Asynchronous Coordination with Constraints and Preferences
Armando Castañeda, Pierre Fraigniaud, Eli Gafni, Sergio Rajsbaum, Matthieu Roy

To cite this version:
Armando Castañeda, Pierre Fraigniaud, Eli Gafni, Sergio Rajsbaum, Matthieu Roy. Asynchronous Coordination with Constraints and Preferences. 35th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2016), Jul 2016, Chicago, United States. 10.1145/2933057.2933081. hal-01326911

HAL Id: hal-01326911
https://hal.archives-ouvertes.fr/hal-01326911
Submitted on 6 Jun 2016
Asynchronous Coordination with Constraints and Preferences

Armando Castañeda
Instituto de Matemáticas
UNAM
Mexico City, Mexico
castaneda@unam.mx

Pierre Fraigniaud
IRIF, CNRS
University Paris Diderot
Paris, France
fraigniaud@irif.fr

Eli Gafni
CS Dept.
UCLA
Los Angeles, CA, USA
elii@ucla.edu

Sergio Rajsbaum
Instituto de Matemáticas
UNAM
Mexico City, Mexico
rajsbaum@unam.mx

Matthieu Roy
LAAS-CNRS
Université de Toulouse, CNRS
Toulouse, France
roy@laas.fr

ABSTRACT
Adaptive renaming can be viewed as a coordination task involving a set of asynchronous agents, each aiming at grabbing a single resource out of a set of resources totally ordered by their desirability. We consider a generalization of adaptive renaming to take into account scenarios in which resources are not independent.

We model constraints between resources as an undirected graph: nodes represent the resources, and an edge between two resources indicates that these two resources cannot be used simultaneously. In such a setting, the sets of resources that processes may use simultaneously form independent sets. In this note, we focus on this task in a model where such independent sets are computed by wait-free processes.

1. ASYNCHRONOUS COORDINATION AND RENAMING

Adaptive Renaming
In distributed computing, several tasks have an adaptive version in which the quality of the solution must depend only on the number of processes that participate in a given execution, and not on the total number of processes that may be involved in this task (this number may even be unbounded). A typical example of an adaptive task is adaptive renaming [1]: processes acquire distinct output names in the space \([1, r]\), where \(r\) depends only on the number \(k\) of participating processes. In the asynchronous setting with crash-prone processes and read/write registers (the wait-free case), the optimal value for the range is known to be \(r = 2k - 1\) [4, 5].

Interestingly, adaptive renaming can also be viewed as a task in which name \(i\) is preferred to name \(j\) whenever \(i < j\). Hence, adaptive renaming can be thought as an abstraction of the problem in which asynchronous agents are competing for resources totally ordered by their desirability.

We foresee that neither adaptive renaming nor musical chairs fully capture typical scenarios of agents competing for resources.

Dealing with Constraints on Resources
We foresee that neither adaptive renaming nor musical chairs fully capture typical scenarios of agents competing for resources.

It is often the case that resources are not independent: the literature on scheduling, partitioning or resource allocation — to cite a few — provide several examples in which resources are inter-dependent, causing some resource \(a\) not being allowed to be used simultaneously with resource \(b\). That is, using one possibly resource disables others.

In this work, we consider the case in which constraints are modeled as an undirected graph whose nodes are resources, and every edge \(\{a, b\}\) indicates that resources \(a\) and \(b\) cannot be both simultaneously acquired, i.e., acquiring a node disables all its neighbors. In other words, the sets of resources that are allowed are those which form independent sets in the constraints graph.

Following this framework, renaming as well as musical chairs tasks correspond to cases where the constraints graph is a stable graph (i.e., a graph with no edges). We address an extension of renaming and musical chairs, targeting an abstraction of a problem of coordination between agents under preferences and constraints.
Problem Statement

Definition 1. In the coordination with constraints and preferences task CCP, given an \(n \)-node graph \(G = (V, E) \) modeling the constraints between the resources in \(E \),

- an input is a multiset \(M \) of \(k \) elements in \(V \), representing the preferences of \(k \) processes \(p_1, \ldots, p_k \),
- an output is an independent set \(I = \{u_1, \ldots, u_k\} \) of \(G \), of size \(k \), representing the fact that process \(p_i \) acquires \(u_i \), for \(i = 1, \ldots, k \),
- if the input is an independent set of \(k \) elements in \(V \), then every process should output its initial preference.

Seminal papers on renaming [4] and musical chairs [2] showed that in an asynchronous system in which the processes are subject to crash failures, the CCP task is not solvable for \(k \) larger than some bound, even for the stable graph \(G \) (the value of the bound on \(k \) for the stable graph is roughly half the number of nodes of the graph \(n \)). Indeed, we are interested in understanding how the addition of constraints may affect the computability of this task.

More precisely, given a graph \(G \), we want to determine the largest \(k \) for which the coordination with constraints and preferences task on \(G \) is solvable, for any preference multiset \(M \) of size at most \(k \). Regarding the computation model, we focus here on wait-free systems, in which any subset of processes may fail by crashing, all processes are asynchronous, and communication is performed using read and write operations in shared memory, where each process has its own private registers.

2. LOWER BOUNDS, ALGORITHMS AND OPEN PROBLEMS

A Tight Lower Bound for Paths

Let us first consider the problem for an \(n \)-node path \(P_n \). This particular case will enable us to prove a lower bound on the size of Hamiltonian graphs for which the coordination with constraints and preferences task is solvable. Interestingly, this lower bound is almost twice as large as the \(2k - 1 \) bound without constraints resulting from renaming or musical chairs. Specifically, we establish the following:

Theorem 1. Let \(k \) be a positive integer. The smallest integer \(n \) for which the coordination with constraints and preferences task in the line of \(n \) nodes \(P_n \) is solvable for \(k \) processes satisfies \(n = 4k - 3 \). As a consequence, if the coordination with constraints and preferences task in an \(n \)-node Hamiltonian graph \(G \) is solvable for \(k \) processes then \(n \geq 4k - 3 \).

The lower bound on \(n \) follows from reduction of CCP on a \(4k - 4 \) line to musical chairs with \(2k - 2 \) chairs, i.e., \(2k - 2 \) renaming with initial preference, which is impossible [2]. As sketched in Figure 1, the reduction proceeds by assigning one edge over two to a chair. In the line, each vertex is connected to exactly one bold edge. Bold edges are labelled 1, 2k − 2 and correspond to the vertex labelling of the empty graph, and arrows represent the reduction.

The upper bound on \(n \) comes from a wait-free algorithm, inspired from the optimal adaptive renaming algorithm in [3], whose main lines are: (1) fix a maximum independent set \(I \) in \(P_n \), (2) index the vertices of \(I \) from 1 to \(2k - 1 \), and (3) \(p_i \) checks if there is no conflict with its initial preference; if \(p_i \) is not in conflict, the it decides its initial preference, otherwise it runs an optimal (adaptive) renaming algorithm on these indexes. This algorithm is static in the sense that \(I \) is predetermined in advance and not during an execution. Algorithm 1 describes such a generic static algorithm.

From this preliminary result on \(P_n \), one may think that solving the coordination with constraints and preferences task in a graph \(G \) boils down to classical renaming once a maximum independent set in \(G \) is fixed. We show that this is not the case. In fact, even for an instance as simple as the \(n \)-node ring \(C_n \), the problem becomes highly non-trivial.

Rings: the Case of the Pentagon

Theorem 2. Let \(k \) be a positive integer. The smallest \(n \) for which the coordination with constraints and preferences task in \(C_n \) is solvable for \(k \) processes satisfies \(4k - 3 \leq n \leq 4k - 2 \).

The lower bound is a consequence of Theorem 1 since \(C_n \) is Hamiltonian. A quite intriguing fact is that the wait-free algorithm derived from an adaptation of an optimal algorithm for classical renaming run on a maximum independent set of \(C_n \) does not match the lower bound, and is off by an additive factor +1.

Figure 1: Reduction of CCP task on a 4k − 4 line to renaming on 2k − 2 names.

Figure 2: Optimal algorithm for two processes in the pentagon: rules when two processes are executing

The algorithm for two processes in the pentagon \(C_5 \) is depicted on Figure 2 which represents the snapshot of a process, and the action to take (represented as arrows) based on this snapshot when 2 processes participate. There are three cases, depending on whether the two processes are currently occupying nodes at distance 0, 1, or 2. Notice that if the snapshot reveals that the process is alone, then it decides the node that it currently occupies, i.e., its preferred node. If the snapshot reveals that the two processes occupy the same node, then the action depends on the ID: going clockwise for the process with smallest ID, and counterclockwise otherwise. If the snapshot reveals that the two processes occupy two neighboring nodes, then the action is: going away from the other node. Finally, if the snapshot reveals that the two
processes occupy two nodes at distance 2, then the action is to decide the currently occupied node.

We believe that the difference of 1 between the lower and upper bounds for \(C_n \) is certainly not anecdotal, but is the witness of a profound phenomenon that is not yet understood, with potential impact on classical renaming and musical chairs. The main outcome of this paper is probably the observation that static algorithms, i.e., algorithms based on fixed precomputed positions in the graph of constraints, might be sub-optimal by allocating less resources than the optimal.

The optimal algorithm for coordinating two processes in the pentagon is not static, and the set of allocated resources output by this algorithm spans all possible independent sets. The design of optimal dynamic (i.e., non static) algorithms for solving the coordination with constraints and preferences task appears to be a challenge, even in the specific case of the cycle \(C_n \).

The Inherent Difficulty of the General Case

The inherent difficulty for asynchronous crash-prone processes to coordinate under constraints and preferences, even in graphs with arbitrarily large independent sets, can also be illustrated by the complete bipartite graph \(K_{x,y} \) with \(n = x + y \) nodes. We show that, although \(K_{x,y} \) has very large independent sets (of size at least \(\min\{x, y\} \)), processes cannot coordinate at all in this graph.

Theorem 3. Let \(x, y \) be positive integers. Coordination with constraints and preferences in the complete bipartite graph \(K_{x,y} \) is unsolvable for more than one process.

A Suboptimal Static Algorithm for General Graphs

Finally, on the positive side, given any graph \(G \), we can design a static algorithm \(\text{alg} \) solving the coordination with constraints and preferences task in \(G \)—recall that static, in this case, means that \(\text{alg} \) is based on a statically defined independent set \(I \), a priori known to processes.

More precisely, \(\text{alg} \) requires a \(k \)-admissible independent set: given \(G = (V, E) \), an independent set \(I \) of \(G \) is \(k \)-admissible if for every \(W \subseteq V \) of size at most \(k - 1 \), we have \(|I \setminus N[W]| \geq |I \cap W| + 1 \) where \(N[W] \) denotes the set of nodes at distance at most 1 from a node in \(W \) (\(N[w] = \{v \in V : \{v, w\} \in E\} \), and \(N[W] = \bigcup_{w \in W} N[w] \)). Figure 3 provides a sketch of \(k \)-admissibility.

![Figure 3: \(k \)-admissibility : \(|I \setminus N[W]| \geq |I \cap W| + 1 \), if \(|W| \leq k - 1 \)](image)

We can prove that among static algorithms, \(\text{alg} \) is optimal, which completely closes the problem for static algorithms.

Theorem 4. Let \(G \) be a graph, and \(k \) be a positive integer. Let \(I \) be a \(k \)-admissible independent set in \(G \). Then, \(\text{alg} \) instantiated with \(I \) solves the coordination with constraints and preferences task in \(G \) with \(k \) processes. Moreover, if \(G \) has no \((k + 1)\)-admissible independent set, then no static algorithm can solve the coordination with constraints and preferences task in \(G \) with more than \(k \) processes.

Algorithm 1

\[G = (V, E) \] is a graph, and \(I \) is an ordered independent set in \(G \). Code for \(p_i \).

function CoordinationConstraints(\(u_i \in V \): initial preference)

1: \(\text{cur}_i \leftarrow u_i \)
2: \textbf{loop}
3: \(\text{write}(\text{cur}_i) \)
4: \(\text{snapshot memory to get view} = \{\text{cur}_{j_1}, \ldots, \text{cur}_{j_k}\} \)
5: \(\text{view}' \leftarrow \text{view} \setminus \{\text{cur}_i\} \) \(\triangleright \) remove \(\text{cur}_i \) from view
6: \(\text{if } \text{view}' \cap N[\text{cur}_i] = \emptyset \text{ then} \) \(\triangleright \) check for conflicts
7: \(\text{return } \text{cur}_i \) \(\triangleright \) no conflict \(\Rightarrow \) decide \(\text{cur}_i \)
8: \(\text{else} \)
9: \(\text{free} \leftarrow I \setminus N[\text{view}'] \) \(\triangleright \) rule out conflicts from \(I \)
10: \(\ell \leftarrow \{j : \text{cur}_{j_k} \in I \text{ and } j_k < i\} + 1 \) \(\triangleright \) ranking
11: \(\text{cur}_i \leftarrow \ell^{th} \text{ element in free} \) \(\triangleright \) next proposal
12: \textbf{end if}
13: \textbf{end loop}

Algorithm 1 is the pseudocode of \(\text{alg} \). The algorithm uses a shared array view, accessed with \text{write} and \text{snapshot} operations, where each entry is initially \(\bot \). The local variable \(\text{cur}_i \) stores the current proposal of process \(p_i \). Algorithm 1 is a rewriting of a textbook renaming algorithm for shared memory 4, adapted to take into account the statically fixed independent set \(I \) and the constraint that no two processes may end up in connected vertices.

Conclusion

In this note, we introduced the coordination with constraints and preferences task, a task that models a set of processes competing for interdependent resources. We sketched a lower bound for Hamiltonian graphs, and provided an optimal algorithm for 2 processes on a pentagon. If processes agree beforehand on a given maximal independent set, we describe a static algorithm for solving this problem. Static algorithms are in general sub-optimal, as illustrated on the pentagon.

Hence, the design of optimal dynamic algorithms for solving the coordination with preferences and constraints tasks in graphs appears to be a challenging open problem, even for the relatively simple case of rings.

3. REFERENCES

