M. Bidinosti, P. Botta, and S. Kruttner, CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency, Science, vol.351, issue.6278, pp.1199-1203, 2016.
DOI : 10.1126/science.aad5487

J. A. Bittker, High-Throughput RT-PCR for Small-Molecule Screening Assays, Curr. Protoc. Chem. Biol, vol.4, issue.1, pp.49-63, 2012.
DOI : 10.1002/9780470559277.ch110204

T. M. Boeckers, J. Bockmann, M. R. Kreutz, and E. D. Gundelfinger, ProSAP/Shank proteins - a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease, Journal of Neurochemistry, vol.274, issue.5, pp.903-910, 2002.
DOI : 10.1046/j.1471-4159.2002.00931.x

C. Boissart, X. Nissan, K. Giraud-triboult, M. Peschanski, and A. Benchoua, miR-125 potentiates early neural specification of human embryonic stem cells, Development, vol.139, issue.7, pp.1247-1257
DOI : 10.1242/dev.073627

C. Boissart, A. Poulet, and P. Georges, Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening. Transl, Psychiatry, vol.3, p.294, 2013.

T. Bourgeron, From the genetic architecture to synaptic plasticity in autism spectrum disorder, Nature Reviews Neuroscience, vol.511, issue.9, pp.551-563, 2015.
DOI : 10.1016/j.cell.2004.09.011

O. Bozdagi, T. Sakurai, and D. Papapetrou, Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication, Molecular Autism, vol.1, issue.1, p.15, 2010.
DOI : 10.1186/2040-2392-1-15

O. Bozdagi, T. Tavassoli, and J. D. Buxbaum, Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay, Molecular Autism, vol.4, issue.1, p.9, 2013.
DOI : 10.1016/j.cell.2010.10.016

Z. Cao, X. Zou, and Y. Cui, Rapid Throughput Analysis Demonstrates that Chemicals with Distinct Seizurogenic Mechanisms Differentially Alter Ca2+ Dynamics in Networks Formed by Hippocampal Neurons in Culture, Molecular Pharmacology, vol.87, issue.4, pp.595-605, 2015.
DOI : 10.1124/mol.114.096701

G. Chen, L. D. Huang, Y. M. Jiang, and H. K. Manji, The Mood-Stabilizing Agent Valproate Inhibits the Activity of Glycogen Synthase Kinase-3, Journal of Neurochemistry, vol.58, issue.3, pp.1327-1330, 1999.
DOI : 10.1046/j.1471-4159.2000.0721327.x

E. Y. Chen, C. M. Tan, and Y. Kou, Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinformatics, vol.14, issue.1, p.128, 2013.
DOI : 10.1126/science.1076997

R. Delorme, E. Ey, R. Toro, M. Leboyer, C. Gillberg et al., Progress toward treatments for synaptic defects in autism, Nature Medicine, vol.232, issue.6, pp.685-694, 2013.
DOI : 10.1016/j.resp.2007.08.009

URL : https://hal.archives-ouvertes.fr/pasteur-01470299

S. M. Dravid and T. F. Murray, Spontaneous synchronized calcium oscillations in neocortical neurons in the presence of physiological [Mg2+]: involvement of AMPA/kainate and metabotropic glutamate receptors, Brain Research, vol.1006, issue.1, pp.8-17, 2004.
DOI : 10.1016/j.brainres.2004.01.059

C. M. Durand, C. Betancur, and T. M. Boeckers, Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders, Nature Genetics, vol.28, issue.1, pp.25-27, 2007.
DOI : 10.1038/ng1933

URL : https://hal.archives-ouvertes.fr/inserm-00126175

P. Georges, C. Boissart, A. Poulet, M. Peschanski, and A. Benchoua, Protein Kinase-A Inhibition Is Sufficient to Support Human Neural Stem Cells Self-Renewal, STEM CELLS, vol.38, issue.12, 2015.
DOI : 10.1002/stem.2194

T. D. Gould, J. A. Quiroz, J. Singh, C. A. Zarate, and H. K. Manji, Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers, Molecular Psychiatry, vol.9, issue.8, pp.734-755, 2004.
DOI : 10.1038/sj.mp.4001518

A. M. Grabrucker, M. J. Knight, and C. Proepper, Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation, The EMBO Journal, vol.13, issue.3, pp.569-581, 2011.
DOI : 10.1038/emboj.2010.336

K. Han, J. L. Holder-jr, and C. P. Schaaf, SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties, Nature, vol.31, issue.7474, pp.72-77, 2013.
DOI : 10.1038/nature12630

Y. H. Jiang and M. D. Ehlers, Modeling Autism by SHANK Gene Mutations in Mice, Neuron, vol.78, issue.1, pp.8-27, 2013.
DOI : 10.1016/j.neuron.2013.03.016

R. A. Kumar and S. L. Christian, Genetics of autism spectrum disorders, Current Neurology and Neuroscience Reports, vol.25, issue.Suppl10, pp.188-197, 2009.
DOI : 10.1007/s11910-009-0029-2

C. S. Leblond, C. Nava, and A. Polge, Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments, PLoS Genetics, vol.22, issue.6, p.1004580, 2014.
DOI : 10.1371/journal.pgen.1004580.s019

URL : https://hal.archives-ouvertes.fr/inserm-01061498

R. S. Lee, M. Pirooznia, and J. Guintivano, Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene. Transl, Psychiatry, vol.5, p.600, 2015.

R. Lister, M. Pelizzola, and Y. S. Kida, Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells, Nature, vol.133, issue.7336, pp.68-73, 2011.
DOI : 10.1038/nature09798

Z. Liu and C. B. Smith, Lithium: A Promising Treatment for Fragile X Syndrome, ACS Chemical Neuroscience, vol.5, issue.6, pp.477-483, 2014.
DOI : 10.1021/cn500077p

Y. Mei, P. Monteiro, and Y. Zhou, Adult restoration of Shank3 expression rescues selective autistic-like phenotypes, Nature, vol.10, issue.7591, pp.481-484, 2016.
DOI : 10.1038/nature16971

M. J. Millan, An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy, Neuropharmacology, vol.68, pp.2-82, 2013.
DOI : 10.1016/j.neuropharm.2012.11.015

M. Nakagawa, M. Koyanagi, and K. Tanabe, Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts, Nature Biotechnology, vol.93, issue.1, pp.101-106, 2008.
DOI : 10.1038/nbt1374

C. J. Newschaffer, L. A. Croen, and J. Daniels, The Epidemiology of Autism Spectrum Disorders, Annual Review of Public Health, vol.28, issue.1, pp.235-258, 2007.
DOI : 10.1146/annurev.publhealth.28.021406.144007

L. Pasquali, C. L. Busceti, F. Fulceri, A. Paparelli, and F. Fornai, Intracellular pathways underlying the effects of lithium, Behavioural Pharmacology, vol.21, issue.5-6, pp.5-6, 2010.
DOI : 10.1097/FBP.0b013e32833da5da

J. Peca, C. Feliciano, and J. T. Ting, Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, vol.90, issue.7344, pp.437-442, 2011.
DOI : 10.1038/nature09965

M. Pick, Y. Stelzer, O. Bar-nur, Y. Mayshar, A. Eden et al., Clone- and Gene-Specific Aberrations of Parental Imprinting in Human Induced Pluripotent Stem Cells, Stem Cells, vol.92, issue.11, pp.2686-2690, 2009.
DOI : 10.1002/stem.205

P. B. Sehgal, D. Jr, J. E. Tamm, and I. , The inhibition of DRB (5,6-dichloro-1-??-d-ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells, Cell, vol.9, issue.3, pp.473-480, 1976.
DOI : 10.1016/0092-8674(76)90092-1

A. Shcheglovitov, O. Shcheglovitova, and M. Yazawa, SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients, Nature, vol.27, issue.7475, pp.267-271, 2013.
DOI : 10.1038/nature12618

W. Spooren, L. Lindemann, A. Ghosh, and L. Santarelli, Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders, Trends in Pharmacological Sciences, vol.33, issue.12, pp.669-684, 2012.
DOI : 10.1016/j.tips.2012.09.004

R. Toro, M. Konyukh, and R. Delorme, Key role for gene dosage and synaptic homeostasis in autism spectrum disorders, Trends in Genetics, vol.26, issue.8, pp.363-372, 2010.
DOI : 10.1016/j.tig.2010.05.007

A. Urbach, O. Bar-nur, G. Q. Daley, and N. Benvenisty, Differential Modeling of Fragile X Syndrome by Human Embryonic Stem Cells and Induced Pluripotent Stem Cells, Cell Stem Cell, vol.6, issue.5, pp.407-411, 2010.
DOI : 10.1016/j.stem.2010.04.005

P. J. Watson, C. J. Millard, and A. M. Riley, Insights into the activation mechanism of class I HDAC complexes by inositol phosphates, Nature Communications, vol.79, p.11262, 2016.
DOI : 10.1038/ncomms11262

X. Wu, Y. Bai, and T. Tan, Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats, Frontiers in Behavioral Neuroscience, vol.9, p.234, 2014.
DOI : 10.1038/nrg2380

S. Wu, S. D. Zheng, and H. L. Huang, Lithium Down-regulates Histone Deacetylase 1 (HDAC1) and Induces Degradation of Mutant Huntingtin, Journal of Biological Chemistry, vol.288, issue.49, pp.288-35500, 2013.
DOI : 10.1074/jbc.M113.479865

F. Yi, T. Danko, and S. C. Botelho, Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons, Science, vol.352, issue.6286, 2016.
DOI : 10.1126/science.aaf2669