Joint Tensor Compression for Coupled Canonical Polyadic Decompositions

Jérémy E. Cohen 1 Rodrigo Cabral Farias 1 Pierre Comon 1
1 GIPSA-CICS - CICS
GIPSA-DIS - Département Images et Signal
Abstract : To deal with large multimodal datasets, coupled canonical polyadic decompositions are used as an approximation model. In this paper, a joint compression scheme is introduced to reduce the dimensions of the dataset. Joint compression allows to solve the approximation problem in a compressed domain using standard coupled decomposition algorithms. Computational complexity required to obtain the coupled decomposition is therefore reduced. Also, we propose to approximate the update of the coupled factor by a simple weighted average of the independent updates of the coupled factors. The proposed approach and its simplified version are tested with synthetic data and we show that both do not incur substantial loss in approximation performance.
Type de document :
Communication dans un congrès
24th European Signal Processing Conference (EUSIPCO 2016), Aug 2016, Budapest, Hungary
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01326132
Contributeur : Jérémy E. Cohen <>
Soumis le : vendredi 3 juin 2016 - 10:33:11
Dernière modification le : lundi 9 avril 2018 - 12:22:48
Document(s) archivé(s) le : dimanche 4 septembre 2016 - 10:20:41

Fichier

soumis.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01326132, version 1

Collections

Citation

Jérémy E. Cohen, Rodrigo Cabral Farias, Pierre Comon. Joint Tensor Compression for Coupled Canonical Polyadic Decompositions. 24th European Signal Processing Conference (EUSIPCO 2016), Aug 2016, Budapest, Hungary. 〈hal-01326132〉

Partager

Métriques

Consultations de la notice

609

Téléchargements de fichiers

211