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Abstract

This report addresses the problem of estimating complex components from their mixture in the Time-
Frequency (TF) domain. Traditional techniques, which consist in non-iteratively optimizing a cost function
measuring the difference between the mixture and the model, do not lead to satisfactorily sounding results.
Thus, we propose to optimize this cost function by means of an iterative algorithm, which allows us to
incorporate some prior phase information in the procedure. We provide a mathematical proof of the non-
increasing property of the error function over the update rules of this algorithm. In addition, we show that
the algorithm must be carefully initialized to avoid getting stuck in a local minimum and to output satisfying
results.
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Résumé

Ce rapport s’intéresse au problème de l’estimation de composantes complexes à partir de leur mélange
dans le plan Temps-Fréquence. Pour ce faire, nous proposons de rechercher un minimum local d’une fonction
de coût qui mesure la différence entre le mélange et la somme des sources estimées. Bien que des méthodes
non-itératives fournissent des solutions à ce problème, elles ne sont pas perceptivement satisfaisantes. Aussi,
nous proposons d’optimiser la fonction de coût par une procédure itérative, qui permet, via l’initialisation
des composantes, d’injecter des à priori sur leurs phases. Nous fournissons une preuve mathématique que les
règles de mise à jour de cet algorithme font décroître la fonction de coût associée. Nous soulignons également
l’importance d’une initialisation bien choisie pour aboutir à des résultats satisfaisants, sans être bloqué dans
un minimum local.

Mots clés

Reconstruction de phase, séparation de sources, méthode de la fonction auxiliaire, déroulé linéaire.
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1 Introduction
This document features supplementary materials to the reference paper [1]. We address the problem of source
separation, which consists in extracting the underlying components composing a mixture of audio sources in
the TF domain. Since all TF bins are treated independently, the problem here reduces to finding K complex
numbers X1,...,XK such that

∑
kXk = X, given their magnitude estimates V1,...,Vk. To do so, we consider

the problem of optimizing a cost function |E| which measures the difference between the observed data and
the model. We establish that this function has many global minima. For instance, the estimates provided
by the Wiener filtering technique are zeros of the cost function E, although they do not verify |X̂k| = Vk.
Since this technique does not lead to satisfactorily sounding results [2], we propose to optimize |E[ by means
of an iterative procedure. Our approach allows us, through the initialization of the procedure, to incorporate
some prior knowledge about the phase of the components, which can increase the quality of the separated
components [2].

We first present in section 2 the problem setting and motivate the need for a novel optimization technique
of |E|, different from traditional non-iterative methods. In section 3, we present the algorithm and we provide a
mathematical proof that the error function |E| is non-creasing under the corresponding update rules. Section 4
motivates the research of a properly-chosen initialization scheme for the algorithm, and section 5 draws some
concluding remarks.

2 Problem setting
We consider the problem of estimating K complex components X1,...,XK from their sum X =

∑
kXk, assuming

their magnitudes denoted V1,...,VK are estimated beforehand. This problem can be solved by minimizing the
following cost function:

|E| = |X −
∑
k

Xk|. (1)

This function has many global minima. For instance, if K = 2, let us consider the two complex numbers
X1 = V1e

iθ1 and X2 = V2e
iθ2 which are such that X1 + X2 = X = V eiθ. The numbers generated by applying

the symmetry of axis X to X1 and X2 are X̄1e
2θ and X̄2e

2θ, where z̄ denotes the complex conjugate of z. Their
sum is:

(X̄1 + X̄2)e2θ = X̄e2θ = V e−θe2θ = X. (2)

Thus, from a first solution to the problem, it is easy to find another one, which motivates the research of a
properly-chosen solution. When K ≥ 3, the problem has infinitely many solutions.

Wiener-like filtering [3] is one of the most commonly-used methods to obtain roots of this function. With
this technique, the estimates are:

X̂k =
V 2
k∑

l

V 2
l

�X, (3)

and the corresponding error is:

|E| = |X −
∑
k

X̂k| = |X|

∣∣∣∣∣∣∣∣1−
∑
k

V 2
k∑

l

V 2
l

∣∣∣∣∣∣∣∣ = |X||1− 1| = 0. (4)

However, the Wiener filtering estimates does not verify the condition |X̂k| = Vk. Besides, as it is stated in the
reference document [1], these estimates do not lead to satisfactorily sounding results when the sources overlap
in the TF domain.

It has been shown in a previous work [2] that incorporating phase information into a source separation
framework can improve the quality of the overall separation. We then propose an iterative procedure to minimize
the error function |E|. This novel method allows us, through its initialization, to use some prior information
about the phase of the components. Indeed, our goal is to get close to a local minima of the cost function using
this prior knowledge.
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Algorithm 1 Estimation of complex components from their mixture
Inputs:
Mixture X ∈ C, magnitudes Vk ∈ R+, weights λk, and initial values X̂k ∈ C, ∀k ∈ J1;KK,
Number of iterations Nit.
Compute initial error E = X −

∑
k X̂k.

for it = 1 to Nit do
for k = 1 to K do
Yk ← X̂k + λkE,
X̂k ← Yk

|Yk|Vk.
end for
E ← X −

∑
k X̂k.

end for
Ouputs: ∀k ∈ J1;KK, X̂k ∈ C.

Note that alternative methods exist, such as considering the problem of minimizing |E| under some phase
constraints. For instance, phase evolution cost functions have been proposed in [4] and in [5]. However, as it is
shown in the experimental part of the reference paper [1], the algorithm presented in this paper provides good
results with a moderate computational cost. Thus, it seems to be a good candidate for a source separation task.

3 Iterative source separation procedure

3.1 Intuitive approach
We present here the intuitive technique that was introduced in the reference paper [1] for minimizing the cost
function |E|. At iteration (it), the error E(it) = X −

∑
k X̂

(it)
k is distributed over the estimates:

Y
(it+1)
k = X̂

(it)
k + λkE

(it), (5)

where the parameters λk are nonnegative weights. In order to preserve the fact that
∑
k Y

(it)
k = X, the weights

must verify: ∑
k

λk = 1. (6)

Intuitively, we look for λk such that the more important the component k (i.e. the greater Vk), the greater
the corresponding weight λk. Indeed, the components of highest energy are expected to have more impact on
the estimation error than the components of lowest energy. Thus, we propose the following definition, which
obviously conforms to (6):

λk =
V 2
k∑
l V

2
l

. (7)

We then present in Algorithm 1 (labeled Algorithm 2 in [1]) the procedure for estimating the components from
a complex mixture X, knowing their magnitudes.
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3.2 Proof of convergence
We present here the mathematical proof of the non-increasing property of the error in this algorithm. The error
at iteration (it+ 1) is:

∣∣∣E(it+1)
∣∣∣ =

∣∣∣∣∣X −∑
k

X̂
(it+1)
k

∣∣∣∣∣
=

∣∣∣∣∣∑
k

Y
(it+1)
k −

∑
k

X̂
(it+1)
k

∣∣∣∣∣
=

∣∣∣∣∣∑
k

Y
(it+1)
k − X̂(it+1)

k

∣∣∣∣∣
=

∣∣∣∣∣∑
k

X̂
(it)
k + λkE

(it) −
X̂

(it)
k + λkE

(it)

|X̂(it)
k + λkE(it)|

Vk

∣∣∣∣∣
=

∣∣∣∣∣∑
k

(X̂
(it)
k + λkE

(it))

(
1− Vk

|X̂(it)
k + λkE(it)|

)∣∣∣∣∣ .
Applying the triangle inequality, we have:

∣∣∣E(it+1)
∣∣∣ ≤∑

k

|X̂(it)
k + λkE

(it)|

∣∣∣∣∣1− Vk

|X̂(it)
k + λkE(it)|

∣∣∣∣∣
≤
∑
k

∣∣∣|X̂(it)
k + λkE

(it)| − Vk
∣∣∣

≤
∑
k

∣∣∣|X̂(it)
k + λkE

(it)| − |X̂(it)
k |

∣∣∣ .
We then use the following property (which is easy to demonstrate using the triangle inequality) : ∀(a, b) ∈ C2,

||a| − |b|| ≤ |a− b| . (8)

Let a = X̂
(it)
k + λkE

(it) and b = X̂
(it)
k . We then have:∣∣∣|X̂(it)

k + λkE
(it)| − |X̂(it)

k |
∣∣∣ ≤ ∣∣∣λkE(it)

∣∣∣ . (9)

Using this inequality in the previous calculation, we have:∣∣∣E(it+1)
∣∣∣ ≤∑

k

∣∣∣λkE(it)
∣∣∣ ≤ ∣∣∣E(it)

∣∣∣∑
k

λk. (10)

Since the weights are chosen such that ∑
k

λk = 1, (11)

we then obtain: ∣∣∣E(it+1)
∣∣∣ ≤ ∣∣∣E(it)

∣∣∣ . (12)

This result traduces that the error function |E| is non increasing over iterations. Since |E(it)| is non-increasing
and minored by 0, it converges.
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3.3 Auxiliary function method
A more rigorous method for obtaining the procedure described in Algorithm 1 consists in using the auxiliary
function technique. Such technique has been used for estimating the Complex Nonnegative Matrix Factorization
(CNMF) model in [6]. We provide here a full mathematical derivation of the procedure using this method.

We consider the following cost function:

f(θ) = |E|2 = |X −
∑
k

X̂k|2, (13)

with θ = {X̂k, k ∈ J1;KK}, under the constraints |X̂k| = Vk for all k. The idea is then to introduce a function
g(θ, θ̃) which depends on some new parameters θ̃, and verify:

f(θ) = min
θ̃
g(θ, θ̃). (14)

Such a function is called an auxiliary function. It can be shown (for instance in [6]) that f is non-increasing
under the following update rules:

θ̃ ← arg min
θ̃
g(θ, θ̃) and θ ← arg min

θ
g(θ, θ̃). (15)

We propose to obtain an auxiliary function for our problem. We introduce the auxiliary variables θ̃ = {Yk, k ∈
J1;KK} such that

∑
k Yk = X. We have:

|X −
∑
k

X̂k|2 = |
∑
k

(Yk − X̂k)|2. (16)

We then introduce the nonnegative weights λk which verify
∑
k λk = 1, and we can write:

|X −
∑
k

X̂k|2 =

∣∣∣∣∣∑
k

λk

(
Yk − X̂k

λk

)∣∣∣∣∣
2

. (17)

Applying the Jensen inequality to the convex function |.|2, we obtain:

|X −
∑
k

X̂k|2 ≤
∑
k

|Yk − X̂k|2

λk
. (18)

Thus, f(θ) ≤ g(θ, θ̃) with:

g(θ, θ̃) =
∑
k

|Yk − X̂k|2

λk
, (19)

and the problem becomes that of minimizing g under the constraints
∑
k Yk = X and ∀k, |X̂k| = Vk. Let us

prove that g is an auxiliary function of the objective cost function f , i.e. that it satisfies (14). To do so, we
introduce the constraint on the auxiliary variables

∑
k Yk = X by means of the Lagrange multipliers:

L(θ, θ̃, γ) = g(θ, θ̃) + γ(
∑
k

Ȳk − X̄). (20)

Minimizing g with respect to θ̃ under the constraint
∑
k Yk = X leads to finding a saddle point for L. We

then calculate the partial derivatives of L with respect to the complex variables Yk (the so-called Wirtinger
derivatives). In practice, this is computed by taking the derivative with respect to Ȳk which is treated as a
standard real variable, while Yk is treated as a constant [7]. We have:

∂L
∂Yk

(θ, θ̃, γ) =
1

λk
(Yk − X̂k) + γ, (21)
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which is set at 0 and leads to:
Yk = X̂k + λkγ. (22)

Besides, setting the derivative with respect to the Lagrange multiplier γ at zero leads to the constraint
∑
k Yk =

X. By summing (22) over k and using this constraint, we have:

X =
∑
k

Yk =
∑
k

X̂k + γ
∑
k

λk, (23)

and since the weights λk add up to 1, we obtain:

γ = X −
∑
k

X̂k, (24)

which leads to:
Yk = X̂k + λk(X −

∑
k

X̂k). (25)

Thus, g(θ, θ̃) is minimized for a set of auxiliary parameters θ̃m defined by (25), and is then equal to:

g(θ, θ̃m) =
∑
k

|X̂k + λk(X −
∑
k X̂k)− X̂k|2

λk

=
∑
k

λk|X −
∑
k

X̂k|2

= |X −
∑
k

X̂k|2
∑
k

λk

= |X −
∑
k

X̂k|2

= f(θ),

which shows that g is an auxiliary function of f . In accordance with (15), we obtain the update rules on θ and
θ̃ by alternatively minimizing g with respect to these variables. As it has already been shown, the update rule
on Yk is given by (25). To obtain the update rule on X̂k, we introduce the constraints |X̂k| = Vk, ∀k, by means
of the Lagrange multipliers:

H(θ, θ̃, δ1, ..., δK) = g(θ, θ̃) +
∑
k

δk(|X̂k|2 − V 2
k ). (26)

Minimizing g with respect to θ under the constraints |X̂k| = Vk leads to finding a saddle point for H. We then
calculate the partial derivatives of H with respect to the complex variables X̂k:

∂H
∂X̂k

(θ, θ̃, δ1, ..., δK) =
1

λk
(X̂k − Yk) + δkX̂k, (27)

and setting this derivative at 0 leads to:

X̂k =
Yk

1 + λkδk
. (28)

Besides, setting the derivatives with respect to the Lagrange multipliers δk at zero leads to the constraint
|Xk| = Vk. By taking the modulus in (28) and using these constraints, we have:

Vk = |X̂k| =
|Yk|

|1 + λkδk|
, (29)

so
1 + λkδk = ±|Yk|

Vk
, (30)
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and finally, combining this relation and (28), we have:

X̂k = ±Vk
Yk
|Yk|

. (31)

To avoid any ambiguity on the sign in (31), we calculate the value of g for both cases. We have:

|Yk − Vk
Yk
|Yk|
| = ||Yk| − Vk|, (32)

and :
|Yk + Vk

Yk
|Yk|
| = ||Yk|+ Vk|. (33)

Besides, |Yk| ≥ 0 and Vk ≥ 0, so we obviously have ||Yk| − Vk| ≤ ||Yk|+ Vk|. Then, g is minimized with respect
to θ when ∀k:

X̂k = Vk
Yk
|Yk|

. (34)

Ultimately, the objective function f is minimized by alternatively applying the update rules (25) and (34). This
leads to the iterative procedure that is summarized in Algorithm 1.

4 Initialization of the algorithm
The initialization in Algorithm 1 is crucial to ensure that the solution will be physically correct. As stated in
section 2, the keystone of our approach is to properly initialize the algorithm in order to exploit prior phase
knowledge for improving the quality of the separation. In addition, it contributes to significantly decrease the
required number of iterations until convergence.

Intuitively, one can initialize the algorithm with the following scheme, inspired from the Wiener filtering
technique: the phase of the mixture is given to each source. However, it corresponds to a fixed point of the
algorithm: the components will not be modified over iterations. Indeed, with this initialization:

X̂
(0)
k = Vk

X

|X|
, (35)

and the error is equal to:

E(0) = X −
∑
k

Vk
X

|X|
=

X

|X|

(
|X| −

∑
l

Vl

)
, (36)

which leads to:

Y
(1)
k = X̂

(0)
k + λkE

(0) = Vk
X

|X|
+ λk

X

|X|

(
|X| −

∑
l

Vl

)
=

X

|X|

(
Vk + λk(|X| −

∑
l

Vl)

)
. (37)

Therefore, the auxiliary variables Y (1)
k have the seem direction than X if the quantity Vk + λk(|X| −

∑
l Vl) is

positive, and the opposite direction otherwise. If |X| −
∑
l Vl ≥ 0, it is obvious that this quantity is positive,

then after normalization we have :
X̂

(1)
k = Vk

X

|X|
= X̂

(0)
k . (38)

Now, let us assume that |X| −
∑
l Vl < 0. Using some simple algebra, we can write:

λk =
V 2
k∑
l V

2
l

≤ Vk∑
l Vl
≤ Vk∑

l Vl − |X|
, (39)

and since we assumed that |X| −
∑
l Vl < 0, this leads to:

λk(
∑
l

Vl − |X|) ≤ Vk, (40)
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which is equivalent to Vk + λk(|X| −
∑
l Vl) ≥ 0 Finally, after normalization, we still have:

X̂
(1)
k = Vk

X

|X|
= X̂

(0)
k . (41)

In other words, in both cases, the procedure does not modify the components X̂k from it initial values.
For those reasons, we propose to initialize this procedure with the phase unwrapping algorithm [1]. Such

an initialization is, in general, not a fixed point of the algorithm, and it leads to a fast convergence and good
quality solutions from a perceptual point of view.

5 Conclusion
In this report, we have addressed the problem of source separation by seeking to minimize the cost function |E|.
To overcome the limitation of existing non-iterative techniques, such as the Wiener filtering, we have introduced
an iterative procedure, under which the cost function is non-increasing. We have pointed out the need for a
non-trivial initialization of this algorithm, in order to take advantage of some prior phase information about
the components. We suggest that the components estimated with the phase unwrapping algorithm is a good
candidate for this task, since under this initialization, the error is expected to converge fast, and the solution
should have some temporal continuity. Experimental validation is conducted in the reference paper, and show
that better results than with the traditional Wiener filtering technique can be reached with this algorithm.
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