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Abstract— In this paper, we propose a new linear 
representation to model the behavior of Timed Automata with 
Guards (TAGs) using the formalism of dioids algebra. This 
linear modeling is used to define the parallel composition and 
properties of determinism for TAGs. The contribution is 
illustrated with an example of a jobshop to analyze the 
performances of this system. 
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I. INTRODUCTION 
We are interested in this work to analyze the behavior of 

a class of timed Discrete Event Systems (DES). The timing 
aspect of DES can be handled through several modeling tools 
and analysis. In this paper, we will consider two 
complementary formalisms: approaches based on dioids 
algebra (in particular (max,+) and (min,+) algebra), and 
models based on timed automata. 

On the first hand, (max,+) algebra (introduced in [3]) is 
particularly effective for the study of quantitative measures 
of DES, such as asymptotic performances, earliest or latest 
behaviors. However, this formalism is not adapted to dealing 
with conflicts or choices that are very common in DES. It has 
been shown in [6] that automata with multiplicities in 
(max,+) algebra, also called (max,+) automata, can be used 
to handle this issue. This approach combines ideas of 
automata with results on (max,+) algebra, to manage both 
logical and timing aspects of DES. (max,+) automata are the 
subject of numerous publications during the last years on 
performance evaluation ([6], [7]) and control ([9], [10], [12]). 
More recently, an approach presented in [4] proposes a new 
representation of (max,+) automata that takes advantages of 
both (max,+) and (min,+) algebras to determine the 
completion dates for the worst and the best schedules. 
Nevertheless, (max,+) automata only consider single 
weighted transitions (transitions associating a single duration 
to an event), which are not suited for industrial application. 
This comes from the fact that in practice, an event does not 
occur at the exact same time, and a task does not have an 
exact duration. It is more realistic to use intervals in order to 
describe these aspects.  

On the other hand, timed automata are particularly 
efficient at handling intervals as durations of tasks and 
bounds of occurrences. There were first presented in [1] as 
timed graphs that use comparison between clocks values and 
transitions guards to rule the system evolutions. Based on 
works about timed transitions systems ([8]), a first extension 

of these automata were proposed in [2]. In order to prevent 
that the system evolve into deadlocks caused by time elapsing 
(no more transition is validated for the clocks values), timed 
automata completed with state invariants, called Timed 
Automata with Guards (TAGs), were introduced in [6]. 
Finally, timed automata used in UPPAAL software were 
presented in [11]. UPPAAL automata are particularly 
powerful thanks to the high number of possibilities they offer 
(urgencies, synchronizations). However, to the best of our 
knowledge, none of these formalisms had been used as a base 
for a linear representation. Hence, it is not possible to use 
results of (max,+) algebra on these automata. 

In order to fill the gap between timed automata and 
(max,+) based approaches, [13] proposed an utilization of 
techniques based on semirings of interval and linear algebra 
to model a class of timed automata (Interval Weighted 
Automata) in a linear manner. However, the clocks used in 
these automata are reset at every transition. This restriction is 
not suitable for modeling systems in which durations are 
stated for sequences instead of events. 

This paper proposes a linear representation of TAGs by 
means of dioids, taking advantage of the modeling capacity 
of TAGs and the analysis possibilities of (max,+) automata at 
the same time. 

The paper is organized as follows. In the following 
section, we recall the formalism of TAGs. A linear 
representation of TAGs is introduced in section III, and an 
application of this representation is presented in section IV. 
Finally, conclusions and possible future works are drawn up. 

II. TIMED AUTOMATA WITH GUARDS 
This section reminds the formalism of Timed Automata 

with Guards presented in [5] and provides some illustrative 
examples. 

A. Definition of a TAG 
Definition 1 [5]: A Timed Automaton with Guards, 

denoted by 𝐺𝐺, is a 7-tuple 

𝐺𝐺 = (𝑄𝑄, Σ,𝑄𝑄0,𝑄𝑄𝑚𝑚 ,𝑇𝑇𝑇𝑇𝑇𝑇, 𝐼𝐼𝐼𝐼𝐼𝐼,𝐶𝐶) 
where: 

• 𝑄𝑄 is the set of states; 

• 𝑄𝑄0 ⊂ 𝑄𝑄 is the set of initial states; 

• 𝑄𝑄𝑚𝑚 ⊂ 𝑄𝑄 is the set of final (or marked) states; 

• Σ is a finite set of events; 



• 𝐶𝐶 is the set of clocks, 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛, with 𝑐𝑐𝑖𝑖(𝑡𝑡) ∈ ℝ+, 
𝑡𝑡 ∈ ℝ+; 

• 𝑇𝑇𝑇𝑇𝑇𝑇 is the set of timed transitions of the 
automaton with 

𝑇𝑇𝑇𝑇𝑇𝑇 ⊆ 𝑄𝑄 × 𝒞𝒞(𝐶𝐶) × Σ × 2𝐶𝐶 × 𝑄𝑄 
where 𝒞𝒞(𝐶𝐶) is the set of admissible constraints 
for the clocks in the set 𝐶𝐶; 

• 𝐼𝐼𝐼𝐼𝐼𝐼 is the set of state invariants, 𝐼𝐼𝐼𝐼𝐼𝐼 ∶ 𝑄𝑄 →
𝒞𝒞(𝐶𝐶); 

The set 𝑇𝑇𝑇𝑇𝑇𝑇 of timed transitions is to be interpreted as 
follows. If 

(𝑞𝑞𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 
then there is a transition from 𝑞𝑞𝑖𝑖𝑖𝑖 to 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 with the complete 
label 

(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, ; 𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝒞𝒞(𝐶𝐶), 𝑒𝑒 ∈ Σ, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊆ 𝐶𝐶. 

The set of admissible clock constraints 𝒞𝒞(𝐶𝐶) is specified 
as follows: 

• If 𝑰𝑰 ⊆ ℝ+, then all conditions of the form 𝑐𝑐𝑖𝑖(𝑡𝑡) ∈
𝑰𝑰 are in 𝒞𝒞(𝐶𝐶). 

• If 𝑔𝑔1 and 𝑔𝑔2 belong to 𝒞𝒞(𝐶𝐶), then 𝑔𝑔1 ∧ 𝑔𝑔2 
belongs to 𝒞𝒞(𝐶𝐶) 

Example 1: Fig. 1 depicts an example of an alarm 
modeled with a TAG, called 𝐺𝐺1, with a clock 𝑐𝑐1 and a state 
invariant in state 2. This automaton will issue an event alarm 
if the duration between 2 consecutive occurrences of msg is 
smaller than 1 time unit. State 1 is considered as final. For the 
sake of simplicity, when the guard is [0; +∞[, i.e. when an 
event can occur at any time, the notation – is used in place of 
[0; +∞[. 

 
Figure 1: A Timed Automaton with Guards 𝐺𝐺1 

Remark 1: 

• There is no need for the bounds of admissible 
clock constraints to be integer. 

• All clocks are set to 0 when the system is 
initialized. 

• Initial (final) states are indicated with incoming 
(outgoing) arrows. In Fig. 1, state 0 is initial and 
state 1 is final. 

• The mechanism of 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 allow modeling 
systems in which durations are stated for 
sequences of events. For example, the constraint 
“sequence 𝑎𝑎𝑎𝑎 must last at least 5 t.u. and at most 
10 t.u.” can be modeled as follow. This kind of 

constraint cannot be treated with automata used 
in [13]. 

 
 

Properties of TAGs, such as determinism and model 
execution are detailed in [5] 

B. Parallel Composition 
Definition 2 [5]: Consider two timed automata with 

guards  
𝐺𝐺1 = �𝑄𝑄1, Σ1,𝑄𝑄0,1,𝑄𝑄𝑚𝑚,1,𝑇𝑇𝑇𝑇𝑎𝑎1, 𝐼𝐼𝐼𝐼𝑣𝑣1,𝐶𝐶1� and  
𝐺𝐺2 = �𝑄𝑄2, Σ2,𝑄𝑄0,2 ,𝑄𝑄𝑚𝑚,2 ,𝑇𝑇𝑇𝑇𝑎𝑎2, 𝐼𝐼𝐼𝐼𝑣𝑣2,𝐶𝐶2�. The parallel 
composition of 𝐺𝐺1 and 𝐺𝐺2 is the automaton: 

𝐺𝐺1||2 = 𝒜𝒜𝒜𝒜�𝑄𝑄1 × 𝑄𝑄2, Σ1 ∪ Σ2,𝑄𝑄0,1 × 𝑄𝑄0,2,𝑄𝑄𝑚𝑚,1
× 𝑄𝑄𝑚𝑚,2,𝑇𝑇𝑇𝑇𝑎𝑎1||2, 𝐼𝐼𝐼𝐼𝑣𝑣1||2,𝐶𝐶1 ∪ 𝐶𝐶2� 

where 𝒜𝒜𝒜𝒜 corresponds to accessible transitions and states, 
𝐼𝐼𝐼𝐼𝑣𝑣1||2 ∶ 𝑄𝑄1 × 𝑄𝑄2 → 𝒞𝒞�𝐶𝐶1||2� = 𝒞𝒞(𝐶𝐶1) ∧ 𝒞𝒞(𝐶𝐶2) 

with 𝐼𝐼𝐼𝐼𝑣𝑣1||2(𝑞𝑞1, 𝑞𝑞2) = 𝐼𝐼𝐼𝐼𝑣𝑣1(𝑞𝑞1) ∧ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞2), and 𝑇𝑇𝑇𝑇𝑎𝑎1||2 is 
defined as follows: 

𝑇𝑇𝑇𝑇𝑎𝑎1||2 ⊆ (𝑄𝑄1 × 𝑄𝑄2) × 𝒞𝒞(𝐶𝐶)1||2 × (Σ1 ∪ Σ2) × 2𝐶𝐶1∪𝐶𝐶2
× (𝑄𝑄1 × 𝑄𝑄2) 

• For all 𝑒𝑒 ∈ Σ1 ∩ Σ2, if 
(𝑞𝑞𝑖𝑖,𝑖𝑖𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑖𝑖 , 𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖 , 𝑞𝑞𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑎𝑎𝑖𝑖 for  
𝑖𝑖 = 1,2, then  

��𝑞𝑞1,𝑖𝑖𝑖𝑖, 𝑞𝑞2,𝑖𝑖𝑖𝑖�,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑1 ∧ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑2, 𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡1
∪ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡2, �𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜�� ∈ 𝑇𝑇𝑇𝑇𝑎𝑎1||2; 

• For all 𝑒𝑒1 ∈ Σ1\Σ2 and 𝑞𝑞2 ∈ 𝑄𝑄2, if 
(𝑞𝑞1,𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑1, 𝑒𝑒1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡1, 𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑎𝑎1, then  

��𝑞𝑞1,𝑖𝑖𝑖𝑖, 𝑞𝑞2�,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑1, 𝑒𝑒1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡1, �𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑞𝑞2�� ∈ 𝑇𝑇𝑇𝑇𝑎𝑎1||2; 
• For all 𝑒𝑒2 ∈ Σ2\Σ1 and 𝑞𝑞1 ∈ 𝑄𝑄1, if 

(𝑞𝑞2,𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑟𝑟𝑑𝑑2, 𝑒𝑒2, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡2,𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑎𝑎2, then 

��𝑞𝑞1, 𝑞𝑞2,𝑖𝑖𝑖𝑖�,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑2, 𝑒𝑒2, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡2, �𝑞𝑞1, 𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜�� ∈ 𝑇𝑇𝑇𝑇𝑎𝑎1||2. 
 

Example 2: Recall the automaton 𝐺𝐺1 of Fig.1. Suppose 
that a second TAG, called 𝐺𝐺2 and shown in Fig. 2.1, was built 
in order to issue an event 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎5 if two occurrences of 
events 𝑚𝑚𝑚𝑚𝑚𝑚 are more than 5 time units apart. The parallel 
composition of 𝐺𝐺1 and 𝐺𝐺2, called G1||2, is shown in Fig. 2.2. 
The set of transitions has been built exhaustively according 
to definition 2. Since clocks 𝑐𝑐1 and 𝑐𝑐2 reset when entering the 
state (1,B) as shown in the transition (−;𝑚𝑚𝑚𝑚𝑚𝑚; 𝑐𝑐1, 𝑐𝑐2), 
conditions 𝑐𝑐1 ∈ ]0; 1[ and 𝑐𝑐2 ∈ ]5; +∞[  of the transition 
(]0; 1[1 ∧ ]5; +∞[2;𝑚𝑚𝑚𝑚𝑚𝑚 ; 𝑐𝑐1, 𝑐𝑐2) cannot be satisfied. Hence, 
the state (2,D) and its successors are not reachable. 



 

 
Figure 2 – 1. A Timed Automaton with Guards 𝐺𝐺2 (top) - 2. Parallel 
composition 𝐺𝐺1||2 of 𝐺𝐺1 and 𝐺𝐺2 (bottom) 

C. Case of single-clock systems 
In most cases, for small-size systems, only one clock is 

sufficient. Concerning larger systems, they can be handled by 
using decentralized approaches, in which each sub-system is 
modeled with a single clock. In that specific case of single 
clock systems, the parallel composition could be simplified 
since the conjunction of two guards would become equivalent 
to the intersection of the intervals. If the result of that 
intersection is the empty set, then the guard can never be 
validated, and the associated transition can be deleted. 

Example 3: Consider that the automata 𝐺𝐺1  and 𝐺𝐺2 from 
examples 1 and 2 share the same clock 𝑐𝑐. The automaton 𝐺𝐺1||2

′  
shown in Fig. 3 is the result of the parallel composition. 

 
Figure 3 – TAG 𝐺𝐺1||2

′  for a single-clock case 

III. LINEAR REPRESENTATION OF TIMED AUTOMATA WITH 
GUARDS USING DIOIDS ALGEBRA 

This section presents our proposition for a linear 
representation of TAGs using dioids. In this section, we will 
assume that for all 𝑞𝑞 ∈ 𝑄𝑄, 𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞) = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, that is, the linear 
notation proposed below does not consider the set of state 
invariants 𝐼𝐼𝐼𝐼𝐼𝐼. To maintain the coherence of the examples, 
state invariants from Fig. 1, 2 and 3 will be held by outgoing 
transitions of these states e.g. the state invariant 𝑐𝑐 < 1 of the 
state (1,D) in Fig. 3 will become a guard in the transition from 
state (1,D) to state (1,F): ([0; 1[ ;𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎5 ; −). Moreover, 
we will only consider single-clock system in this section. 

A. Definition 
Consider a dioid (𝔻𝔻,⊕,⊗, 𝜖𝜖, 𝑒𝑒), such that 𝜖𝜖 (resp. 𝑒𝑒) is 

the neutral element for ⊕ (resp. ⊗). 

The set ℝ ∪ {−∞} with the maximum playing the role of 
addition and conventional addition playing the role of 
multiplication is a dioid, denoted ℝ𝑀𝑀𝑀𝑀𝑀𝑀 and usually called 
(max,+) algebra, with 𝑒𝑒 = 0 and 𝜖𝜖 = −∞. Dioid ℝ𝑀𝑀𝑀𝑀𝑀𝑀 
completed with ⊤ = +∞ is denoted ℝ�𝑀𝑀𝑀𝑀𝑀𝑀. 

Similarly, the (min,+) algebra is the set ℝ ∪ {+∞} with 
the minimum as addition, the conventional addition as 
multiplication, 𝑒𝑒 = 0 and 𝜖𝜖 = +∞. 

Definition 3: A TAG can be defined as a 7-tuple 
�𝑄𝑄, Σ,𝑇𝑇𝑇𝑇𝑇𝑇,𝛼𝛼,𝛽𝛽, 𝜇𝜇𝑆𝑆𝑢𝑢𝑝𝑝, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼�, called linear representation, 
where: 

• 𝑄𝑄 is the set of states; 

• Σ is a finite set of events; 

• 𝑇𝑇𝑇𝑇𝑇𝑇 is the set of timed transitions of the 
automaton;  

• 𝛼𝛼 ∈ ℝ�𝑀𝑀𝑀𝑀𝑀𝑀
1×|𝑄𝑄|, if 𝑞𝑞 ∈ 𝑄𝑄0 then 𝛼𝛼𝑞𝑞 = 𝑒𝑒 else 𝛼𝛼𝑞𝑞 = 𝜖𝜖;  

• 𝛽𝛽 ∈ ℝ�𝑀𝑀𝑀𝑀𝑀𝑀
|𝑄𝑄|×1, if 𝑞𝑞 ∈ 𝑄𝑄𝑚𝑚 then 𝛽𝛽𝑞𝑞 = 𝑒𝑒 else 𝛽𝛽𝑞𝑞 = 𝜖𝜖; 

• 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆: Σ → 𝔻𝔻|𝑄𝑄|×|𝑄𝑄|,  
[𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)]𝑞𝑞𝑖𝑖𝑖𝑖𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜
≜ �sup(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 𝑖𝑖𝑖𝑖 (𝑞𝑞𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑒𝑒𝑣𝑣 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇

𝜖𝜖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
  

 
• 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼: Σ → 𝔻𝔻|𝑄𝑄|×|𝑄𝑄|,  

𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒𝑣𝑣)𝑞𝑞𝑖𝑖𝑖𝑖𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜
≜ �inf(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 𝑖𝑖𝑖𝑖 (𝑞𝑞𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑒𝑒𝑣𝑣 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇

𝜖𝜖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
  

 

In other words, coefficients �𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)�
𝑖𝑖𝑖𝑖

 and �𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒𝑣𝑣)�
𝑖𝑖𝑖𝑖

 
correspond respectively to the upper and lower bounds of the 
intervals in guard for every (𝑞𝑞𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑒𝑒𝑣𝑣, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜) ∈
𝑇𝑇𝑇𝑇𝑇𝑇. 

Namely, for 𝔻𝔻 = ℝ�𝑀𝑀𝑀𝑀𝑥𝑥., a TAG can be represented with 
two (max,+) automata as presented in [5]. These automata 
correspond to the extremal behavior of the system modeled: 
𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 (resp. 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼) describes the upper bound (resp. lower 
bound) of the system. For the sake of simplicity, we will use 
the notation ⊤ = +∞ in the examples presented below. 

Remark 2: it is possible to take into account initial and 
final delays through vectors 𝛼𝛼 and 𝛽𝛽. 𝛼𝛼𝑞𝑞𝑖𝑖 = 𝑛𝑛 (resp. 𝛽𝛽𝑞𝑞𝑖𝑖 = 𝑛𝑛) 
means than the state 𝑖𝑖 is initial (final) with an initial (final) 
delay of n time unit. By convention, if a state 𝑖𝑖 is not initial 
(final), 𝛼𝛼𝑞𝑞𝑖𝑖 = 𝜖𝜖 (𝛽𝛽𝑞𝑞𝑖𝑖 = 𝜖𝜖). 

Example 4: Recall the automaton 𝐺𝐺1 from Fig. 1. We had 
𝑄𝑄 = {0,1,2,3} , Σ = {𝑚𝑚𝑚𝑚𝑚𝑚, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} ,𝑄𝑄0 = {0},𝑄𝑄𝑚𝑚 = {1}. 
For this example, we obtain the following initial/final vectors 
and matrices (these four matrices represent the behavior at 
the latest and at the earliest of the TAG 𝐺𝐺1): 



𝛼𝛼 = (𝑒𝑒 𝜖𝜖 𝜖𝜖 𝜖𝜖) ;  𝛽𝛽 = �
𝜖𝜖
𝑒𝑒
𝜖𝜖
𝜖𝜖
� ; 

𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚𝑚𝑚𝑚𝑚) = �

𝜖𝜖 ⊤ 𝜖𝜖 𝜖𝜖
𝜖𝜖 ⊤ 1 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖

� ; 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = �

𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 1
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖

� ; 

𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑚𝑚𝑚𝑚𝑚𝑚) = �

𝜖𝜖 0 𝜖𝜖 𝜖𝜖
𝜖𝜖 1 0 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖

� ; 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = �

𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 0
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖

� ; 

 

Similarly to generalized daters introduced in [6] in order 
to describe the evolution and the dynamic of (max,+) 
automata, we propose a definition for generalized bounds for 
a TAG. 

Definition 4: Consider two vectors 𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤) ∈ ℝ�𝑀𝑀𝑀𝑀𝑀𝑀
1×|𝑄𝑄| and 

𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤) ∈ ℝ�𝑀𝑀𝑀𝑀𝑀𝑀
1×|𝑄𝑄|, 𝑤𝑤 ∈ Σ∗, called generalized bounds, and 

defined as follows: 

𝐼𝐼𝐼𝐼 ℝ�𝑀𝑀𝑀𝑀𝑀𝑀 , �
𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝜀𝜀) = 𝛼𝛼

𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤𝑒𝑒𝑣𝑣) = 𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤) ⊗ 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣) 

𝐼𝐼𝐼𝐼ℝ�𝑀𝑀𝑀𝑀𝑀𝑀 , �
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝜀𝜀) = 𝛼𝛼

𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤𝑒𝑒𝑣𝑣) = 𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤) ⊗ 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒𝑣𝑣) 

where 𝜀𝜀 is the empty word and 𝑒𝑒𝑣𝑣 ∈ Σ. 

�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)�
𝑞𝑞
 can be interpreted as the maximal date at 

which the state 𝑞𝑞 can be reached following a sequence 𝑤𝑤 from 
an initial state. By convention, �𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)�

𝑞𝑞
= 𝜖𝜖 if the state 𝑞𝑞 

cannot be reached following the sequence 𝑤𝑤 from an initial 
state. An application of generalized bounds is exposed in 
section IV. 

B. Determinism 
The determinism of a TAG can be expressed with its 

linear representation. However, we can find two definitions 
of the determinism: 

• Time-determinism [5]: an automaton is 
deterministic if for all events at all states, the 
guards of the associated transitions are mutually 
exclusive. 

• Event-determinism  [10]: an automaton is 
deterministic if there is a single 𝑖𝑖 such that 𝛼𝛼𝑖𝑖 ≠
𝜖𝜖 and for all 𝑒𝑒𝑣𝑣 ∈ Σ, there exists at most one 𝑗𝑗 
such that 𝜇𝜇(𝑎𝑎)𝑖𝑖𝑖𝑖 ≠ 𝜖𝜖. 

It is clear that the second definition is stronger than the 
first one. For the example in Fig 3. From the state (1B), there 
is more than one outgoing transition labelled with the event 
𝑚𝑚𝑚𝑚𝑚𝑚, which means that the automaton is not event-
deterministic. However, the guards of these transitions do not 
overlap, hence the automaton is time-deterministic. 

Property 1: if an automaton is event-deterministic, then 
for a sequence 𝑤𝑤, there exists at most one 𝑘𝑘 such that 
�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)�

𝑘𝑘
≠ 𝜖𝜖 and �𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤)�

𝑘𝑘
≠ 𝜖𝜖. 

Proof: Consider a TAG with its linear representation 𝐺𝐺 =
�𝑄𝑄, Σ,𝑇𝑇𝑇𝑇𝑇𝑇,𝛼𝛼,𝛽𝛽, 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼�. We suppose that 𝐺𝐺 is event-
deterministic.  

• 𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝜖𝜖) = 𝛼𝛼 and 𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝜖𝜖) = 𝛼𝛼. Since 𝐺𝐺 is event-
deterministic, there is a single 𝑖𝑖 such that 𝛼𝛼𝑖𝑖 ≠
𝜖𝜖. Hence the property is true for 𝑤𝑤 = 𝜖𝜖 

• Suppose that the property is true for a sequence 
𝑤𝑤 (the calculation will only be shown for 𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆 
since it works in a similar way for 𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼). For 
𝑒𝑒𝑣𝑣 ∈ Σ, 

𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤𝑒𝑒𝑣𝑣) = 𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤) ⊗𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣) 

�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤𝑒𝑒𝑣𝑣)�
𝑘𝑘

= ��𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)�
𝑖𝑖
⊗ �𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)�

𝑖𝑖𝑖𝑖
𝑖𝑖

 

Since the property is true for 𝑤𝑤, there is at most one 𝑗𝑗 such 
that  �𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)�

𝑗𝑗
≠ 𝜖𝜖. Hence 

�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤𝑒𝑒𝑣𝑣)�
𝑘𝑘

= �𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)�
𝑗𝑗
⊗ �𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)�

𝑗𝑗𝑗𝑗
 

Moreover, 𝐺𝐺 is event-deterministic. Then there is at most one 
𝑙𝑙 such that �𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)�

𝑗𝑗𝑗𝑗
≠ 𝜖𝜖, hence, such that 

�𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤𝑒𝑒𝑣𝑣)�
𝑙𝑙
≠ 𝜖𝜖. The property is true for a sequence 𝑤𝑤𝑒𝑒𝑣𝑣.   

The property is true for 𝜖𝜖, and the heredity has been 
proved for any 𝑤𝑤. Hence, the property is proved by 
induction. █ 

C. Parallel composition 
Definition 5: Consider two TAGs  

𝐺𝐺1 = �𝑄𝑄1, Σ1,𝑇𝑇𝑇𝑇𝑎𝑎1,𝛼𝛼1,𝛽𝛽1, 𝜇𝜇1,𝑆𝑆𝑆𝑆𝑆𝑆, 𝜇𝜇1,𝐼𝐼𝐼𝐼𝐼𝐼� and  
𝐺𝐺2 = �𝑄𝑄2, Σ2,𝑇𝑇𝑇𝑇𝑎𝑎2,𝛼𝛼2,𝛽𝛽2, 𝜇𝜇2,𝑆𝑆𝑆𝑆𝑆𝑆, 𝜇𝜇2,𝐼𝐼𝐼𝐼𝐼𝐼�.  
The parallel composition of 𝐺𝐺1 and 𝐺𝐺2 is the automaton 
𝐺𝐺1||2 = 
𝐴𝐴𝐴𝐴�𝑄𝑄1 × 𝑄𝑄2, Σ1 ∪ Σ2,𝑇𝑇𝑇𝑇𝑎𝑎1||2,𝛼𝛼1||2,𝛽𝛽1||2, 𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆, 𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼� 

with: 

𝛼𝛼1||2 ∈ ℝ�𝑀𝑀𝑀𝑀𝑀𝑀
1×|𝑄𝑄1×𝑄𝑄2|, 

�𝛼𝛼1||2�𝑞𝑞𝑖𝑖×𝑞𝑞𝑗𝑗
=

�
[𝛼𝛼1]𝑞𝑞𝑖𝑖 ⊕  [𝛼𝛼2]𝑞𝑞𝑗𝑗  𝑖𝑖𝑖𝑖 [𝛼𝛼1]𝑞𝑞𝑖𝑖 ≠ 𝜖𝜖 𝑎𝑎𝑎𝑎𝑎𝑎 [𝛼𝛼2]𝑗𝑗 ≠ 𝜖𝜖 

𝜖𝜖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
  

 

𝛽𝛽1||2 ∈ ℝ�𝑀𝑀𝑀𝑀𝑀𝑀
|𝑄𝑄1×𝑄𝑄2|×1, 

�𝛽𝛽1||2�𝑞𝑞𝑖𝑖×𝑞𝑞𝑗𝑗
=

�
[𝛽𝛽1]𝑞𝑞𝑖𝑖 ⊕  [𝛽𝛽2]𝑞𝑞𝑗𝑗  𝑖𝑖𝑖𝑖 [𝛽𝛽1]𝑞𝑞𝑖𝑖 ≠ 𝜖𝜖 𝑎𝑎𝑎𝑎𝑎𝑎 [𝛽𝛽2]𝑗𝑗 ≠ 𝜖𝜖 

𝜖𝜖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
  

• 𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆 = Σ → 𝔻𝔻|𝑄𝑄1×𝑄𝑄2|×|𝑄𝑄1×𝑄𝑄2|  

• 𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼 = Σ → 𝔻𝔻|𝑄𝑄1×𝑄𝑄2|×|𝑄𝑄1×𝑄𝑄2| 

 
Coefficients matrices of 𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆 and 𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼 can be 

calculated as follows: 

• For all 𝑒𝑒𝑣𝑣 ∈ Σ1 ∩ Σ2, 



𝐼𝐼𝐼𝐼 ℝ�𝑀𝑀𝑀𝑀𝑀𝑀 ,
�𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)�

�𝑞𝑞1,𝑖𝑖𝑖𝑖× 𝑞𝑞2,𝑖𝑖𝑖𝑖�,�𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜× 𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜�

= �
⨁𝑖𝑖=1,2�𝜇𝜇𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)�

𝑞𝑞𝑖𝑖,𝑖𝑖𝑖𝑖,𝑞𝑞𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
 𝑖𝑖𝑖𝑖 �𝜇𝜇𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)�

𝑞𝑞𝑖𝑖,𝑖𝑖𝑖𝑖,𝑞𝑞𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
≠ 𝜖𝜖  

𝜖𝜖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

 
𝐼𝐼𝐼𝐼 ℝ�𝑀𝑀𝑀𝑀𝑀𝑀 ,
�𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒𝑣𝑣)�

�𝑞𝑞1,𝑖𝑖𝑖𝑖× 𝑞𝑞2,𝑖𝑖𝑖𝑖�,�𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜×𝑞𝑞2,𝑜𝑜𝑢𝑢𝑢𝑢�

= �
⨁𝑖𝑖=1,2�𝜇𝜇𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒𝑣𝑣)�

𝑞𝑞𝑖𝑖,𝑖𝑖𝑖𝑖,𝑞𝑞𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
 𝑖𝑖𝑖𝑖 �𝜇𝜇𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒𝑣𝑣)�

𝑞𝑞𝑖𝑖,𝑖𝑖𝑖𝑖,𝑞𝑞𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
≠ 𝜖𝜖

𝜖𝜖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

 
 

• For all 𝑒𝑒1 ∈ Σ1\Σ2 and 𝑞𝑞2 ∈ 𝑄𝑄2,  

�𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒1)�
�𝑞𝑞1,𝑖𝑖𝑖𝑖× 𝑞𝑞2�,�𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜× 𝑞𝑞2�

= �𝜇𝜇1,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒1)�
𝑞𝑞1,𝑖𝑖𝑖𝑖,𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜

 

�𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒1)�
�𝑞𝑞1,𝑖𝑖𝑖𝑖× 𝑞𝑞2�,�𝑞𝑞1,𝑜𝑜𝑢𝑢𝑡𝑡×𝑞𝑞2�

= �𝜇𝜇1,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒1)�
𝑞𝑞1,𝑖𝑖𝑖𝑖,𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜

 

 
 

• For all 𝑒𝑒2 ∈ Σ2\Σ1 and 𝑞𝑞1 ∈ 𝑄𝑄1,  

�𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒2)�
�𝑞𝑞1× 𝑞𝑞2,𝑖𝑖𝑖𝑖�,�𝑞𝑞1× 𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜�

= �𝜇𝜇𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒2)�
𝑞𝑞2,𝑖𝑖𝑖𝑖,𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜

 

�𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒2)�
�𝑞𝑞1× 𝑞𝑞2,𝑖𝑖𝑖𝑖�,�𝑞𝑞1×𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜�

= �𝜇𝜇𝑖𝑖,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒2)�
𝑞𝑞2,𝑖𝑖𝑖𝑖,𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜

 

 

Remark 3: Following that definition, built matrices of 
𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼 and 𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆 contain values for transitions that 
cannot be reached from the initial states. In particular, if ∃𝑘𝑘 ∈
[1; |𝑄𝑄1 × 𝑄𝑄2|] such that for all 𝑒𝑒𝑣𝑣 ∈ Σ1||2, 𝛼𝛼𝑘𝑘 
�𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣)�

:,𝑘𝑘
= 𝜖𝜖 and �𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒𝑣𝑣)�

:,𝑘𝑘
= 𝜖𝜖 then the 

corresponding states cannot be reached from the initial states. 
In other words, if the kth column of 𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒𝑣𝑣) and 
𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒𝑣𝑣) are empty for all 𝑒𝑒𝑣𝑣 ∈ Σ1||2, then there will be no 
transition entering the corresponding state.  

Hence, the notations 𝜇̇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆 and 𝜇̇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼 can be 
introduced, corresponding to 𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼 and 𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆 in which 
every column of 𝜖𝜖 is deleted. 

Example 5: According to the definition 5, the dimension 
of matrices of 𝜇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼 and 𝜇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆 for the automaton 
resulting of the parallel composition of 𝐺𝐺1 and 𝐺𝐺2 is too 
important to be detailed in this paper (|𝑄𝑄1 × 𝑄𝑄2| = 16). 
However, it is possible to determine matrices 𝜇̇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆 and 
𝜇̇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼, that are detailed in the following order: 𝐴𝐴 =
𝜇̇𝜇1||2,𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚),𝐵𝐵 = 𝜇̇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚𝑚𝑚𝑚𝑚), 𝐶𝐶 = 𝜇̇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎),
𝐷𝐷 = 𝜇̇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), 
 𝐸𝐸 = 𝜇̇𝜇1||2,𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎5),   𝐹𝐹 = 𝜇̇𝜇1||2,𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎5). 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝜖 0 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 1 0 𝜖𝜖 5 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖⎦

⎥
⎥
⎥
⎥
⎤

  ;  𝐵𝐵 =  

⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝜖 ⊤ 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 5 1 𝜖𝜖 ⊤ 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖⎦

⎥
⎥
⎥
⎥
⎤

  ; 

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 0 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖⎦

⎥
⎥
⎥
⎥
⎤

  ;  𝐷𝐷 =  

⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 ⊤ 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖⎦

⎥
⎥
⎥
⎥
⎤

  ; 

𝐸𝐸 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 0
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖⎦

⎥
⎥
⎥
⎥
⎤

  ;   𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 ⊤
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 ⎦

⎥
⎥
⎥
⎥
⎤

  ; 

 

It can be noted that defined as such, 𝜇̇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 and 𝜇̇𝜇𝐼𝐼𝐼𝐼𝐼𝐼 may 
contain cycles of states that cannot be reached from the initial 
states. However, the corresponding coefficients will not 
impact the representation aside from the size of matrices. 

 

IV. APPLICATION TO A JOBSHOP 
We consider here a jobshop processing with two jobs 𝒥𝒥1 

and 𝒥𝒥2 to illustrate our contribution (this example come from 
[7] and [10]). This jobshop will be studied using TAGs and 
their linear representations. However, for the sake of 
simplicity, the system is presented with a Petri net model in 
Fig. 4. 

Job 𝒥𝒥1 (resp. 𝒥𝒥2) consists of three tasks 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 (𝑑𝑑, 𝑒𝑒 
and 𝑓𝑓). Processing times are exposed in Fig. 4. We will 
consider that a task does not have an exact duration, hence, 
we will associate an interval to every transition of the system, 
that corresponds to the processing times ±10% (e.g. a 
processing time of 2 time unites will be represented as the 
interval [1.8; 2.2]). Two resources ℛ1 and ℛ2 are shared by 
tasks, such as ℛ1 can be used by 𝑎𝑎, 𝑏𝑏,𝑑𝑑 and 𝑒𝑒, and ℛ2 by 
𝑏𝑏, 𝑐𝑐, 𝑒𝑒 and 𝑓𝑓. 

 

 
Figure 4 - Jobshop represented as a Petri net 

The transformation of timed Petri nets into TAG is not 
addressed in this paper. For our application, the TAG model 
of Fig. 5 is inferred from the (max,+) automaton presented in 



[10]. Also, it is simple to see that the system is event-
deterministic in Fig 5.  

 
 

Figure 5 - Jobshop represented as a TAG 

The linear representation of this TAG is: 

𝛼𝛼 = (𝑒𝑒𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖), 𝛽𝛽 = (𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝑒𝑒𝜖𝜖𝜖𝜖𝑒𝑒𝜖𝜖𝜖𝜖)⊤, 
𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎) ∈ 𝔻𝔻|11|×|11|, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎) ∈ 𝔻𝔻|11|×|11|, 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏) ∈
𝔻𝔻|11|×|11|, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏) ∈ 𝔻𝔻|11|×|11|, 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐) ∈ 𝔻𝔻|11|×|11|, 
𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑐𝑐) ∈ 𝔻𝔻|11|×|11|, 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑) ∈ 𝔻𝔻|11|×|11|, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑑𝑑) ∈
𝔻𝔻|11|×|11|, 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒) ∈ 𝔻𝔻|11|×|11|, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒) ∈ 𝔻𝔻|11|×|11|, 
𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑓𝑓) ∈ 𝔻𝔻|11|×|11|, 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑓𝑓) ∈ 𝔻𝔻|11|×|11|. Three of these 
matrices are detailed as an example. The other are not shown 
for the sake of clarity. 

A. Analysis for one job 
It is possible to determine generalized bounds (def. 4) for 

processing times of jobs 𝒥𝒥1 and 𝒥𝒥2: 

• Processing time of one job 𝒥𝒥1: 

𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎) = 𝛼𝛼 ⊗ 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎) ⊗𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑏𝑏) ⊗ 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐) 
𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎) = (𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 6.6 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖) 
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝑎𝑎𝑎𝑎) = 𝛼𝛼 ⊗ 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎) ⊗ 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏) ⊗𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑐𝑐) 
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝑎𝑎𝑎𝑎) = (𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 5.4 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖) 

Hence, it is possible to reach the state 6 between 
�𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎𝑎𝑎𝑎𝑎)�

2
= 5.4 and �𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑎𝑎𝑎𝑎𝑎𝑎)�

2
= 6.6 time units. 

Since the state 2 correspond to the end job 𝒥𝒥1, the processing 
time of one job 𝒥𝒥1 is from 5.4 to 6.6 time units. 

• Processing time of one job 𝒥𝒥2: 

𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑𝑑𝑑) = 𝛼𝛼 ⊗ 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑) ⊗𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒) ⊗𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆(𝑓𝑓) 
𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑𝑑𝑑𝑑𝑑) = (𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 5.5 𝜖𝜖 𝜖𝜖) 
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑑𝑑) = 𝛼𝛼 ⊗ 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑑𝑑) ⊗ 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑒𝑒) ⊗ 𝜇𝜇𝐼𝐼𝐼𝐼𝐼𝐼(𝑓𝑓) 
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑑𝑑) = (𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 4.5 𝜖𝜖 𝜖𝜖) 

The end of the job 𝒥𝒥2 corresponds to the state 9. For this 
reason, the processing time of one job 𝒥𝒥2 is from 4.5 to 5.5 
time units. 

It can be noted that proposition 1 is respected for both 
sequences: since the TAG is event-deterministic, generalized 

bounds of sequences 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑒𝑒𝑒𝑒𝑒𝑒 only have one coefficient 
different from 𝜖𝜖. 

B. Analysis for a set of jobs 
Another analysis can be done on the completion date for 

a given number of jobs, whatever the kind of job. Jobs 𝒥𝒥1 and 
𝒥𝒥2 both consist of three tasks, which may be executed in 
parallel (e.g. tasks 𝑎𝑎 and 𝑐𝑐 do not use the same resource, 
hence, the (n+1)th job 𝒥𝒥1 can start before the end of the nth job 
𝒥𝒥1). For this reason, jobs may overlap and the duration of a 
succession of n job could be different from n times the 
duration of a single job. 

Since a TAG of the system can be interpreted as two 
(max,+) automata, it is possible to adapt the method 
presented in [4] in order to determine bounds of completion 
dates for the worst and the best cases. 

For the completion date of 10 jobs: 

• In the worst case, we found that the interval of 
the completion date is [37.8; 46.2] time units 
that corresponds to a succession of 10 jobs 𝒥𝒥1. 

Representation of TAG in Fig. 5: 
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𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
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𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 2.2 𝜖𝜖 𝜖𝜖 𝜖𝜖
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𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖⎦
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𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
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𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖⎦
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𝜖𝜖 𝜖𝜖 1.1 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 0 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖
𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖⎦
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• In the best case, we found that the interval of the 
completion date is [36.9; 45.1] time units that 
corresponds to an alternation of 𝒥𝒥2𝒥𝒥1. 

 
We managed here to get bounds that estimate the possible 

durations of sequences in the best and the worst cases, where 
[4] only provides a single value for the same durations. This 
is a clear improvement in the way that in a real application, 
the completion date of a succession of tasks cannot be exactly 
evaluated since the duration of a single task may vary 
depending to the environment of the system. 

V. CONCLUSIONS 
The paper has presented a new formal modeling of Timed 

Automata with Guards (TAGs) by dioids algebra. A linear 
representation of the behavior of TAGs is given. The 
definitions of a parallel composition and properties 
concerning the determinism of TAGs are proposed. This 
linear representation of TAGs is applied on a jobshop system 
to evaluate the temporal performances. In future works, an 
extension of the formalism to multiple-clocks systems could 
be considered. It would be also interesting to use this linear 
modeling of TAGs for diagnosis and fault-tolerant control of 
discrete event systems. 
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