G. Francfort and J. Marigo, Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids, vol.46, issue.8, pp.1319-1342, 1998.
DOI : 10.1016/S0022-5096(98)00034-9

A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, pp.163-198, 1921.
DOI : 10.1098/rsta.1921.0006

G. Francfort, B. Bourdin, and J. Marigo, The variational approach to fracture, Journal of Elasticity, vol.91, issue.1-3, pp.5-148, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00551079

L. Ambrosio, N. Fusco, and D. Pallara, Free Discontinuity Problems and Special Functions with Bounded Variation, Oxford Mathematical Monographs, 2000.
DOI : 10.1007/978-3-0348-8974-2_2

B. Bourdin, G. Francfort, and J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, vol.48, issue.4, pp.787-826, 2000.
DOI : 10.1016/S0022-5096(99)00028-9

L. Ambrosio and V. Tortorelli, On the approximation of free discontinuity problems. Bollettino dell, Unione Matematica Italiana, vol.7, issue.6, pp.105-123, 1992.

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.577-685, 1989.
DOI : 10.1002/cpa.3160420503

A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calculus of Variations, vol.12, issue.2, pp.129-172, 2005.
DOI : 10.1007/s00526-004-0269-6

V. Hakim and K. A. , Laws of crack motion and phase-field models of fracture, Journal of the Mechanics and Physics of Solids, vol.57, issue.2, pp.342-368, 2009.
DOI : 10.1016/j.jmps.2008.10.012

E. Lorentz and V. Godard, Gradient damage models: Toward full-scale computations, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.21-22, pp.21-221927, 2011.
DOI : 10.1016/j.cma.2010.06.025

K. Pham, H. Amor, J. Marigo, and C. Maurini, Gradient Damage Models and Their Use to Approximate Brittle Fracture, International Journal of Damage Mechanics, vol.30, issue.4, pp.618-652, 2011.
DOI : 10.1016/0029-5493(92)90094-C

URL : https://hal.archives-ouvertes.fr/hal-00549530

B. Bourdin, C. Larsen, and C. Richardson, A time-discrete model for dynamic fracture based on crack regularization, International Journal of Fracture, vol.14, issue.1, pp.133-143, 2011.
DOI : 10.1007/s10704-010-9562-x

M. Borden, C. Verhoosel, M. Scott, T. Hughes, and C. Landis, A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, vol.217, issue.220, pp.217-22077, 2012.
DOI : 10.1016/j.cma.2012.01.008

A. Schlüter, A. Willenbücher, C. Kuhn, and R. Müller, Phase Field Approximation of Dynamic Brittle Fracture, PAMM, vol.14, issue.1, pp.1-21, 2014.
DOI : 10.1002/pamm.201410059

A. Abdollahi and I. Arias, Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions, Journal of the Mechanics and Physics of Solids, vol.60, issue.12, pp.2100-2126, 2012.
DOI : 10.1016/j.jmps.2012.06.014

M. Wheeler, T. Wick, and W. Wollner, An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Computer Methods in Applied Mechanics and Engineering, vol.271, issue.2710, pp.69-85, 2014.
DOI : 10.1016/j.cma.2013.12.005

B. Li, C. Peco, D. Millán, I. Arias, and M. Arroyo, Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy, International Journal for Numerical Methods in Engineering, vol.14, issue.7, pp.3-4711, 2014.
DOI : 10.1002/nme.4726

D. Piero, G. Lancioni, G. March, and R. , A variational model for fracture mechanics: Numerical experiments, Journal of the Mechanics and Physics of Solids, vol.55, issue.12, pp.2513-2537, 2007.
DOI : 10.1016/j.jmps.2007.04.011

J. Clayton and J. Knap, A geometrically nonlinear phase field theory of brittle fracture, International Journal of Fracture, vol.76, issue.2, pp.1-10, 2014.
DOI : 10.1007/s10704-014-9965-1

C. Hesch and K. Weinberg, Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture, International Journal for Numerical Methods in Engineering, vol.43, issue.220, pp.906-924, 2014.
DOI : 10.1002/nme.4709

C. Verhoosel and R. De-borst, A phase-field model for cohesive fracture, International Journal for Numerical Methods in Engineering, vol.1, issue.220, pp.43-62, 2013.
DOI : 10.1002/nme.4553

H. Amor, J. Marigo, and C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, Journal of the Mechanics and Physics of Solids, vol.57, issue.8, pp.1209-1229, 2009.
DOI : 10.1016/j.jmps.2009.04.011

G. Lancioni and G. Royer-carfagni, The Variational Approach to Fracture Mechanics. A??Practical Application to the French Panth??on in Paris, Journal of Elasticity, vol.36, issue.1-2, pp.1-30, 2009.
DOI : 10.1007/s10659-009-9189-1

F. Freddi and G. Royer-carfagni, Regularized variational theories of fracture: A unified approach, Journal of the Mechanics and Physics of Solids, vol.58, issue.8, pp.1154-1174, 2010.
DOI : 10.1016/j.jmps.2010.02.010

C. Miehe, F. Welschinger, and M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering, vol.55, issue.10, pp.1273-1311, 2010.
DOI : 10.1002/nme.2861

M. Ambati, T. Gerasimov, D. Lorenzis, and L. , A review on phase-field models of brittle fracture and a new fast hybrid formulation, Computational Mechanics, vol.14, issue.3???4, pp.383-405, 2015.
DOI : 10.1007/s00466-014-1109-y

F. Amiri, D. Millán, Y. Shen, T. Rabczuk, and M. Arroyo, Phase-field modeling of fracture in linear thin shells, Theoretical and Applied Fracture Mechanics, vol.69, pp.102-109, 2014.
DOI : 10.1016/j.tafmec.2013.12.002

M. Ambati and L. Lorenzis, Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements, Computer Methods in Applied Mechanics and Engineering, vol.312, 2016.
DOI : 10.1016/j.cma.2016.02.017

L. Baldelli, A. Babadjian, J. Bourdin, B. Henao, D. Maurini et al., A variational model for fracture and debonding of thin films under in-plane loadings, Journal of the Mechanics and Physics of Solids, vol.70, issue.0, pp.320-348, 2014.
DOI : 10.1016/j.jmps.2014.05.020

URL : https://hal.archives-ouvertes.fr/hal-00841953

K. Pham, J. Marigo, and C. Maurini, The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, Journal of the Mechanics and Physics of Solids, vol.59, issue.6, pp.1163-1190, 2011.
DOI : 10.1016/j.jmps.2011.03.010

URL : https://hal.archives-ouvertes.fr/hal-00578995

K. Pham and J. Marigo, From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models, Continuum Mechanics and Thermodynamics, vol.30, issue.6, pp.147-171, 1996.
DOI : 10.1007/s00161-011-0228-3

URL : https://hal.archives-ouvertes.fr/hal-00647860

B. Bourdin, J. Marigo, C. Maurini, and P. Sicsic, Morphogenesis and Propagation of Complex Cracks Induced by Thermal Shocks, Physical Review Letters, vol.112, issue.1, pp.14-301, 2014.
DOI : 10.1103/PhysRevLett.112.014301

URL : https://hal.archives-ouvertes.fr/hal-00911118

B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces and Free Boundaries, vol.9, pp.411-430, 2007.
DOI : 10.4171/IFB/171

C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.45-48, pp.2765-2778, 2010.
DOI : 10.1016/j.cma.2010.04.011

F. Facchinei, J. Júdice, and J. Soares, An Active Set Newton Algorithm for Large-Scale Nonlinear Programs with Box Constraints, SIAM Journal on Optimization, vol.8, issue.1, pp.158-186, 1998.
DOI : 10.1137/S1052623493253991

M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, MOS-SIAM Series on Optimization SIAM, vol.11, 2011.
DOI : 10.1137/1.9781611970692

E. Lorentz and P. Badel, A new path-following constraint for strain-softening finite element simulations, International Journal for Numerical Methods in Engineering, vol.60, issue.2, pp.499-526, 2004.
DOI : 10.1002/nme.971

URL : https://hal.archives-ouvertes.fr/hal-00086145

T. Heister, M. Wheeler, and T. Wick, A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Computer Methods in Applied Mechanics and Engineering, vol.290, pp.466-495, 2015.
DOI : 10.1016/j.cma.2015.03.009

N. Singh, C. Verhoosel, R. De-borst, and E. Van-brummelen, A fracture-controlled path-following technique for phase-field modeling of brittle fracture, Finite Elements in Analysis and Design, vol.113, pp.14-29, 2016.
DOI : 10.1016/j.finel.2015.12.005

T. Gerasimov, D. Lorenzis, and L. , A line search assisted monolithic approach for phasefield computing of brittle fracture Computer Methods in Applied Mechanics and Engineering in press

M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the mumford-shah functional, Numerical Functional Analysis and Optimization, vol.17, issue.9-10, pp.957-982, 1999.
DOI : 10.1515/crll.1995.458.1

G. Bellettini and A. Coscia, Discrete approximation of a free discontinuity problem, Numerical Functional Analysis and Optimization, vol.1, issue.3-4, pp.105-123, 1994.
DOI : 10.1007/978-1-4612-1015-3

S. Burke, C. Ortner, and E. Süli, An Adaptive Finite Element Approximation of a Variational Model of Brittle Fracture, SIAM Journal on Numerical Analysis, vol.48, issue.3, pp.980-1012, 2010.
DOI : 10.1137/080741033

M. Artina, M. Fornasier, S. Micheletti, and S. Perotto, Anisotropic Mesh Adaptation for Crack Detection In Brittle Materials, SIAM Journal on Scientific Computing, vol.37, issue.4, pp.633-659, 2015.
DOI : 10.1137/140970495

P. Brune, M. Knepley, B. Smith, and X. Tu, Composing Scalable Nonlinear Algebraic Solvers, SIAM Review, vol.57, issue.4, 2013.
DOI : 10.1137/130936725

J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, 2000.
DOI : 10.1137/1.9780898719468

D. Young, Iterative methods for solving partial difference equations of elliptic type, Transactions of the American Mathematical Society, vol.76, issue.1, 1950.
DOI : 10.1090/S0002-9947-1954-0059635-7

R. Arms, L. Gates, and B. Zondek, A Method of Block Iteration, Journal of the Society for Industrial and Applied Mathematics, vol.4, issue.4, pp.220-229, 1956.
DOI : 10.1137/0104012

W. Kahan, Gauss-Seidel methods of solving large systems of linear equations, 1958.

A. Ostrowski, On the linear iteration procedures for symmetric matrices, Rendiconti di Matematica e sue Applicazioni, vol.5, issue.14, pp.140-163, 1954.
DOI : 10.1007/978-3-0348-9355-8_16

J. Reid, A Method for Finding the Optimum Successive Over-Relaxation Parameter, The Computer Journal, vol.9, issue.2, pp.200-204, 1966.
DOI : 10.1093/comjnl/9.2.200

T. Munson, Algorithms and environments for complementarity, 2000.

S. Benson and T. Munson, Flexible complementarity solvers for large-scale applications, Optimization Methods and Software, vol.1, issue.1, pp.155-168, 2006.
DOI : 10.1080/10556780500065382

A. Fischer, A special newton-type optimization method, Optimization, vol.30, issue.3-4, pp.3-4269, 1992.
DOI : 10.1007/BF00935279

F. Facchinei and J. Soares, A New Merit Function For Nonlinear Complementarity Problems And A Related Algorithm, SIAM Journal on Optimization, vol.7, issue.1, pp.225-247, 1997.
DOI : 10.1137/S1052623494279110

M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, vol.49, issue.6, pp.409-436, 1952.
DOI : 10.6028/jres.049.044

M. Adams, H. Bayraktar, T. Keaveny, and P. Papadopoulos, Ultrascalable Implicit Finite Element Analyses in Solid Mechanics with over a Half a Billion Degrees of Freedom, Proceedings of the ACM/IEEE SC2004 Conference
DOI : 10.1109/SC.2004.62

R. Falgout, An Introduction to Algebraic Multigrid Computing, Computing in Science & Engineering, vol.8, issue.6, pp.24-33, 2006.
DOI : 10.1109/MCSE.2006.105

V. Hernandez, J. Roman, and V. Vidal, SLEPc, ACM Transactions on Mathematical Software, vol.31, issue.3, pp.351-362, 2005.
DOI : 10.1145/1089014.1089019

P. Van?k, J. Mandel, and M. Brezina, Algebraisches Mehrgitterverfahren mittels gegl??tteter Aggregation f??r elliptische Aufgaben zweiter und vierter Ordnung, Computing, vol.15, issue.3, pp.179-196, 1996.
DOI : 10.1007/BF02238511

M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, ML 5.0 smoothed aggregation user's guide, 2006.

M. Murphy, G. Golub, and A. Wathen, A Note on Preconditioning for Indefinite Linear Systems, SIAM Journal on Scientific Computing, vol.21, issue.6, pp.1969-1972, 2000.
DOI : 10.1137/S1064827599355153

M. Benzi, G. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numerica, vol.14, issue.14, pp.1-137, 2005.
DOI : 10.1017/S0962492904000212

J. Brown, M. Knepley, D. May, L. Mcinnes, and B. Smith, Composable Linear Solvers for Multiphysics, 2012 11th International Symposium on Parallel and Distributed Computing, pp.55-62, 2012.
DOI : 10.1109/ISPDC.2012.16

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune et al., PETSc users manual, 2014.

C. Paige and M. Saunders, Solution of Sparse Indefinite Systems of Linear Equations, SIAM Journal on Numerical Analysis, vol.12, issue.4, pp.617-629, 1975.
DOI : 10.1137/0712047

M. Hossain, C. Hsueh, B. Bourdin, and K. Bhattacharya, Effective toughness of heterogeneous media, Journal of the Mechanics and Physics of Solids, vol.71, issue.0, pp.15-32, 2014.
DOI : 10.1016/j.jmps.2014.06.002

H. Bahr, H. Weiss, H. Maschke, and F. Meissner, Multiple crack propagation in a strip caused by thermal shock, Theoretical and Applied Fracture Mechanics, vol.10, issue.3, pp.219-226, 1988.
DOI : 10.1016/0167-8442(88)90014-6

C. Jiang, X. Wu, J. Li, F. Song, Y. Shao et al., A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock, Acta Materialia, vol.60, issue.11, pp.4540-4550, 2012.
DOI : 10.1016/j.actamat.2012.05.020

P. Sicsic, J. Marigo, and C. Maurini, Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling, Journal of the Mechanics and Physics of Solids, vol.63, issue.0, pp.256-284, 2014.
DOI : 10.1016/j.jmps.2013.09.003

URL : https://hal.archives-ouvertes.fr/hal-00843625

P. Amestoy, I. Duff, J. Koster, L. Excellent, and J. , A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.1, pp.15-41, 2001.
DOI : 10.1137/S0895479899358194

URL : https://hal.archives-ouvertes.fr/hal-00808293

S. Eisenstat and H. Walker, Choosing the Forcing Terms in an Inexact Newton Method, SIAM Journal on Scientific Computing, vol.17, issue.1, pp.16-32, 1996.
DOI : 10.1137/0917003

K. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numerical Linear Algebra with Applications, vol.84, issue.214, pp.1-40, 2011.
DOI : 10.1002/nla.716