Exact methods for the minimum sum coloring problem
Clément Lecat, Chu-Min Li, Corinne Lucet, Yu Li

To cite this version:
Clément Lecat, Chu-Min Li, Corinne Lucet, Yu Li. Exact methods for the minimum sum coloring problem. 2015. hal-01326666

HAL Id: hal-01326666
https://hal.archives-ouvertes.fr/hal-01326666
Submitted on 4 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Exact methods for the minimum sum coloring problem

Clément Lecat (student), Chu-Min Li (advisor), Corinne Lucet (advisor), Yu Li

University of Picardie Jules Verne, MIS Laboratory
33 rue St Leu, 80000 Amiens, France
{clement.lecat, chu-min.li, corinne.lucet, yu.li}@u-picardie.fr

Abstract. The Minimum Sum Coloring Problem (MSCP) is an extension of the well known Graph Coloring Problem (GCP). Both NP-hard problems consist in assigning a color to each vertex of a graph while respecting the neighborhood constraints: two adjacent vertices cannot share a same color. For MSCP, a weight is associated with each color. While the objective of GCP is to minimize the number of colors, the objective of MSCP is to minimize the sum of the color cost. In this paper, we propose and compare four exact methods to solve MSCP. The first one is a Branch-and-Bound method which uses upper and lower bounds to reduce search space. The second, the third and the fourth methods encode a MSCP instance into a MaxSAT, MinSAT and COP instance respectively, and solve the instance with dedicated solvers.

1 Introduction

The Graph Coloring Problem (GCP) is an important NP-hard combinatorial problem. A lot of effort has been devoted to study it. Two main types of algorithms (also called solvers) are developed for solving GCP: exact methods and approximate methods. The exact methods aim at finding an optimal solution of the problem, including the approaches based on branch-and-bound schema (e.g. [20]), on graph decomposition (e.g. [18]), and on SAT solving by encoding the problem into an equivalent propositional formula. The approximate methods aim at finding an upper bound or a lower bound of the optimal solution of the problem, including: greedy algorithms such as the famous DSATUR [5], and various heuristic or meta-heuristic algorithms [22, 7, 17]. In the literature, these methods are usually evaluated on standard benchmarks such as DIMACS and COLOR [6, 9].

The Minimum Sum Coloring Problem MSCP is derived from GCP and is introduced in 1989 by Kubicka et Schwenk [12]. The main results on MSCP include the theoretical bounds [10, 1, 19, 3] and the structural properties relative to the graph families for which efficient algorithms exist. Recently, heuristics and meta-heuristics are proposed in [16] and [23, 11, 4, 21] respectively, giving bounds for DIMACS and COLOR graphs.

In this paper, we focus essentially on exact methods for MSCP. Concretely, we propose and analyze 4 exact methods for MSCP: a branch-and-bound algorithm for MSCP using relevant upper and lower bounds, and an encoding of MSCP into MaxSAT, MinSAT and COP (Constraint Optimization Problem), respectively. The 4 methods are evaluated and analyzed using a set of DIMACS and COLOR graphs and random graphs.
This paper is organized as follows. In Section 2, we formally define the GCP and MSCP problems. In Section 3, we propose a branch-and-bound algorithm for MSCP called BBMSCP. In Section 4, we propose an encoding of MSCP to MaxSAT, MinSAT and COP respectively. In Section 5, we compare these 4 exact methods on a set of DIMACS and COLOR graphs and random graphs.

2 The Minimum Sum Coloring problem

2.1 Preliminary definitions

We consider an undirected graph \(G=(V,E) \), where \(V \) is the set of vertices (\(|V|=n\)) and \(E \subseteq V \times V \) the set of edges (\(|E|=m\)). The neighbourhood \(N(v) \) of a vertex \(v \in V \) is defined as: \(N(v) = \{ u \in V \mid (v,u) \in E \} \). The degree of a vertex \(v \) is the number of neighbors of \(v \), denoted as \(\delta(v) \). The degree of a graph \(G \) is \(\Delta(G) = max\{\delta(v)\mid \forall v \in V\} \). A subgraph \(G'=(V',E') \) induced from \(G=(V,E) \) is a graph so that \(V' \subseteq V \) and \(\forall (u,v) \in E \) if \(u \in V' \) and \(v \in V' \) then \((u,v) \in E' \). A clique \(C=(V',E') \) of a graph \(G \) is a complete subgraph of \(G \), for which if \(u \in V' \) and \(v \in V' \) then \((u,v) \in E' \). \(G \backslash v \) represents the subgraph of \(G \) obtained by removing the vertex \(v \) from \(G \).

2.2 Coloring and sum coloring

A coloring of a graph \(G \) is a function \(c: V \mapsto \{1,2,\ldots,k\} \) that assigns to each vertex \(v \in V \) a color \(c(v) \) represented by an integer. A coloring is said to be valid, if \(\forall (u,v) \in E, \ c(u) \neq c(v) \). We denote a coloring of \(G \) as \(X = X_1,X_2,\ldots,X_k \), where \(X_i = \{ v \in V \mid c(v) = i \} \) is called color class \(i \). GCP consists in finding a valid coloring with the minimum number of colors. This number is called chromatic number of \(G \), denoted by \(\chi(G) \). Note that a clique of \(n' \) vertices requires \(n' \) colors. All colors in a valid coloring of \(G \) are symmetric, because exchanging any two colors gives a valid coloring.

For MSCP, each color \(i \) is associated with a cost \(p_i \). For a given coloring \(X \) of \(G \), the corresponding sum coloring \(P(X) \) equals to the sum of costs of colors used by \(X \).

\[
P(X) = p_1 \times |X_1| + p_2 \times |X_2| + \ldots + p_k \times |X_k|
\]

MSCP consists in finding a valid coloring of \(G \) such that \(P(X) \) is minimum. This minimum sum is called the chromatic sum of \(G \) and is denoted by \(\Sigma(G) \).

\[
\Sigma(G) = \min\{P(X) \mid X \text{ is a valid coloring of } G\}
\]

Kubicka et Schwenk [12] proved that MSCP is NP-hard. The minimum number of colors used to color \(G \) in an optimal solution for MSCP is called strength of \(G \) and is denoted by \(s(G) \). In our study, as in most work in the literature, we consider that: \(\forall i, \ p_i = i \). We obviously have:

Property 1 Let \(X^0 = X_1,X_2,\ldots,X_k \) be a valid coloring, where \(|X_1| \geq |X_2| \geq \ldots \geq |X_k| \) is verified, and \(X \) be any valid coloring that can be obtained by exchanging colors of \(X^0 \), then \(P(X^0) \leq P(X) \). \(X^0 \) is called the dominant coloring of its symmetric class.
It is easy to find the dominant coloring from any coloring of G by just ordering the color classes in the descending order of their cardinality. So, we will always report the dominant coloring X^θ when evaluating a solution.

3 Branch-and-Bound for MSCP

In this section, we propose a Branch-and-Bound algorithm that finds an optimal solution of a MSCP instance G by developing a search tree, as illustrated in Figure 2 for the coloring of the graph in Figure 1. Each node of the tree corresponds to a vertex of the graph $(a, b$ or $c)$, and each branch corresponds to an assignment of a color (1, 2 or 3) to a vertex. A path of n nodes from the root to a leaf corresponds a valid coloring X whose associated weight is the weight of the dominant coloring X^θ.

The algorithm maintains a global variable UB, which is initialized with $UB_{MDSATUR}$, computed with the dedicated greedy algorithm MDSATUR [16]. UB represents the best dominant sum coloring found so far in G. As the strength $s(G)$ is always smaller than or equal to $\Delta(G) + 1$, the number of colors is fixed to $\Delta(G) + 1$. At each node of the search tree, the algorithm computes a lower bound LB which is equal to the sum of the colors assigned to the vertices already colored and an underestimation of the sum of colors that will be assigned to the remaining vertices. If $LB \geq UB$, a better solution obviously cannot be obtained from the node, search is then pruned. Otherwise, let v_i be the vertex corresponding to the search tree node. A branch is developed by assigning each available color to v_i (a color is available for v_i if it is not yet assigned to any neighbor of v_i).

The performance of the algorithm crucially depends on the quality of LB. At the beginning, LB takes the value of the theoretical lower bound $\lceil \sqrt{8m} \rceil$. Then at a search tree node corresponding to vertex v_i ($1 \leq i \leq n$), assume that vertices $v_1, v_2, \ldots, v_{i-1}$ are already assigned a color $c(v_i)$ ($1 \leq i \leq n$), we propose to compute LB as follows. The uncolored subgraph G' is partitioned into cliques C_1, C_2, \ldots, C_l. Let $Disp(v)$ denote the set of available colors for vertex v. The set of available colors of a clique C is defined to be $Disp(C) = \bigcup_{v \in C} \{Disp(v)\}$, and the sum of the $|C|$ smallest colors of clique C is
Algorithm 1: LB(G)

1: begin
2: LB ← 0;
3: Partition G into cliques C₁, C₂, . . . , Cₙ;
4: foreach Cᵢ do
5: Disp(Cᵢ) ← \bigcup_{v ∈ Cᵢ} Disp(v);
6: foreach x := 1 to |Cᵢ| do
7: j_{min} ← MIN\{j ∈ Disp(Cᵢ) \}; // the minimum color of Cᵢ
8: LB ← LB + j_{min};
9: Disp(Cᵢ) ← Disp(Cᵢ) \{j_{min}\};
10: return LB;

denoted by P_{lb}(C). Then we propose LB(G') = \sum_{t=1}^{n} P_{lb}(Cₜ). Algorithm 1 illustrates the computation of LB for an uncolored graph.

The recursive algorithm BBMSCP (see Algorithm 2) brings together and integrates all the points developed before. Parameter G is the subgraph not yet colored, σ is the sum of assigned colors, and UB the best sum coloring found so far. The first call is BBMSCP(G, 0, UB_{MDSATUR}) to compute the optimal sum coloring of G, each vertex of G having Δ(G) + 1 available colors at the beginning.

Algorithm 2: BBMSCP(G, σ, UB)

Input : G = (V, E), the sum of colors already assigned σ, the best sum coloring UB found so far
Output : Σ(G) chromatic sum

1: begin
2: if V = \emptyset then
3: return σ;
4: if LB(G) + σ < UB then
5: return UB;
6: Choose a vertex v;
7: foreach i ∈ Disp(v) such that σ + i ≤ UB do
8: foreach u ∈ N(v) do
9: Disp(u) := Disp(u) \{i\};
10: UB := BBMSCP(G\v, σ+i, UB);
11: foreach u ∈ N(v) do
12: Disp(u) := Disp(u) ∪ \{i\};
13: return UB;
4 Solving MSCP with MaxSAT, MinSAT and COP

MSCP can be encoded into MaxSAT (MinSAT, COP) and then solved using a MaxSAT (MinSAT, COP) solver. In this section, we present the MaxSAT, MinSAT and COP problems and our encodings of MSCP into them.

4.1 MaxSAT, MinSAT and COP

A literal is a propositional variable \(x \) or its negation \(\overline{x} \). A literal \(x \) (\(\overline{x} \)) is satisfied if the variable \(x \) is assigned the truth value 1 (0). A clause is a disjunction of literals that can be soft or hard. A clause is satisfied if one of its literals is satisfied. Given a set of hard and soft clauses \(\{h_1, ..., h_q, s_1, ..., s_r\} \) (i.e., a CNF formula), where each \(h_i \) (\(1 \leq i \leq q \)) is a hard clause, and each \(s_i \) (\(1 \leq i \leq r \)) is a soft clause associated with a weight, the weighted partial MaxSAT (MinSAT) problem is to find an assignment of truth values to propositional variables that satisfies all the hard clauses and maximizes (minimizes) the sum of weights of satisfied soft clauses. In the sequel, MaxSAT and MinSAT are always weighted partial.

A Constraint Satisfaction Problem (CSP) is defined by a triplet \((X, D, C)\), where \(X \) is a set of variables \(\{x_1, x_2, ..., x_n\} \), \(D \) a set of finite domains \(D_{x_i} \) (\(1 \leq i \leq n \)) of the variables, and \(C \) a set of constraints \(\{c_1, c_2, ..., c_m\} \). A Constraint Optimisation Problem (COP) is an extension of CSP with an objective function \(F : D_{x_1} \times D_{x_2} \times ... \times D_{x_n} \rightarrow \mathbb{N} \). A COP problem \((X, D, C, F)\) is to assign a value to each variable in its domain to satisfy all the constraints and maximize (or minimize) \(F \).

4.2 Encoding MSCP

MSCP to SAT. In order to encode a MSCP problem into a MaxSAT or a MinSAT problem, we define a boolean variable \(x_{ai} \) for each vertex \(a \) and each color \(i \), which takes the value 1 if and only if vertex \(a \) is colored with the color \(i \). The hard clauses of MaxSAT and MinSAT are the same for MSCP, corresponding to the constraints of the GCP problem with \(k \) colors:

- Each vertex \(a \) should be assigned a color : \(x_{a1} \lor x_{a2} \lor ... \lor x_{ak} \)
- Each vertex \(a \) is assigned at most one color : \(\neg x_{ai} \lor \neg x_{aj} \) for each \(i \neq j \)
- Each two adjacent vertices \(a \) and \(b \) cannot be assigned the same color : \(\neg x_{ai} \lor \neg x_{bi} \) for each color \(i \)

For MaxSAT, we define a unit soft clause \(x_{ai} \) for each vertex \(a \) and each color \(i \) with weight \(k+1-i \). The satisfaction of a soft clause \(x_{ai} \) in MaxSAT means to assign color \(i \) to vertex \(a \). For MinSAT, we define a unit soft clause \(\neg x_{ai} \) for each vertex \(a \) and each color \(i \) also with weight \(k+1-i \). The falsification of a soft clause \(\neg x_{ai} \) in MinSAT means to assign color \(i \) to vertex \(a \). Since the objective of MaxSAT (MinSAT) is to maximize (minimize) the sum of weights of satisfied soft clauses, soft clauses for smaller colors are satisfied (falsified) in priority in MaxSAT (MinSAT) whenever possible.

Given a graph \(G \), the space complexity of the encoding of MSCP into MaxSAT or MinSAT is \(O(n \times k^2 + m \times k) \), where \(k \) is equal to \(\Delta(G) + 1 \). The number of soft clauses in both cases is \((n \times k) \).
Example 1 Refer to the graph in Figure 1, \(k = \Delta(G) + 1 = 3\). The encoding of MSCP into MaxSAT and MinSAT consists of:

Hard clauses:
- \(x_{a1} \lor x_{a2} \lor x_{a3}, \neg x_{a1} \lor \neg x_{a2}, \neg x_{a1} \lor \neg x_{a3}, \neg x_{a2} \lor \neg x_{a3}, \ldots, \neg x_{a1} \lor \neg x_{b1}, \neg x_{a2} \lor \neg x_{b2}, \neg x_{a3} \lor \neg x_{b3}, \ldots, \neg x_{a1} \lor \neg x_{c1}, \neg x_{a2} \lor \neg x_{c2}, \neg x_{a3} \lor \neg x_{c3}, \ldots \)

and soft clauses with their weight:

```
<table>
<thead>
<tr>
<th>MaxSAT encoding 1</th>
<th>MinSAT encoding 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{a1} 3)</td>
<td>(\neg x_{a1} 3)</td>
</tr>
<tr>
<td>(x_{a2} 2)</td>
<td>(\neg x_{a2} 2)</td>
</tr>
<tr>
<td>(x_{a3} 1)</td>
<td>(\neg x_{a3} 1)</td>
</tr>
<tr>
<td>(x_{b1} 3)</td>
<td>(\neg x_{b1} 3)</td>
</tr>
<tr>
<td>(x_{b2} 2)</td>
<td>(\neg x_{b2} 2)</td>
</tr>
<tr>
<td>(x_{b3} 1)</td>
<td>(\neg x_{b3} 1)</td>
</tr>
<tr>
<td>(x_{c1} 3)</td>
<td>(\neg x_{c1} 3)</td>
</tr>
<tr>
<td>(x_{c2} 2)</td>
<td>(\neg x_{c2} 2)</td>
</tr>
<tr>
<td>(x_{c3} 1)</td>
<td>(\neg x_{c3} 1)</td>
</tr>
</tbody>
</table>
```

A dual MaxSAT (MinSAT) encoding for MSCP is to define a soft clause \(\neg x_{ai}(x_{ai})\) for each vertex \(a\) and each color \(i\) with weight \(i\), as illustrated by the following example for the graph in Figure 1.

Example 2

```
<table>
<thead>
<tr>
<th>MaxSAT encoding 2</th>
<th>MinSAT encoding 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>soft clauses:</td>
<td>soft clauses:</td>
</tr>
<tr>
<td>(\neg x_{a1} 1)</td>
<td>(x_{a1} 1)</td>
</tr>
<tr>
<td>(\neg x_{a2} 2)</td>
<td>(x_{a2} 2)</td>
</tr>
<tr>
<td>(\neg x_{a3} 3)</td>
<td>(x_{a3} 3)</td>
</tr>
<tr>
<td>(\neg x_{b1} 1)</td>
<td>(x_{b1} 1)</td>
</tr>
<tr>
<td>(\neg x_{b2} 2)</td>
<td>(x_{b2} 2)</td>
</tr>
<tr>
<td>(\neg x_{b3} 3)</td>
<td>(x_{b3} 3)</td>
</tr>
<tr>
<td>(\neg x_{c1} 1)</td>
<td>(x_{c1} 1)</td>
</tr>
<tr>
<td>(\neg x_{c2} 2)</td>
<td>(x_{c2} 2)</td>
</tr>
<tr>
<td>(\neg x_{c3} 3)</td>
<td>(x_{c3} 3)</td>
</tr>
</tbody>
</table>
```

The MaxSAT encoding 1 and the MinSAT encoding 2 appear to be more natural. However, they are surprisingly less efficient, as we will see later.

MSCP to COP. For encoding a MSCP instance into a COP instance, we define a variable \(v_i\) for each vertex \(v_i\) with domain \(\{1, 2, \ldots, k\}\). Then we define a constraint \(c_{ij} : v_i \neq v_j\) for each edge \((v_i, v_j) \in E\). The objective function to minimize is \(F = \sum_{i=1}^{n} v_i\).

The space complexity of this encoding is \(O(n + m)\).
5 Experimental analysis

We compare the 4 exact methods for MSCP: BBMSCP, the Branch-and-Bound algorithm proposed in Section 3; MaxSatz [14] (version 2009) and ISAC [2] (version 2013), two representative MaxSAT solvers, using the two MaxSAT encodings proposed in Section 4; MinSatz [15] (version 2013), the only MinSAT solver available to us, using the two MinSAT encodings proposed in Section 4; and Choco3 [8] (release 3.3.0), one of the best COP solver, using the COP encoding, by solving a set of random graphs and COLOR and DIMACS graphs. A random graph of density \(d\) is generated by adding an edge \((u, v)\) with probability \(d\) for any pair of vertices \(u\) and \(v\). The experimental results are obtained on a processor Intel Westmere Xeon E7-8837 (2.66GHz) under Linux.

Table 1 compares MaxSAT (MinSAT) encodings 1 and 2. For each graph \(G\), we report the number of vertices \((n)\), the number of edges \((m)\), the chromatic sum \(\Sigma(G)\), and the runtime of each solver using each of the two possible encodings to find \(\Sigma(G)\). If a solver cannot find \(\Sigma(G)\) in one hour, its runtime is marked by N/A. The reported results clearly show that MaxSAT encoding 2 (MinSAT encoding 1) is significantly better than MaxSAT encoding 1 (MinSAT encoding 2). Note that the soft clauses in MaxSAT encoding 2 and MinSAT encoding 1 are all negative, contrary to the two other encodings. An explanation of their performance is the following. Since there are many negative hard binary clauses such as \(\neg u \lor \neg v\), when the soft clauses are negative and unit, many pairs of them such as \(\neg u\) and \(\neg v\) cannot be falsified simultaneously, because the corresponding hard clause would be falsified.

<table>
<thead>
<tr>
<th>Graphs</th>
<th>(n)</th>
<th>(m)</th>
<th>(\Sigma(G))</th>
<th>Time</th>
<th>Time</th>
<th>Time</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>S10A23</td>
<td>10</td>
<td>23</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S10A40</td>
<td>10</td>
<td>40</td>
<td>34</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S10A5</td>
<td>10</td>
<td>5</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S20A100</td>
<td>20</td>
<td>100</td>
<td>55</td>
<td>172</td>
<td>N/A</td>
<td>126</td>
<td>N/A</td>
</tr>
<tr>
<td>S20A19</td>
<td>20</td>
<td>19</td>
<td>27</td>
<td>0</td>
<td>2213</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S20A50</td>
<td>20</td>
<td>50</td>
<td>39</td>
<td>0</td>
<td>N/A</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>S20A75</td>
<td>20</td>
<td>75</td>
<td>52</td>
<td>18</td>
<td>N/A</td>
<td>1372</td>
<td>144</td>
</tr>
<tr>
<td>S20A95</td>
<td>20</td>
<td>95</td>
<td>50</td>
<td>32</td>
<td>N/A</td>
<td>29</td>
<td>N/A</td>
</tr>
<tr>
<td>S25A100</td>
<td>25</td>
<td>100</td>
<td>63</td>
<td>150</td>
<td>N/A</td>
<td>N/A</td>
<td>1051</td>
</tr>
<tr>
<td>S25A30</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S30A100</td>
<td>30</td>
<td>100</td>
<td>65</td>
<td>22</td>
<td>N/A</td>
<td>N/A</td>
<td>242</td>
</tr>
<tr>
<td>S30A44</td>
<td>30</td>
<td>44</td>
<td>48</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>3098</td>
</tr>
<tr>
<td>S35A60</td>
<td>35</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1: Runtimes in seconds of MaxSAT and MinSAT solvers using two encodings

Table 2 and Table 3 compare different solvers on a set of random and DIMACS and COLOR graphs. MaxSatz and ISAC use MaxSAT encoding 2, and MinSatz uses MinSAT encoding 1. ISAC is the best solver, followed by MinSatz, MaxSatz and BBMCP. The COP formalism does not appear so good for MSCP, although the COP encoding
has linear space complexity. It is worth noting that BBMCP is a preliminary implementation for MSCP remaining to be improved and optimized, while MinSatz and MaxSatz are mature solvers, and ISAC is a portfolio solver which selects automatically a state-of-the-art MaxSAT solver to run according to the characteristics of the instance to solve.

Table 2: Runtimes in seconds of different exact methods for a set of random graphs

<table>
<thead>
<tr>
<th>Graphs</th>
<th>n</th>
<th>m</th>
<th>$\sum(G)$</th>
<th>BBMSCP Time</th>
<th>MaxSatz Time</th>
<th>ISAC Time</th>
<th>MinSatz Time</th>
<th>Choco3 Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>S10A23</td>
<td>10</td>
<td>23</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>S10A40</td>
<td>10</td>
<td>40</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>S10A5</td>
<td>10</td>
<td>5</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>S20A100</td>
<td>20</td>
<td>100</td>
<td>55</td>
<td>10</td>
<td>126</td>
<td>0</td>
<td>172</td>
<td>N/A</td>
</tr>
<tr>
<td>S20A19</td>
<td>20</td>
<td>19</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>S20A50</td>
<td>20</td>
<td>50</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>74</td>
</tr>
<tr>
<td>S20A75</td>
<td>20</td>
<td>75</td>
<td>52</td>
<td>8</td>
<td>144</td>
<td>0</td>
<td>18</td>
<td>N/A</td>
</tr>
<tr>
<td>S20A95</td>
<td>20</td>
<td>95</td>
<td>50</td>
<td>3</td>
<td>29</td>
<td>0</td>
<td>32</td>
<td>307</td>
</tr>
<tr>
<td>S25A100</td>
<td>25</td>
<td>100</td>
<td>63</td>
<td>96</td>
<td>1051</td>
<td>0</td>
<td>150</td>
<td>N/A</td>
</tr>
<tr>
<td>S25A30</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>S30A100</td>
<td>30</td>
<td>100</td>
<td>65</td>
<td>105</td>
<td>242</td>
<td>0</td>
<td>22</td>
<td>N/A</td>
</tr>
<tr>
<td>S30A44</td>
<td>30</td>
<td>44</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1551</td>
</tr>
<tr>
<td>S35A60</td>
<td>35</td>
<td>60</td>
<td>54</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 3: Runtimes in seconds of different exact methods for a set of DIMACS and COLOR graphs

<table>
<thead>
<tr>
<th>Graphs</th>
<th>n</th>
<th>m</th>
<th>$\sum(G)$</th>
<th>BBMSCP Time</th>
<th>MaxSatz Time</th>
<th>ISAC Time</th>
<th>MinSatz Time</th>
<th>Choco3 Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1f3</td>
<td>30</td>
<td>100</td>
<td>54</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>707</td>
</tr>
<tr>
<td>miles250.col</td>
<td>128</td>
<td>587</td>
<td>334</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>miles300.col</td>
<td>128</td>
<td>1170</td>
<td>715</td>
<td>N/A</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>myciel3.col</td>
<td>11</td>
<td>20</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>myciel4.col</td>
<td>23</td>
<td>71</td>
<td>45</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1944</td>
</tr>
<tr>
<td>queen5_5.col</td>
<td>25</td>
<td>160</td>
<td>75</td>
<td>3036</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

6 Conclusions and future work

In this paper, we have proposed and compared 4 exact methods for MSCP. The first method is a branch-and-bound algorithm called BBMSCP with promising results. To our knowledge, BBMSCP is the first exact solver dedicated for MSCP. We have also proposed 2 encodings of MSCP to MaxSAT and MinSAT respectively, and show that the encodings with negative soft clauses are substantially better than the encodings with positive soft clauses, making MaxSAT and MinSAT formalisms currently more suitable than the COP formalism for MSCP. The future work includes the improvement of BBMSCP by developing new bounds and symmetry breaking, the understanding of the performance of MinSAT or MaxSAT formalisms compared with the COP formalism, and adaptation of MinSAT and MaxSAT solvers for MSCP.
References

2. C. Ansótegui, Y. Malitsky, and M. Sellmann. Maxsat by improved instance-specific algorithm configuration. *Association for the Advancement of Artificial Intelligence*.