a

factor Nα, for some α ∈ (0,∞). The primary focus is on the regime in which N grows large.

The object of study is the number of jobs in the scaled system at time t, in the sequel denoted

by M (N)(t). More specifically, we aim at deriving a central limit theorem (clt) for M (N)(t), as

well as for its stationary counterpart M (N). Interestingly, we find different scaling regimes, based

on the value of α. The rationale behind these different regimes lies in the fact that for α > 1 the

variances of M (N)(t) and M (N) grow essentially linearly in N , while for α < 1 they grow as N2−α.

It is important to notice that there are actually two variants of this Markov-modulated infinite-

server queue. In the first (to be referred to as ‘Model i’) the service times of jobs present at time t

are subject to a hazard rate that is determined by the state J(t) of the background process at time

t. In the second variant (referred to as ‘Model ii’) the service times are determined by the state of

the modulating process at the job’s arrival epoch (and hence can be sampled upon arrival).

The main contribution of our work is that we develop a unified approach to prove the clt s for

both Model i and Model ii for the scalings given above, for arbitrary α ∈ (0,∞), and for both

the transient and stationary regimes. The technique used can be summarized as follows. We

first derive differential equations for the probability generating functions (pgf s) of the transient

number of jobs in the system M (N)(t) as well as its stationary counterpart M (N) (for both models).

The next step is to establish laws of large numbers: we identify %(t) (%, respectively) to which

N−1M (N)(t) (N−1M (N), respectively) converges as N → ∞. This result indicates how M (N)(t)

and M (N) should be centered in a clt. The thus obtained centered random variables are then

normalized (that is, divided by Nγ , for an appropriately chosen γ), so as to obtain the clt. As

suggested by the asymptotic behavior of the variance of M (N)(t) and M (N), as we pointed out

above, the appropriate choice of the parameter γ in the normalization is γ = 1
2 for α > 1, and

γ = 1− α
2 for α < 1. The proofs rely on (non-trivial) manipulations of the differential equations

that underly the pgf s. For α < 1 the deviation matrix [7] appears in the clt in the expression for

the variance.

Relation to previous work. In our preliminary conference paper [3] we just covered Model i, with an

approach similar to the one featuring in the present paper. In [2] the transient regime of Model ii

is analyzed, but just for α > 1, relying on a different and more elaborate methodology. New results
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of this paper are: (i) Model ii for α ≤ 1, (ii) the clt for the stationary number of jobs M (N) in

Model ii, (iii) results on the correlation across time. The main contribution, however, concerns the

unified approach: where earlier work has been using ad hoc solutions for the scenario at hand, we

now have a general ‘recipe’ to derive clt s of this kind. Current work in progress aims at functional

versions of the clt s for the process (M (N)(t))t∈R; [1] covers the special case of uniform service

rates, which constitutes the intersection of Model i and Model ii.

Organization. The organization of this paper is as follows. In Section 2, we explain the model

in detail and introduce the notations used throughout the paper. Section 3 provides a systematic

explanation of our technique for proving this kind of clt s; in addition, we demonstrate the approach

for a special case, viz. the transient analysis for the model with uniform service rates (in which Model

i and Model ii coincide). In Section 4 we recall the results for Model i as derived in the precursor

paper [3]. Then in Section 5, we state and prove for Model ii the clt s, both for the stationary and

transient distribution. The single-dimensional convergence can be extended to convergence of the

finite-dimensional distributions (viz. at different points in time); see Section 6. In Section 7, we

provide some numerical examples so as to get insight into the speed of convergence to the various

limiting regimes. The final section of the paper, Section 8, contains a discussion and concluding

remarks.

2. Model description and preliminaries

In this section, we first provide a detailed model description. We then give a number of explicit

calculations for the mean and variance of M (N)(t), that indicate how this random variable should be

centered and normalized so as to obtain a clt. We conclude by presenting a number of preliminary

results (e.g., a number of standard results on deviation matrices).

2.1. Model description, scaling. The main objective of this paper is to study an infinite-server

queue with Markov-modulated Poisson arrivals and exponential service times. In full detail, the

model is described as follows.

Model. Consider an irreducible continuous-time Markov process (J(t))t∈R on a finite state space

{1, . . . , d}, with d ∈ N. Let its transition rate matrix be given by Q ≡ (qij)
d
i,j=1; here the rates

qij are nonnegative if i 6= j, whereas qii = −
∑

j 6=i qij (so that the row sums are 0). Let πi be

the stationary probability that the background process is in state i, for i = 1, . . . , d; due to the

irreducibility assumption there is a unique stationary distribution. The time spent in state i (often

referred to as the transition time) has an exponential distribution with mean 1/qi, where qi := −qii.

Let M(t) denote the number of jobs in the system at time t, and M its steady-state counterpart.

The dynamics of the process (M(t))t∈R can be described as follows. While the process (J(t))t∈R,
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usually referred to as the background process or modulating process, is in state i ∈ {1, . . . , d}, jobs

arrive at the queue according to a Poisson process with rate λi ≥ 0. The service times are assumed

to be exponentially distributed with rate µi, however, more importantly this statement can be

interpreted in two ways:

Model i: In the first variant of our model, the service times of all jobs present at a certain time

instant t are subject to a hazard rate determined by the state J(t) of background chain

at time t, regardless of when they arrived. Informally, if the system is in state i, then the

probability of an arbitrary job leaving the system in the next ∆t time units is µi ∆t.

Model ii: In the second variant the service rate is determined by the background state as seen by the

job upon its arrival. If the background process was in state i, the service time is sampled

from an exponential distribution with mean µ−1i .

The difference between the two models is nicely illustrated by the following alternative representa-

tion [6]. In Model i M(t) has a Poisson distribution with random parameter ψ(J), while in Model

ii it is Poisson with random parameter ϕ(J), where J ≡ (J(s))s∈[0,t], and

(1) ψ(f) :=

∫ t

0
λf(s)e

−
∫ t
s µf(r)drds, ϕ(f) :=

∫ t

0
λf(s)e

−µf(s) (t−s)ds,

with f : [0, t] 7→ {1, . . . , d}.

Scaling. In this paper, we consider a scaling in which both (i) the arrival process, and (ii) the

background process are sped up, at a possibly distinct rate. More specifically, the arrival rates

are scaled linearly, that is, as λi 7→ Nλi, whereas the background chain is scaled as qij 7→ Nαqij ,

for some positive α. We call the resulting process (M (N)(t))t∈R, to stress the dependence on the

scaling parameter N ; the corresponding background process is denoted by (J (N)(t))t∈R.

The main objective of this paper is the derivation of clt s for the number of jobs in the system, as

N grows large. As mentioned in the introduction, the parameter α plays an important role here:

it turns out to matter whether α is assumed smaller than, equal to, or larger than 1. Letting the

system start off empty at time 0, we consider the number of jobs present at time t, denoted by

M (N)(t); we write M (N) for its stationary counterpart.

Our main result is a ‘non-standard clt’: for a deterministic function %(t),

(2)
M (N)(t)−N%(t)

Nγ

converges in distribution to a zero-mean Normal distribution with a certain variance, say, σ2(t).

It is important to note that in the case α > 1 we have that the parameter γ equals the usual 1
2 ,

while for α ≤ 1 it has the uncommon value 1 − α
2 . A similar dichotomy holds for the stationary
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counterpart M (N). In the next subsection, we present explicit calculations for the mean and variance

of M (N)(t) and M (N) that explain the reason behind this dichotomy.

2.2. Explicit calculations for the mean and variance. We now present a number of explicit

calculations for the mean and variance of the number of jobs present; for ease we consider the case

that µi = µ for all i ∈ {1, . . . , d}, so that Models i and ii coincide. We assume J(0) is distributed

according to the stationary distribution of the Markov chain J(t). Directly from, e.g., [2], for any

N ∈ N,

EM (N)(t)

N
= %(t) :=

1− e−µt

µ

d∑
i=1

πiλi,
EM (N)

N
= % :=

1

µ

d∑
i=1

πiλi.

We now concentrate on the corresponding variance; we first consider the non-scaled system, to

later explore the effect of the time-scaling. In the sequel we use the notation pij(t) := P(J(t) =

j | J(0) = i). The ‘law of total variance’, with J ≡ (J(s))ts=0, entails that

(3) VarM(t) = EVar(M(t) | J) + VarE(M(t) | J).

We first recall from (1) that M(t) obeys a Poisson distribution with the random parameter ϕ(J).

As a result, the second term on the right of (3) can be written as

Varϕ(J) = Var

(∫ t

0
λJ(s)e

−µ (t−s)ds

)
=

∫ t

0

∫ t

0
Cov

(
λJ(u)e

−µ (t−u)λJ(v)e
−µ (t−v)

)
dudv,

which can be decomposed into I1 + I2, where

I1 :=
d∑
i=1

d∑
j=1

λiλjKij , with Kij :=

∫ t

0

∫ v

0
e−µ(t−u)e−µ(t−v)πi (pij(v − u)− πj) dudv,

I2 :=
d∑
i=1

d∑
j=1

λiλjLij , with Lij :=

∫ t

0

∫ t

v
e−µ(t−u)e−µ(t−v)πj (pji(u− v)− πi) dudv.

Let us first evaluate Kij . To this end, substitute w := v − u (i.e., replace u by v − w), and then

interchange the order of integration, so as to obtain

Kij = e−µtπi

∫ t

0

(∫ t

w
e2µvdv

)
e−µ(t+w) (pij(w)− πj) dw.

Performing the inner integral (i.e., the one over v) leads to

Kij =
1

2µ
e−µtπi

∫ t

0

(
eµ(t−w) − e−µ(t−w)

)
(pij(w)− πj) dw.

The integral Lij can be evaluated similarly:

Lij = e−µtπj

∫ t

0

(∫ t−w

0
e2µvdv

)
e−µ(t−w) (pji(w)− πi) dw

=
1

2µ
e−µtπj

∫ t

0

(
eµ(t−w) − e−µ(t−w)

)
(pji(w)− πi) dw = Kji.
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The first term in the right hand side of (3) is easily evaluated, again relying on the fact that M(t)

has a Poisson distribution, conditional on J :

EVar(M(t) | J) =

d∑
i=1

πiλi

∫ t

0
e−µsds =

1− e−µt

µ

d∑
i=1

πiλi = %(t).

Now we study the effect of the time-scaling: we replace λi by Nλi (for i = 1, . . . , d) and pij(w) by

pij(N
αw) (for i, j = 1, . . . , d). Introduce the deviation matrix D, by

[D]ij :=

∫ ∞
0

(pij(t)− πj) dt;

see e.g. [7]. Combining the above results, it is a matter of some elementary algebra to verify that,

in obvious notation,

VarM (N)(t) ∼ N%(t) +N2−α 1− e−2µt

µ

d∑
i=1

d∑
j=1

πiλiλj [D]ij .

From this relation, the above mentioned dichotomy becomes clear. It is observed that for α > 1

the variance of M (N)(t) grows linearly in N , and is essentially equal to the corresponding mean,

viz. N%(t). The intuition here is that in this regime the background process jumps faster than the

arrival process, so that the arrival stream is nearly Poisson with parameter
∑d

i=1 πiλi. The resulting

system behaves therefore, as N →∞, essentially as an M/M/∞. If α < 1 the background process

is slower than the arrival process. The variance of M (N)(t) now grows like N2−α, proportionally

to a constant that is a linear combination of the entries of the deviation matrix D.

The above computations were done for the transient number of jobs M (N)(t), but obviously an

analogous reasoning applies to its stationary counterpart M (N).

2.3. Preliminaries on deviation matrices, additional notation. In this subsection, we recall

a number of key properties of deviation matrices; for more detailed treatments we refer to e.g.

the standard texts [11, 13, 16], as well as the compact survey [7]. We also introduce additional

notation, which is intensively used later on.

We define the diagonal matrices Λ andM, where [Λ]ii = λi and [M]ii = µi. We denote the invariant

distribution corresponding to the transition matrix Q by the vector π; we follow the convention

that vectors are column vectors unless stated otherwise, and that they are written in bold fonts.

As π denotes the invariant distribution, we have πTQ = 0T and πT1 = 1, where 0 and 1 denote

vectors of zeros and ones, respectively. In the sequel we frequently use the ‘time-average arrival

rate’ λ∞ :=
∑d

i=1 πiλi = πTΛ1, and the ‘time average departure rate’ µ∞ :=
∑d

i=1 πiµi = πTM1.

We recall some concepts pertaining to the theory of deviation matrices of Markov processes; see

e.g. [7]. In particular, we let Π := 1πT denote the ergodic matrix. We also define the fundamental

matrix F := (Π − Q)−1. It turns out that the deviation matrix D, introduced above, satisfies
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D = F − Π. We will frequently use the identities QF = FQ = Π − I, as well as the facts that

ΠD = DΠ = 0 (here 0 is to be read as an all-zeros d× d matrix) and F1 = 1.

We use the following three vector-valued generating functions throughout the paper: p denotes

the unscaled probability generating function (pgf); p̄ ≡ p̄(N) denotes the corresponding moment

generating function (mgf) under the law-of-large-numbers scaling; and p̃ ≡ p̃(N) denotes the mgf

centered and normalized appropriately for the central limit theorem at hand. For the transient

cases, these generating functions involve an extra argument t to incorporate time. Importantly, all

three generating functions are vectors of dimension d as we consider distributions jointly with the

state of the background process; to make the notation easier, we assume that these vectors are row

vectors. Lastly, φ ≡ φ(N) denotes the scalar mgf under the centering and normalization (obtained

by summing the elements of p̃).

3. Outline of clt proofs

In this section we point out how we set up our clt proofs. In the next two sections this ‘recipe’ is

then applied to analyze Model i and Model ii, covering both the transient and stationary number

of jobs in the system. We use a fairly classical approach to proving the clt s for centered and

normalized sequences of random variables of the type (2). More specifically, our objective is to

show that under the appropriate normalization (i.e., an appropriate choice of γ), the moment

generating function of (2) converges to that of the Normal distribution; the same is done for the

stationary counterpart of (2).

Our technique consists of the following steps.

(a) Derive a differential equation for the pgf p of the random quantities M(t) and M .

(b) Establish the ‘mean behavior’ %(t) (%, respectively) of M (N)(t) (M (N), respectively). This law

of large numbers follows by manipulating the mgf p̄ ≡ p̄(N), obtaining a scalar limit solution

exp(ϑ%(t)) in the transient case, and exp(ϑ%) in the stationary case.

(c) Reformulate the differential equation for the uncentered and unnormalized pgf p into a recur-

rence relation for the centered and normalized mgf p̃ ≡ p̃(N).

(d) Manipulate and iterate this equation, approximate by suitable Taylor expansions, to obtain a

differential equation for the scalar mgf φ under the chosen centering and normalization.

(e) Discard asymptotically vanishing terms, so as to obtain a unique limit solution, viz., φ(ϑ) =

exp(ϑ2σ2(t)) in the transient case and φ(ϑ) = exp(ϑ2σ2) in the stationary case. We explicitly

identify σ2(t) and σ2.

This limit solution resulting from the last step corresponds to a zero-mean Normal distribution.

Due to Lévy’s continuity theorem, this pointwise convergence of characteristic functions implies
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convergence in distribution to the zero-mean Normal random variable, so that we have derived the

clt.

Issues related to the uniqueness of the solution of the differential equation are dealt with in Ap-

pendix A. Below we demonstrate this proof technique for the special case that the service rates in

each of the states are identical, i.e., M = µI for some µ > 0, so that Models i and ii coincide.

Importantly, Prop. 1 in Section 3.1 holds for general M.

3.1. Differential equations for the pgf p. First we derive a system of differential equations for

the pgf of the number of jobs in the system, jointly with the background state. We consider the

bivariate process (M(t), J(t))t∈R, which is an ergodic Markov process on the state space {1, . . . , d}×

N. With the states of this process enumerated in the obvious way, it has the (infinite-dimensional)

transition rate matrix

Q− Λ Λ

M Q−M− Λ Λ

2M Q− 2M− Λ Λ

3M Q− 3M− Λ Λ

.. .
. . .

. . .


.

We set out to find the transient distribution (pk(t))
∞
k=0, where pk(t) is a d-dimensional row-vector

whose entries are defined by [pk(t)]j := P(M(t) = k, J(t) = j). The (row-vector-)pgf p(t, z) is then

defined through

p(t, z) :=
∞∑
k=0

pk(t)z
k,

such that

[p(t, z)]j = E
(
zM(t)1{J(t)=j}

)
.

Proposition 1. The pgf p(t, z) satisfies the following differential equation:

∂p(t, z)

∂t
= p(t, z)Q+ (z − 1)

(
p(t, z) Λ− ∂p(t, z)

∂z
M
)
.

Proof. The result follows from classical arguments. By virtue of the Chapman-Kolgomorov equa-

tion, we have that

(4)
dpk(t)

dt
= pk−1(t)Λ + pk(t)(Q− Λ− kM) + (k + 1)pk+1(t)M,

for all k ∈ N, where we put p−1(t) := 0 for all t ≥ 0.

From the standard relations

∞∑
k=0

(k + 1)pk+1(t)z
k =

∂p(t, z)

∂z
, and

∞∑
k=0

kpk(t)z
k = z

∂p(t, z)

∂z
,
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we obtain by multiplying both sides of (4) by zk and summing over k ∈ N,

∂p(t, z)

∂t
= zp(t, z)Λ + p(t, z)(Q− Λ)− z ∂p(t, z)

∂z
M+

∂p(t, z)

∂z
M.

The claim follows directly. �

We assume that at time 0 the system starts off empty. Under the scaling Λ 7→ NΛ and Q 7→

NαQ, Prop. 1 implies that we have the following system of partial differential equations governing

(M (N)(t), J (N)(t)):

(5)
∂p(N)(t, z)

∂t
= Nαp(N)(t, z)Q+ (z − 1)

(
Np(N)(t, z)Λ− ∂p(N)(t, z)

∂z
M

)

describing the pgf p(N) of the number of jobs in the scaled system.

3.2. Mean behavior. In the remainder of this section, we assume that all service rates are iden-

tical: M = µI. To obtain the limiting behavior of N−1M (N)(t) when N grows large, it turns out

to be convenient to take the following steps.

(i) Rewrite the differential equation (5) as a recurrence relation for p(N) involving the fundamental

matrix F ; recall from Section 2.3 the relation QF = Π− I.

(ii) Translate this into a recurrence relation in terms of the mgf p̄(N) of N−1M (N)(t), using a

Taylor expansion for z = exp(ϑ/N).

(iii) Sum over the possible background states by postmultiplying with 1, so as to obtain a scalar

mgf; in this step we make use of the identity F1 = 1.

(iv) Obtain the limiting differential equation by taking the limit for N → ∞. This equation has

a closed solution. This is the mgf of the limiting constant %(t).

In this way we have proven the convergence in distribution of N−1M (N)(t) to %(t); as this limit is

a constant, convergence in probability follows immediately.

Let us go through the procedure in full detail now. Postmultiplication of Eqn. (5) with F and N−α,

using QF = Π− I, results in the recurrence relation

p(N)(t, z) = p(N)(t, z) Π +N−α(z − 1)

(
Np(N)(t, z)Λ− ∂p(N)(t, z)

∂z
M

)
F(6)

−N−α∂p
(N)(t, z)

∂t
F.

We are now set to state and prove the mean behavior of M (N)(t). Define %(t) := % (1− e−µt), with

% = λ∞/µ.

Lemma 1. N−1M (N)(t) converges in probability to %(t), as N →∞.
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Proof. We introduce the transient scaled moment generating function p̄(N)(t, ϑ):

p̄(N)(t, ϑ) := p(N)(t, z),

with z ≡ z(N)(ϑ) = exp(ϑ/N). Evidently,

∂p̄(N)(t, ϑ)

∂t
=
∂p(N)(t, z)

∂t
,

∂p̄(N)(t, ϑ)

∂ϑ
=
∂p(N)(t, z)

∂z

dz

dϑ
=

z

N

∂p(N)(t, z)

∂z
.

Substituting these expressions in Eqn. (6) and noting that z±1 = 1± ϑN−1 +O(N−2), we obtain

p̄(N)(t, ϑ) = p̄(N)(t, ϑ)Π +N−α

(
ϑ p̄(N)(t, ϑ) Λ− ϑ ∂p̄

(N)(t, ϑ)

∂ϑ
µI

− ∂p̄
(N)(t, ϑ)

∂t

)
F + o(N−α).

The above implies that p̄(N)(t, ϑ) = p̄(N)(t, ϑ)Π + O(N−α), and the same holds for the partial

derivatives of p̄(N)(t, ϑ), so all p̄(N)(t, ϑ) between the brackets can be replaced by p̄(N)(t, ϑ) Π.

Postmultiplying by 1Nα and using the identities Π1 = 1 and F1 = 1, yields

0 =

(
ϑλ∞p̄

(N)(t, ϑ) 1− µϑ ∂p̄
(N)(t, ϑ)

∂ϑ
1− ∂p̄(N)(t, ϑ)

∂t
1

)
+ o(1);

recall the definitions Π := 1πT and λ∞ := πTΛ1. Define p̄(t, ϑ)1 as the limit of p̄(N)(t, ϑ)1 as

N →∞. Now multiply the differential equation with Nα and let N →∞. We thus obtain a scalar

partial differential equation in p̄(t, ϑ)1

∂(p̄(t, ϑ)1)

∂t
= ϑλ∞(p̄(t, ϑ)1)− µϑ∂(p̄(t, ϑ)1)

∂ϑ
.

It is straightforward to check that p̄(t, ϑ)1 = exp(ϑ%(t)) satisfies the equation as well as the

boundary conditions p̄(t, 0)1 = 1 and p̄(0, ϑ)1 = 1. Now the stated follows directly. �

3.3. Recurrence relations for the centered and normalized mgf p̃(N). Now that we have

derived the weak law of large numbers, we introduce in the next step the centered and normalized

mgf p̃(N)(t, ϑ), that is, centered around N%(t) and normalized by N−γ , with the scalar γ yet to be

determined. We perform a change of variables in the recurrence relation for p(N), Eqn. (6), so as

to obtain the recurrence relation for the centered and normalized mgf p̃(N).

The pgf p(N) can be expressed in the normalized and centered mgf p̃(N) using

p̃(N)(t, ϑ) = exp(−N%(t)ϑ/Nγ)p(N) (t, exp(ϑ/Nγ)) ,

which can be written as

p(N)(t, z) = exp(%(t)ϑN1−γ) p̃(N)(t, ϑ),
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with z ≡ z(N)(ϑ) = exp(ϑN−γ). It is readily verified that

∂p(N)(t, z)

∂z

dz

dϑ
= exp(%(t)ϑN1−γ)

(
%(t)N1−γp̃(N)(t, ϑ) +

∂p̃(N)(ϑ)

∂ϑ

)
;

dz

dϑ
= N−γ exp(ϑNγ) = N−γz,

so the derivatives of p(N) can be expressed in terms of the corresponding derivatives of p̃(N):

∂p(N)(t, z)

∂t
= exp(%(t)ϑN1−γ)

(
%′(t)ϑN1−γp̃(N)(t, ϑ) +

∂p̃(N)(t, ϑ)

∂t

)
,

∂p(N)(t, z)

∂z
=

1

z
exp(%(t)ϑN1−γ)

(
N%(t) p̃(N)(t, ϑ) +Nγ ∂p̃

(N)(t, ϑ)

∂ϑ

)
.

Now perform the change of variables and substitute the expressions for p(N)(t, z) and its partial

derivatives into Eqn. (6). Dividing by exp(%(t)ϑN1−γ) yields the following recurrence relation for

p̃(N):

p̃(N)(t, ϑ) = p̃(N)(t, ϑ)Π +N1−α
(
z(N)(ϑ)− 1

)
p̃(N)(t, ϑ)ΛF

−N1−α
(

1− 1

z(N)(ϑ)

)
%(t) p̃(N)(t, ϑ)MF

−Nγ−α
(

1− 1

z(N)(ϑ)

)
∂p̃(N)(t, ϑ)

∂ϑ
MF

−N1−α−γ%′(t)ϑp̃(N)(t, ϑ)F −N−α∂p̃
(N)(t, ϑ)

∂t
F.(7)

3.4. Differential equation for the scalar, centered and normalized, mgf φ(N). The next

step is to expand z in a Taylor series. Assuming certain restrictions on γ (that we later justify)

we delete all terms of order smaller than N−α. The resulting recurrence relation is iterated and

manipulated until all terms in the right-hand side contain p̃(N)Π. Next we postmultiply this system

of partial differential equations by 1, so as to obtain a scalar partial differential equation in terms of

φ(N)(t, ϑ) := p̃(N)(t, ϑ)1. In this step we make use of the definition of Π := 1πT and the identities

Π1 = 1 and F1 = 1.

The Taylor expansions of z and z−1 are

z±1 = 1± ϑN−γ +
1

2
ϑ2N−2γ +O(N−3γ),
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Applying these to Eqn. (7) results in

p̃(N)(t, ϑ) = p̃(N)(t, ϑ)Π + ϑN1−α−γp̃(N)(t, ϑ)(Λ− %(t)M− %′(t)I)F

+
ϑ2

2
N1−α−2γp̃(N)(t, ϑ)(Λ + %(t)M)F

−ϑN−α∂p̃
(N)(t, ϑ)

∂ϑ
MF −N−α∂p̃

(N)(t, ϑ)

∂t
F +O(N1−α−3γ) +O(N−α−γ).(8)

Under the assumption that γ > 1/3 (to be justified later) the order terms can be replaced by

o(N−α).

Next we iterate Eqn. (8) until all terms in the right-hand side either contain p̃(N)(ϑ)Π or are of

O(N−α). For the latter we assume a second restriction, viz., γ ≥ 1− α/2 (also justified later). We

thus obtain

p̃(N)(t, ϑ) = p̃(N)(t, ϑ)Π

+ϑN1−α−γ
(
p̃(N)(t, ϑ)Π + ϑN1−α−γp̃(N)(t, ϑ)(Λ− %(t)M− %′(t)I)F+

O(N1−α−2γ) +O(N−α)
)

(Λ− %(t)M− %′(t)I)F

+
ϑ2

2
N1−α−2γ

(
p̃(N)(t, ϑ)Π +O(N1−α−γ) +O(N−α)

)
(Λ + %(t)M)F

−ϑN−α∂p̃
(N)(t, ϑ)

∂ϑ
MF −N−α∂p̃

(N)(t, ϑ)

∂t
F + o(N−α);

here we remark that in the O(N−α)-terms p̃(N) can be replaced by p̃(N)Π as an immediate con-

sequence of the fact that Eqn. (8) implies p̃(N) = p̃(N)Π + o(1), while the same applies to its

derivatives. The above equation can be rewritten as

p̃(N)(t, ϑ) = p̃(N)(t, ϑ)Π + ϑN1−α−γ p̃(N)(t, ϑ) Π(Λ− %(t)M− %′(t)I)F

+ϑ2N2−2α−2γ p̃(N)(t, ϑ) Π(Λ− %(t)M− %′(t)I)F (Λ− %(t)M− %′(t)I)F

+
ϑ2

2
N1−α−2γp̃(N)(t, ϑ) Π(Λ + %(t)M)F

−ϑN−α∂p̃
(N)(t, ϑ)

∂ϑ
ΠMF −N−α∂p̃

(N)(t, ϑ)

∂t
ΠF + o(N−α).(9)

Now postmultiply Eqn. (9) by 1Nα; using the identities Π1 = 1 and F1 = 1, and the definition

Π := 1πT. We obtain

0 = ϑN1−γφ(N)(t, ϑ)πT
(
Λ− %(t)M− %′(t)I

)
1

+ϑ2N2−α−2γ φ(N)(t, ϑ)πT(Λ− %(t)M− %′(t)I)F (Λ− %(t)M− %′(t)I)1

+
ϑ2

2
N1−2γφ(N)(t, ϑ)πT(Λ + %(t)M)1− ϑµ∂φ

(N)(t, ϑ)

∂ϑ
− ∂φ(N)(t, ϑ)

∂t
+ o(1).
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Directly from the definition of %(t), it is seen that the first term on the right-hand side vanishes.

In addition, it takes some elementary algebra to check that

πT(Λ− (%(t)µ+ %′(t))I)F (Λ− (%(t)µ+ %′(t)I)1 = πTΛDΛ1 =: U,

where we used F = D + Π = D + 1πT, and

1

2
πT(Λ + %(t)µI)1 = λ∞

(
1− e−µt

2

)
.

This results in the partial differential equation

∂φ(N)(t, ϑ)

∂t
+ ϑµ

∂φ(N)(t, ϑ)

∂ϑ

= ϑ2φ(N)(t, ϑ)

(
N2−α−2γU +

1

2
N1−2γλ∞(1− 1

2
e−µt)

)
+ o(1).(10)

3.5. Limit solution. The last step in our proof is to obtain the limiting differential equation

for φ(t, ϑ), being the limit of φ(N)(ϑ, t). Its unique solution corresponds to a normal distribution

N (0, σ2(t)).

First, note that if we choose γ larger than both 1 − α/2 and 1/2, we do not obtain a clt, but

rather that the random variable under study converges in distribution to the constant 0. Hence,

we take γ = max{1−α/2, 1/2}, in which case the largest term dominates in (10), with both terms

contributing if α = 1. Note that this choice is consistent with the restrictions on γ we used during

our proof. We obtain by sending N →∞,

(11)
∂φ(t, ϑ)

∂t
+ ϑµ

∂φ(t, ϑ)

∂ϑ
= ϑ2φ(t, ϑ) g(t),

with g(t) := U 1{α≤1} + (λ∞(1− e−µt/2)) 1{α≥1}.

We propose the ansatz

φ(t, ϑ) = exp

(
1

2
ϑ2e−2µtf(t)

)
,

for some unknown function f(t); recognize the mgf associated with the Normal distribution. This

leads to the following ordinary differential equation for f(t):

f ′(t) = 2e2µtg(t),

which is obviously solved by integrating the right-hand side. From this we immediately find the

expression for the variance σ2(t) of the Normal distribution.

With this last step we have proven our claim. It is instructive to compare the findings with the

expressions obtained in Section 2.2.
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Theorem 1. Consider Model i or ii with µi = µ for all i ∈ {1, . . . , d}. The random variable

M (N)(t)−N%(t)

Nγ

converges to a Normal distribution with zero mean and variance σ2(t) as N → ∞; here the

parameter γ equals max{1 − α/2, 1/2}, and σ2(t) := σ2m(t)1{α≤1} + %(t)1{α≥1}, with σ2m(t) :=

µ−1(1− e−2µt)U .

Corollary 1. Consider Model i or ii with µi = µ for all i ∈ {1, . . . , d}. The random variable

M (N) −N%
Nγ

converges to a Normal distribution with zero mean and variance σ2 as N →∞; here the parameter

γ equals max{1− α/2, 1/2}, and σ2 := σ2m1{α≤1} + %1{α≥1}, with σ2m := µ−1U .

4. Model i: Stationary and transient distribution

In this section we briefly recall the results of the steps for Model i, both for the stationary and

time-dependent behavior. The proofs are analogous to those in the previous section. Comparing

the results of Lemma 2 and Thm. 2 with those of Lemma 1 and Thm. 1, respectively, the effect of

heterogeneous service rates becomes visible.

Proposition 2. Consider Model i. In the stationary case the pgf p(z) satisfies the following

differential equation:

p(z)Q = (z − 1)

(
dp(z)

dz
M− p(z)Λ

)
.

In the transient case the pgf p(t, z) satisfies the following differential equation:

∂p(t, z)

∂t
= p(t, z)Q+ (z − 1)

(
p(t, z) Λ− ∂p(t, z)

∂z
M
)
.

Define %(i) := λ∞/µ∞, and %(i)(t) = %(i) (1− e−µ∞t).

Lemma 2. Consider Model i. As N →∞,

(1) N−1M (N)(t) converges in probability to %(i)(t).

(2) N−1M (N) converges in probability to %(i).

Theorem 2. Consider Model i. The random variable

M (N)(t)−N%(i)(t)
Nγ

converges to a Normal distribution with zero mean and variance σ2(t) as N →∞; here

σ2(t) := σ2m(t)1{α≤1} + %(i)(t)1{α≥1}, with

σ2m(t) := 2e−2µ∞t
∫ t

0
e2µ∞sπT(Λ− %(i)(s)M)D(Λ− %(i)(s)M)1 ds.
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The random variable
M (N) −N%(i)

Nγ

converges to a Normal distribution with zero mean and variance σ2 as N →∞; here

σ2 := σ2m1{α≤1} + %(i)1{α≥1}, with

σ2m := µ−1∞ π
T(Λ− %(i)M)D(Λ− %(i)M)1.

In both cases the parameter γ equals max{1− α/2, 1/2}.

The formula for σ2m(t) can be evaluated more explicitly. Define Gm,n(t) := e−mµ∞t − e−nµ∞t, for

m,n ∈ N. Direct computations yield that σ2m(t) equals

U
1

µ∞
G0,2(t) + Û

%(i)

µ∞
(2G1,2(t)−G0,2(t)) + Ǔ

(%(i))2

µ∞

(
G0,2(t)− 4G1,2(t) + 2µ∞te

−2µ∞t) ,
with Û := πTMDΛ1 +πTΛDM1 and Ǔ := πTMDM1. It is readily verified that σ2m(t)→ σ2m as

t→∞, as expected.

5. Results for Model ii

In this section we study Model ii: the service times are now determined by the background state

as seen by the job upon arrival. The approach is as before: we first derive a system of differential

equations (Section 5.1), then establish the mean behavior by means of laws of large numbers

(Section 5.2), and finally derive the clt s (Section 5.3).

5.1. Differential equations for the pgf p. For the transient distribution, a system of differential

equations was previously derived in [2]. It is based on the observation that M(t) has a Poisson

distribution with (random) parameter ϕ(J), see (1). The intuition behind this formula is that

a job arriving at time s survives in the system until time t with probability e−µi (t−s) (assuming

that the background process is in state i), which is distributionally equivalent with ‘thinning’ the

Poisson parameter with exactly this fraction. This description yields, after some manipulations,

the following differential equation for the pgf, the row vector p(t, z):

(12)
∂p(t, z)

∂t
= p(t, z)Q̃+ (z − 1)p(t, z)∆(t),

where Q̃ = (q̃ij)
d
i,j=1 is the transition rate matrix of the time-reversed version of J(·) (i.e., q̃ij :=

qjiπj/πi), and ∆(t) denotes a diagonal matrix with entries [∆(t)]ii := λi exp(−µit).

Remark 1. It is noted that the definition of p is slightly different from the one used in [2]. In the

present paper we consider the generating function of the number of jobs present at time t jointly

with the state of the background process at time t, whereas [2, Prop. 2] considers the generating

function of the number of jobs present at time t conditioned on the background state at time 0. As
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a consequence, we obtain a slightly different equation, but it is easy to translate them into each

other. ♦

Our objective is to set up our proof such that it facilitates proving both the transient and stationary

clt. Näıvely, one could try to obtain a differential equation for the stationary behavior by sending

t → ∞ in (12), but it is readily checked that this yields a trivial relation only: 0 = 0. A second

näıve approach would be to establish the clt for M (N)(t), and to send then t to ∞; it is clear,

however, that this procedure relies on interchanging two limits (N → ∞ and t → ∞), of which a

formal justification is lacking.

We therefore resort to an alternative approach. It relies on a description based on a more general

state space: we do not only keep track of the number of jobs present, but we rather record the

numbers of jobs present of each type, where ‘type’ refers to the state of the background process

upon arrival. To this end, we introduce the d-dimensional stochastic process

M(t) = (M1(t), . . . ,Md(t))t∈R ,

where the k-th entry denotes the number of particles of type k in the system at time t. The

transient and stationary total numbers of jobs present are denoted by

M(t) :=
d∑

k=1

Mk(t), M :=

d∑
k=1

Mk,

respectively. As usual, we add a superscript (N) when working with the model in which imposed

our scaling on the arrival rates and the transition rates of the background process.

As before, we first derive a differential equation for the unscaled model. The generating function

p(t, z) is defined as follows:

[p(t, z)]j = E

(
d∏

k=1

z
Mk(t)
k 1{J(t)=j}

)
.

In addition, Ek is a matrix for which [Ek]kk = 1, and whose other entries are zero. For a row vector

q, the multiplication qEk thus results in a (row) vector which leaves the k-th entry of q unchanged

while the other entries become zero. The following result covers the transient case.

Proposition 3. Consider Model ii. The pgf p(t, z) satisfies the following differential equation:

∂p(t, z)

∂t
= p(t, z)Q+

d∑
k=1

(zk − 1)

(
λk p(t, z)Ek − µk

∂p(t, z)

∂zk

)
.

With the pgf p(z1, . . . , zd) defined in the obvious way, the differential equation for the stationary

case is the following.
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Proposition 4. Consider Model ii. The pgf p(z) satisfies the following differential equation:

0 = p(z)Q+

d∑
k=1

(zk − 1)

(
λk p(z)Ek − µk

∂p(z)

∂zk

)
.

The proofs of these propositions are straightforward, and follow the same lines as before: we

consider the generator of the Markov process, and transform the Kolmogorov equation (for the

transient case) and the invariance equation (for the stationary case).

The partial differential equation for the transient scaled model follows directly from Prop. 3, by

replacing λk by Nλk, and Q by NαQ. It results in

(13)
∂p(N)(t, z)

∂t
= Nαp(N)(t, z)Q+

d∑
k=1

(zk − 1)

(
Nλk p

(N)(t, z)Ek − µk
∂p(N)(t, z)

∂zk

)
.

The stationary case can be dealt with analogously, relying on Prop. 4.

Our objective is to derive the clt for both the transient and stationary case. We do so by presenting

the full analysis for the transient case; in the stationary case we can leave out one term. Importantly,

this approach does not have the problem of illegitimately interchanging two limits.

5.2. Mean behavior. As before, we first derive the law of large numbers. Again we rewrite the

differential equations (13) as a recurrence relation for p(N) that involves the fundamental matrix

F :

p(N)(t, z) = p(N)(t, z)Π +N−α
d∑

k=1

(zk − 1)

(
Nλk p

(N)(t, z)Ek − µk
∂p(N)(t, z)

∂zk

)
F

−N−α∂p
(N)(t, z)

∂t
F(14)

for the transient case, and likewise for the stationary case.

The following lemma establishes weak laws of large numbers for M (N)(t) and M (N)(t), as well as

their steady-state counterparts M (N) and M (N). We first define

%
(ii)
k (t) := πk

λk
µk

(1− e−µkt), %
(ii)
k := πk

λk
µk
.

Also, %(ii)(t) :=
∑

k %
(ii)
k (t) and %(ii) :=

∑
k %

(ii)
k .

Lemma 3. Consider Model ii. As N →∞,

(1) N−1M (N)(t) converges in probability to %(ii)(t).

(2) N−1M (N) converges in probability to %(ii).

(3) N−1M (N)(t) converges in probability to %(ii)(t), and N−1M (N) to %(ii).
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Proof. Similarly to the proof of Lemma 1, we first introduce the scaled moment generating function

p̄(N)(t,ϑ) := p(N)(t, z), with zk ≡ z
(N)
k (ϑk) = exp(ϑk/N), for k = 1, . . . , d. We see immediately

that
∂p̄(N)(t,ϑ)

∂t
=
∂p(N)(t, z)

∂t
,

∂p̄(N)(t,ϑ)

∂ϑk
=
∂p(N)(t, z)

∂zk

dzk
dϑk

=
zk
N

∂p(t, z)

∂zk
.

Now we substitute these expressions in Eqn. (14), and note that z±1k = 1± ϑkN−1 +O(N−2). As

a consequence,

p̄(N)(t,ϑ) = p̄(N)(t,ϑ)Π +N−α
d∑

k=1

ϑk

(
λk p̄

(N)(t,ϑ)Ek − µk
∂p̄(N)(t,ϑ)

∂ϑk

)
F

−N−α∂p̄
(N)(t,ϑ)

∂t
F + o(N−α).

It directly follows that p̄(N)(t,ϑ) = p̄(N)(t,ϑ)Π +O(N−α), and hence also

∂p̄(N)(t,ϑ)

∂t
=
∂p̄(N)(t,ϑ)

∂t
Π +O(N−α),

∂p̄(N)(t,ϑ)

∂ϑk
=
∂p̄(N)(t,ϑ)

∂ϑk
Π +O(N−α).

The next step is to postmultiply the previous display by 1Nα, and after some elementary steps we

obtain the following scalar partial differential equation in p̄(N)(t,ϑ)1:

∂(p̄(N)(t,ϑ)1)

∂t
=

d∑
k=1

ϑk

(
πkλk(p̄

(N)(t,ϑ)1)− µk
∂(p̄(N)(t,ϑ)1)

∂ϑk

)
+ o(1).

Now let N → ∞; define p̄(t,ϑ)1 := limN→∞ p̄
(N)(t,ϑ)1. We propose the following form for the

limiting function p̄(t,ϑ)1:

p̄(t,ϑ)1 = exp

(
d∑

k=1

ϑk%̄k(t)

)
,

for specific functions %̄k(·) (to be determined later). Plugging this form into the differential equation,

it means that the following equation must be fulfilled by the %̄k(·):

d∑
k=1

ϑk
(
%̄′k(t)− πkλk + µk%̄k(t)

)
= 0.

As this must hold for any ϑk, this equation leads to a separate differential equation for every

%̄k(t), which moreover agrees with the one in the first part of the claim (%̄k(t) = %
(ii)
k (t), that is).

We conclude that we have established the claim for the transient case: N−1M (N)(t) converges in

probability to %(ii)(t) as N →∞.

For the stationary case, we can follow precisely the same procedure, but without the partial de-

rivative with respect to time, so that we now end up with a differential equation in p̄(ϑ)1 as

follows:

0 =

d∑
k=1

ϑk

(
πkλk(p̄(ϑ)1)− µk

∂(p̄(ϑ)1)

∂ϑk

)
,
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for which p̄(ϑ)1 = exp(
∑d

k=1 ϑk%
(ii)
k ) forms a solution. This completes the proof of the second

claim. The third claim follows trivially. �

5.3. Central limit theorems. Next, we state and prove the clt result for Model ii. To this end,

we first define the (symmetric) matrices V (t) and V := limt→∞ V (t) with entries

[V (t)]jk :=
λjλk[D̄]jk
µj + µk

(1− e−(µj+µk)t), [V ]jk =
λjλk[D̄]jk
µj + µk

;

here D̄ denotes the (symmetric) matrix defined by [D̄]jk = (πj [D]jk + πk[D]kj). Also, C :=

limt→∞C(t), where

[C(t)]jk := [V (t)]jk1{α≤1} + %
(ii)
j (t)1{α≥1}1{j=k}.

The following theorem is the main result of this section.

Theorem 3. Consider Model ii. The random vector

M (N)(t)−N%(ii)(t)
Nγ

converges to a d-dimensional Normal distribution with zero mean and covariance matrix C(t) as

N →∞. In both cases the parameter γ equals max{1− α/2, 1/2}. The random vector

M (N) −N%(ii)

Nγ

converges to a d-dimensional Normal distribution with zero mean and covariance matrix C as

N →∞.

Proof. Mimicking the proof of the clt in Section 3, we start again with setting up a recurrence

relation for the centered and normalized mgf p̃(N). Define z by zk ≡ z
(N)
k (ϑk) := exp(ϑkN

−γ), for

k = 1, . . . , d, with the value of γ to be determined later on. We first concentrate on the transient

case and introduce the centered and normalized mgf p̃(t,ϑ):

p̃(N)(t,ϑ) = exp

(
−N1−γ

d∑
k=1

ϑk%
(ii)
k (t)

)
p(N) (t, z) .

We wish to perform a change of variables in Eqn. (14) to obtain a recurrence relation in p̃(N)(t,ϑ).

To this end, note that

∂p(N)(t, z)

∂zk

dzk
dϑk

= exp

(
N1−γ

d∑
k=1

ϑk%
(ii)
k (t)

)(
%
(ii)
k (t)N1−γp̃(N)(t,ϑ) +

∂p̃(N)(t,ϑ)

∂ϑk

)
,

where
dzk
dϑk

= N−γ exp(ϑkN
−γ) = N−γzk.
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Also,

∂p(N)(t, z)

∂t
= exp

(
N1−γ

d∑
k=1

ϑk%
(ii)
k (t)

)(∑
k

ϑk
d%

(ii)
k (t)

dt
N1−γp̃(N)(t,ϑ) +

∂p̃(N)(t,ϑ)

∂t

)
.

Now perform the change of variables, and substitute the expressions for the partial derivatives of

p(N)(t, z) into Eqn. (14). Dividing the equation by exp(N1−γ∑d
k=1 ϑk%

(ii)
k (t)) gives the following

recurrence relation for p̃(N)(t, z):

p̃(N)(t,ϑ) = p̃(N)(t,ϑ)Π +N1−α
d∑

k=1

(zk − 1)λk p̃
(N)(t,ϑ)Ek F

−N−α
d∑

k=1

(
1− 1

zk

)
Nγµk

(
N1−γ%

(ii)
k (t)p̃(N)(t,ϑ) +

∂p̃(N)(t,ϑ)

∂ϑk

)
F

−N1−α−γ
d∑

k=1

ϑk
d%

(ii)
k (t)

dt
p̃(N)(t,ϑ)F −N−α∂p̃

(N)(t,ϑ)

∂t
F.

The next step is to introduce the second order Taylor expansions for zk and z−1k :

z±1k = 1± ϑkN−γ +
1

2
ϑ2kN

−2γ +O(N−3γ).

Ignoring all terms that are provably smaller than N−α under the assumption that γ > 1/3 (justified

later), and combining terms of the same order, we obtain

p̃(N)(t,ϑ) = p̃(N)(t,ϑ) Π +N1−α−γ
d∑

k=1

ϑk p̃
(N)(t,ϑ)

(
λkEk − µk%

(ii)
k (t)I −

d%
(ii)
k (t)

dt
I

)
F

+N1−α−2γ
d∑

k=1

ϑ2k
2
p̃(N)(t,ϑ)

(
λkEk + µk%

(ii)
k (t)I

)
F

−N−α
d∑

k=1

ϑkµk
∂p̃(N)(t,ϑ)

∂ϑk
F −N−α∂p̃

(N)(t,ϑ)

∂t
F,

up to an error term that is o(N−α). As we did in the proof of the clt in Section 3 with Eqn. (8),

we iterate and manipulate this relation, under the assumption that γ ≥ 1 − α/2 (justified later),

until all terms in the right-hand side contain p̃(N)Π. Then we postmultiply with 1Nα, and develop

a differential equation in terms of φ(N)(t,ϑ) := p̃(N)(t,ϑ) 1. After some (by now quite familiar)

manipulations, we obtain the following partial differential equation in φ(N)(t,ϑ):

∂φ(N)(t,ϑ)

∂t
+

d∑
k=1

ϑkµk
∂φ(N)(t,ϑ)

∂ϑk
=

1

2
φ(N)(t,ϑ)

N2−α−2γ
d∑
j=1

d∑
k=1

ϑjϑkλjλk[D̄]jk

+N1−2γ
d∑

k=1

ϑ2kπk(λk + µk%
(ii)
k (t))

)
+ o(1),
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where we have used that

πT

 d∑
j=1

ϑj(λjEj − µj%(ii)j (t)I −
d%

(ii)
k (t)

dt
I)

F( d∑
k=1

ϑk(λkEk − µk%
(ii)
k (t)I −

d%
(ii)
k (t)

dt
I)

)
1

=
d∑
j=1

d∑
k=1

ϑjϑkλjλk
(
πTEjDEk1

)
=

1

2

d∑
j=1

d∑
k=1

ϑjϑkλjλk[D̄]jk.

The last part of the proof concerns the limiting behavior as N →∞. Pick, as before, γ = max{1−

α/2, 1/2}, to obtain the following partial differential equation:

∂φ(t,ϑ)

∂t
+

d∑
k=1

ϑkµk
∂φ(t,ϑ)

∂ϑk

=
1

2
φ(t,ϑ)

 d∑
j=1

d∑
k=1

ϑjϑkλjλk[D̄]jk1{α≤1} +
d∑

k=1

ϑ2k(πkλk + µk%
(ii)
k (t))1{α≥1}

.
It is straightforward to verify that the following expression constitutes a solution for this differential

equation:

φ(t,ϑ) = exp

1

2

d∑
j=1

d∑
k=1

ϑjϑk[V (t)]jk1{α≤1} +
1

2

d∑
k=1

ϑ2k%
(ii)
k (t)1{α≥1}

 .

If we redo the derivation for the stationary case (i.e., we now discard the terms originating from

the derivative with respect to t in the original partial differential equation), we end up with

φ(ϑ) = exp

1

2

d∑
j=1

d∑
k=1

ϑjϑk[V ]jk1{α≤1} +
1

2

d∑
k=1

ϑ2k%
(ii)
k 1{α≥1}

 .

This completes the proof. �

Corollary 2. Consider Model ii. An immediate consequence of Thm. 3 is that, with γ as defined

before, the random variables

M (N) −N%(ii)

Nγ
and

M (N)(t)−N%(ii)(t)
Nγ

converge to Normal distributions with zero mean and variances

d∑
j=1

d∑
k=1

[V ]jk1{α≤1} + %(ii)1{α≥1} and
d∑
j=1

d∑
k=1

[V (t)]jk1{α≤1} + %(ii)(t)1{α≥1},

respectively, as N →∞.

6. Correlation across time

Above we analyzed the joint distribution of the two queues at a given point in time. A related

question, to be covered in this section, concerns the joint distribution at distinct time epochs. For
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ease we assume that the service rates are identical (and equal to µ), so that Model i and Model ii

coincide.

6.1. Differential equation. We follow the line of reasoning of [2, Prop. 2]; we consider again the

non-scaled model, but, as before, these results can be trivially translated in terms of the N -scaled

model. Fix time epochs 0 ≡ s1 ≤ s2 ≤ · · · ≤ sK for some K ∈ N. The goal of this subsection is to

characterize the joint transform, for j = 1, . . . , d,

Ψj(t, z) := E

(
K∏
k=1

z
M(t+sk)
k

∣∣∣∣∣ J(0) = j

)
.

Assume a job arrives between 0 and ∆t, for an infinitesimally small ∆t. Then it is still in the system

at time t+sk, but not anymore at t+sk+1 with probability fk(t)−fk+1(t), where fk(t) := e−µ(t+sk).

As a consequence, we obtain the following relation:

Ψj(t, z) = λj∆t b(t, z) Ψj(t−∆t, z)

+
∑
i 6=j

qji∆tΨi(t−∆t, z) +

1− λj∆t−
∑
i 6=j

qji∆t

Ψj(t−∆t, z) + o(∆t),

where

b(t, z) := (1− f1(t)) + z1(f1(t)− f2(t)) + · · ·

+ (z1 · · · zK−1)(fK−1(t)− fK(t)) + (z1 · · · zK)fK(t).

With elementary manipulations, we obtain

Ψj(t, z)−Ψj(t−∆t, z)

∆t
=

d∑
i=1

qjiΨi(t−∆t, z) + aj(t, z)Ψj(t−∆t, z) + o(1),

where aj(t, z) := λj (b(t, z)− 1) . Now letting ∆t ↓ 0, and defining A(t, z) := diag{a(t, z)}, we

obtain the differential equation, in vector notation,

∂

∂t
Ψ(t, z) = (Q+A(t, z))Ψ(t, z).

6.2. Covariance. We now explicitly compute Cov(M(s),M(t)), assuming, without loss of gener-

ality, that s ≤ t; the computations are similar to the ones in Section 2.2 (and therefore some steps

are left out). The ‘law of total covariance’, with J ≡ (J(r))tr=0, entails that

(15) Cov(M(s),M(t)) = ECov(M(s),M(t) | J) + Cov(E(M(s) | J),E(M(t) | J)).
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Due to the fact that M(s) obeys a Poisson distribution with the random parameter ϕ(J), the

second term in the right hand side of (15) can be written as I1 + I2, where

I1 :=

d∑
i=1

d∑
j=1

λiλjKij , where Kij :=

∫ s

0

∫ v

0
e−µ(s−u)e−µ(t−v)πi (pij(v − u)− πj) dudv,

I2 :=

d∑
i=1

d∑
j=1

λiλjLij , where Lij :=

∫ s

0

∫ t

v
e−µ(s−u)e−µ(t−v)πj (pji(u− v)− πi) dudv.

It takes some standard algebra to obtain

Kij = e−µtπi

∫ s

0

(∫ s

w
e2µvdv

)
e−µ(s+w) (pij(w)− πj) dw

=
1

2µ
e−µtπi

∫ s

0

(
eµ(s−w) − e−µ(s−w)

)
(pij(w)− πj) dw.

Similarly, Lij = L
(1)
ij + L

(2)
ij , where

L
(1)
ij :=

1

2µ
e−µtπj

(
eµs − e−µs

) ∫ t−s

0
eµw (pji(w)− πi) dw,

L
(2)
ij :=

1

2µ
e−µsπj

∫ t

t−s

(
eµ(t−w) − e−µ(t−w)

)
(pji(w)− πi) dw.

Now concentrate on the first term in the right hand side of (15). To this end, consider the following

decomposition:

M(s) := M (1)(s, t) +M (2)(s, t), M(t) := M (2)(s, t) +M (3)(s, t),

where M (1)(s, t) are the jobs that arrived in [0, s) that are still present at time s but have left at

time t, M (2)(s, t) the jobs that have arrived in [0, s) that are still present at time t, and M (3)(s, t)

the jobs that have arrived in [s, t) that are still present at time t. Observe that, conditional on J ,

these three random quantities are independent. As a result,

ECov(M(s),M(t) | J) = EVar(M (2)(s, t) | J).

Mimicking the arguments used in [6], it is immediate that M (2)(s, t) has a Poisson distribution with

random parameter ξ(J), where

ξ(f) :=

∫ s

0
λf(r)e

−µf(r)(t−r)dr.

We conclude that

ECov(M(s),M(t) | J) = Eξ(J) =
d∑
i=1

πiλi

∫ s

0
e−µ(t−r)dr = %(s) e−µ(t−s).



MARKOV-MODULATED INFINITE-SERVER QUEUES 25

When scaling λ 7→ Nλ and Q 7→ NαQ, for α > 0, it is readily verified that for N large,

Cov(M (N)(s),M (N)(t)) ∼ N%(s) e−µ(t−s) +N2−α e
−µt

µ

(
eµs − e−µs

)
U,

recalling that U := πTΛDΛ1. When taking s = t, we obtain formulae for the variance that are in

line with our findings of Section 2.2.

6.3. Limit results. We again consider the situation in which the modulating Markov chain J(·)

is sped up by a factor Nα (for some positive α), while the arrival rates λi are sped up by N . In

this subsection we consider the (multivariate) distribution of the number of jobs in the system at

different points in time. While in [2] we just covered the case of α > 1, we now establish a clt for

general α.

As the techniques used are precisely the same as before, we just state the result. We first introduce

some notation. Define [Č(t)]k` = [Č(t)]`k, where for k ≥ `

[Č(t)]k` :=
U

µ

(
1− e−2µ(t+s`)

)
e−µ(sk−s`)1{α≤1} +

λ∞
µ

(
1− e−µ(t+s`)

)
e−µ(sk−s`)1{α≥1}.

Theorem 4. The random vector(
M (N)(t+ s1)−N%(t+ s1)

Nγ
, . . . ,

M (N)(t+ sK)−N%(t+ sK)

Nγ

)

converges to a K-dimensional Normal distribution with zero mean and covariance matrix Č(t) as

N →∞. The parameter γ equals max{1− α/2, 1/2}.

As t→∞, Č(t)→ Č, where

[Č]k` =
uk`
2µ

, with uk` := 2
(
U1{α≤1} + λ∞1{α≥1}

)
e−µ(sk−s`).

We observe that the limiting centered and scaled process, as t→∞, has the correlation structure

of an Ornstein-Uhlenbeck process S(t) (at the level of finite-dimensional distributions), that is, the

solution to the stochastic differential equation

dS(t) = −µS(t)dt+
(

2U1{α≤1} +
√
λ∞ + µ%(t)1{α≥1}

)
dW (t),

with W (·) standard Brownian motion.

7. Numerical illustration

In this section, we briefly illustrate the accuracy of the approximations that are suggested by the

limit theorems of this paper. In particular, we consider the variance of the queue content M (N)

under stationarity for Model i. In this case, there is an exact expression for the variance [14]:

Var[M (N)] = 2N2πTΛ(M−NαQ)−1Λ(2M−NαQ)−11 +N%(i) −N2(%(i))2.
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On the other hand, Theorem 2 suggests the following asymptotic expression for the variance of

M (N):

V1(N) := N%(i)1{α≥1} +N2−ασ2m1{α≤1}.

This expression discards one of the two contributions to the variance, and may therefore be less

accurate when both terms are of comparable size. To remedy this effect, we propose the following

simple alternative

V2(N) := N%(i) +N2−ασ2m,

which is asymptotically equivalent with V1(N) as N grows large.

In Fig. 1, we illustrate these approximations in the three different regimes % � σ2m, % ≈ σ2m, and

%� σ2m, for a two-state Markov process with generator Q and varying values of α. The parameter

values for the three cases are

Q =

−1 1

3 −3

 ,

−2 2

1 −1

 ,

−1 1

3 −3

 ,

and λ = [1, 2], [1, 2], [1, 50], µ = [2, 1], [100, 1], [2, 1]. We observe that in all cases both approx-

imations tend to the exact values as N gets larger, but the errors are dependent on the specific

choices of the parameters of the Markov process. As to be expected, V2(N) is the more accurate

one. The contourplots in the middle row give the relative error in the approximation V1(N). They

nicely show the effect of the absence of one of the terms in the approximation: for % � σ2m the

relative error is almost one if α = 1− ε, whereas for % � σ2m this is the case for α = 1 + ε. If the

two terms are in balance (% ≈ σ2m), we see an increase of the relative error around α ≈ 1, which is

absent in approximation V2(N), plotted in the bottom row.

8. Discussion and conclusion

In this paper we derived central limit theorems (clt s) for infinite-server queues with Markov-

modulated input. In our approach the modulating Markov chain is sped up by a factor Nα (for

some positive α), while the arrival process is sped up by N . Interestingly, there is a phase transition

in the sense that the normalization to be used in the clt depends on the value of α: rather than the

standard normalization by
√
N , it turned out that the centered process should be divided by Nγ ,

with γ equal to max{1−α/2, 1/2}. We have proved this by first establishing systems of differential

equations for the (transient and stationary) distribution of the number of jobs in the system, and

then studying their behavior under the scaling described above.

We have also derived a clt for the multivariate distribution of the number of jobs present at

different time instants, complementing the analysis for just α > 1 in [2]. We anticipate weak
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Figure 1. Illustration of the behaviour of the approximation in the three different
regimes: (left) % � σ2m, (middle) % ≈ σ2m, (right) % � σ2m. Top row: Plots of the

variance of M (N) along with two approximations; black: α = 0.7; blue: α = 1.0;
red: α = 1.3. Full lines represent the exact values, dashed lines represent the
first approximation V1(N) and dash-dotted lines represent V2(N). Middle row:
Contourplots of the relative error in the approximation V1(N) for varying α and N .
Bottom row: Same for approximation V2(N).
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convergence to an Ornstein-Uhlenbeck process with appropriate parameters, but establishing such

a claim will require different techniques.

Appendix A. Uniqueness of solutions of the PDEs

In the various proofs of this article, we have ‘solved’ the differential equations by guessing a solution

and establishing that it satisfies both the differential equation itself and the boundary conditions.

We now show that the solutions are indeed unique by relying on the method of characteristics [5].

The method consists of rewriting the partial differential equation (pde) as a system of ordinary

differential equations along so-called characteristic curves, for which the theory of existence and

uniqueness is well-developed.

As all occurring pde s are of a similar form and moreover quasi-linear, we can suffice by establishing

uniqueness for the two types of pde s, the first of which is as follows:

d∑
k=1

µkϑk
∂φ

∂ϑk
= g(ϑ)φ(ϑ1, . . . , ϑd),

for some function g(·) with boundary condition φ(0, . . . , 0) = 1. This pertains to differential

equations in the proofs of Lemma 3 and Thm. 3. Let us consider a parametric curve

(ϑ1(t), · · · , ϑd(t), φ(t)) ,

where φ(t) := φ(ϑ1(t), · · · , ϑd(t)) (with a slight but customary abuse of notation), subject to the

following system of ordinary differential equations (ode s):

dϑk(t)

dt
= µkϑk(t) and

dφ(t)

dt
= g(ϑ1(t), . . . , ϑd(t))φ(t).

The ode s in ϑk(t) have the following solution:

ϑk(t) = ϑk(0) exp(µkt),

while the ode for φ is also quasi-linear with a continuous function g(·), such that a general solution

can be found with one undetermined constant. In order to construct the solution at an arbitrary

point (ϑ1, . . . , ϑd), one puts ϑk(0) = ϑk and then combines this with the boundary condition

1 = φ(0, · · · , 0), which indeed gives us the condition to make the solution of the ode in φ(t)

unique.

Next, we consider the pde:

∂φ

∂t
+

d∑
k=1

µkϑk
∂φ

∂ϑk
= g(t, ϑ)φ(t, ϑ1, . . . , ϑd),
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with the boundary condition φ(0, ϑ1, . . . , ϑd) = 1 (i.e., an empty system at t = 0) for which the

uniqueness question can be tackled in a similar but slightly different fashion (as t is now an explicit

variable of the problem). This form occurs in the proofs of Thms. 1 and 3 (as well as in the proofs

Lemmas 1 and 3 with the slight difference that there is a negative sign in the ∂/∂t-term, which

hardly changes our argument). Indeed, we consider the parametric curve:

(t, ϑ1(t), · · · , ϑd(t), φ(t)) ,

with the same ode s imposed on ϑk(t) (and hence having the same solution as well), while

dφ(t)

dt
= g(t, ϑ1(t), . . . , ϑd(t))φ(t)

has again a solution with one undetermined constant. In order to find the solution at (t, ϑ1, . . . , ϑd),

we put ϑk(t) = ϑk, from which we find ϑk(0) = ϑk exp(−µkt). These relations together with

φ(0) = 1 ensure that each ode has a unique solution, and hence the original pde has a unique

solution as well.
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