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Estimating the Intrinsic Dimension of Hyperspectral
Images Using a Noise-Whitened Eigengap Approach

Abderrahim Halimi, Member, IEEE, Paul Honeine, Member, IEEE, Malika Kharouf,
Cédric Richard, Senior Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—Linear mixture models are commonly used to repre-
sent a hyperspectral data cube as linear combinations of endmem-
ber spectra. However, determining the number of endmembers for
images embedded in noise is a crucial task. This paper proposes a
fully automatic approach for estimating the number of endmem-
bers in hyperspectral images. The estimation is based on recent
results of random matrix theory related to the so-called spiked
population model. More precisely, we study the gap between suc-
cessive eigenvalues of the sample covariance matrix constructed
from high-dimensional noisy samples. The resulting estimation
strategy is fully automatic and robust to correlated noise owing
to the consideration of a noise-whitening step. This strategy is
validated on both synthetic and real images. The experimental
results are very promising and show the accuracy of this algorithm
with respect to state-of-the-art algorithms.

Index Terms—Eigengap approach, endmember number, hyper-
spectral imaging, linear spectral mixture, random matrix theory
(RMT), sample covariance matrix.

I. INTRODUCTION

UNMIXING techniques can provide fundamental informa-
tion when analyzing multispectral or hyperspectral im-

ages with limited spatial resolution. In spite of almost 50 years
of research in this area, there has been a surge of interest in
the last few years within the area of remote sensing and hyper-
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spectral imaging [1], [2]. Even with an ever-increasing spatial
resolution, each pixel (or spectrum) in a hyperspectral image is
generally associated with several pure materials. Each spectrum
can thus be seen as a mixture of spectral signatures called end-
members with respective proportions called abundances. While
nonlinear unmixing techniques have been recently investigated
[3]–[5], the linear mixing model is widely accepted because
of its natural physical interpretation. This model assumes that
each spectrum is a convex combination of the endmember spec-
tra. Unmixing hyperspectral images consists of three stages:
1) determining the number of endmembers and possibly pro-
jecting the data onto a subspace of reduced dimension [6], [7];
2) extracting endmember spectra [8], [9]; and 3) estimating
their abundances [10]–[12]. These stages can be performed
separately or jointly [13]–[15]. Determining the number of
endmembers, or the signal subspace dimension, then appears
as a fundamental step in order to achieve endmember spectrum
determination and abundance estimation. This paper considers
this problem of estimating the signal subspace dimension of
hyperspectral images.

Estimating the number of endmembers present in a scene
has been described under several names and under different
methodological frameworks. The most well-known definitions
are based on the eigenvalues of the sample (observation) co-
variance matrix, with the so-called “virtual dimension” (VD)
as well as many variants, including the “intrinsic dimension”
and the “effective dimension.” The VD is estimated by the so-
called Harsanyi–Farrand–Chang (HFC) method which relies on
the Neyman–Pearson detection theory applied to the difference
between the eigenvalues of the sample covariance matrix and its
noncentered counterpart (i.e., the matrix of second-order mo-
ments) [7]. The HFC and its noise-whitened version (NWHFC)
are generally more efficient than algorithms based on model
selection criteria such as the Akaike information criterion (AIC)
[16] and the minimum description length (MDL) [17], [18],
particularly in the presence of colored noise. The idea of evalu-
ating the differences between the eigenvalues of the covariance
and the correlation matrices has also been exploited in other
algorithms such as [19]. In [6], the authors proposed a fully
automatic approach for hyperspectral subspace identification
called Hysime. Their method consists of minimizing a cost
function whose aim is to reduce the noise power. Other methods
only use the sample covariance matrix without considering the
correlation matrix. In [7], the noise subspace projection method
considers a Neyman–Pearson test to separate noise compo-
nents from signal components based on a whitened covariance



matrix. The idea is that the noise eigenvalues are equal to unity
while the signal eigenvalues are greater than one.

Random matrix theory (RMT) is a universal multivariate
statistics tool that has been used successfully in many fields.
Recently, an approach based on RMT has been applied to
estimate the number of endmembers [20]. This method (de-
noted by NWRMT) first estimates the noise covariance matrix
in order to remove colored noise effects. Then, based on the
whitened covariance eigenvalues, this method proposes a theo-
retical threshold to determine the number of endmembers in the
image. However, this method appears to be sensitive to noise
[20], [21] which might reduce the estimation performance.
Moreover, it has been shown in [22] that many noise estimation
algorithms are sensitive to noise correlation. In the presence
of such correlations, the NWRMT algorithm [20] may provide
results of poor quality.

The motivation of this paper is to provide a consistent
and fully automatic estimator of the number of endmembers
by considering a general scenario, where the additive noise
components are not identically distributed. The main advantage
of the proposed approach, with respect to (w.r.t.) the NWRMT
algorithm, is its robustness in the presence of correlated noise.
Similarly to the NWRMT and Hysime approaches, our method
starts by estimating the noise covariance matrix in order to
remove its effect from the sample/observation covariance ma-
trix. The next step is inspired from recent results on spiked
population models (SPMs) [23]. Indeed, the authors of [24]
proposed a method based on the gap between successive eigen-
values of the sample covariance matrix. By considering sorted
eigenvalues, the main idea is that the gap between eigenvalues
(of a whitened covariance) is larger in the presence of a signal
while it is reduced for noise components. Building on this idea,
an automatic threshold is obtained to separate the signal from
noise components.

Contributions and Comparisons: The main objective of this
paper is to provide a fully automatic algorithm for estimating
the number of endmembers in hyperspectral images. The pro-
posed approach generalizes the consistent estimator proposed
in [24] for independent and identically distributed (i.i.d.) noise
to the colored Gaussian noise case. This eigengap approach is
based on a consistent estimator, while the NWRMT algorithm
[20] is not fully consistent as stated in [24]. The proposed
approach appears to be more robust to correlated noise and
to small image sizes. These statements are validated on both
synthetic and real hyperspectral images.

This paper is organized as follows. Section II introduces the
hyperspectral mixing model, the SPM, and the rank estimation
methods for an SPM. Section III introduces our algorithm
whose performance is evaluated in Section IV on synthetic
images. Results on real hyperspectral images are presented in
Section V. Conclusion and perspectives for future works are
finally reported in Section VI.

II. PROBLEM FORMULATION

A. LMM

The linear mixture model (LMM) assumes that each pixel
spectrum yn, of size L× 1, is a linear combination of K

endmembers mk, k ∈ {1, . . . ,K}, corrupted by an additive
noise en as follows:

yn =

K∑
k=1

aknmk + en

=Man + en (1)

where en ∼ N (0L,Σ) is a Gaussian noise, Σ is the noise
covariance matrix, 0L is an L× 1 vector of 0, an =
[a1n, . . . , aKn]

� is the K × 1 abundance vector of the nth
pixel, and M = [m1, . . . ,mK ] is an L×K matrix gathering
the endmember spectra. The abundance vector an contains
proportions satisfying the positivity and sum-to-one (PSTO)
constraints akn ≥ 0, ∀ k ∈ {1, . . . ,K} and

∑K
k=1 akn = 1.

Considering N pixels gathered in the L×N matrix Y , the
LMM can be written as follows:

Y = MA+E (2)

where A is a K ×N matrix of abundances and E is an L×N
matrix of noise samples.

Rank estimation can be based on an eigenvalue analysis of
the covariance matrix of Y . Assuming independence between
the signal counterpart S = MA and the noise E leads to

RY = RS +Σ (3)

where RY and RS are the covariance matrices of Y and S,
respectively. In this paper, we are interested in estimating the
numberK of endmembers, which is equal to R+ 1, whereR =
rank(RS). Indeed, the signal lies into a subspace of dimension
K − 1 because of the PSTO constraints.

B. SPM

A well-known model in RMT is the SPM. This model
assumes that the covariance matrix of interest has all its eigen-
values equal to σ2 except a few eigenvalues (known as spikes)
as follows [23], [24]:

Λ = σ2Γ

⎡⎢⎢⎢⎣
γ1

. . . 0R,L−R

γR
0L−R,R IL−R

⎤⎥⎥⎥⎦Γ� (4)

where Λ is the covariance matrix, Γ is an L× L orthogonal
matrix, 0i,j is the i× j matrix of 0, and IL is the L× L
identity matrix. Determining the number of endmembers can
be performed by computing the number of spiked eigenvalues
of the covariance matrix Λ. For this purpose, consider that
RY = Λ, and denote its eigenvalues by λr for r = 1, . . . , L.
By assuming1 Σ = σ2IL and the eigenvalue vector [ρ1, . . . ,
ρR,01,L−R]

� for RS , (3) leads to

ρr + σ2 = γrσ
2, for r ≤ R (5)

1In the presence of colored noise, an adequate procedure will be considered
as shown in the following.



and (4) yields

λr =

{
ρr + σ2, if r ≤ R

σ2, otherwise.
(6)

Unfortunately, in many situations, the covariance matrix RS is
unknown, and the additive noise is not necessarily identically
distributed, contradicting the assumption Σ = σ2IL. The alter-
native proposed in this paper builds an estimator of the number
of endmembers when only the sample covariance matrix RY is
known and en is an additive independently and not identically
distributed zero-mean Gaussian noise sequence.

C. Rank Estimation From an SPM

Estimating the number of spikes from an SPM is an inter-
esting problem that has found many applications, including
chemical mixtures [25] and hyperspectral unmixing [20]. A
recent work proposed to investigate RMT to estimate the num-
ber of spikes or endmembers in hyperspectral images [20].
This work builds on the estimator proposed in [25] in the
context of chemical mixtures. This method uses the following
assumptions: (i) N → ∞ and L → ∞ (or large values of N
and L) with c = (L/N) > 0 a positive constant; (ii) the noise
corrupting the data is Gaussian and independent of the signal;
and (iii) the signal covariance matrix has a fixed rank R. Under
these assumptions, the method [20], [25] is based on the study
of the asymptotic behavior of the largest eigenvalues of the
sample covariance matrix when both the dimension of the
observations and the sample size grow to infinity at the same
rate. The main idea is that, when the covariance matrix Λ is a
perturbed version of a finite rank matrix, all but a finite number
of eigenvalues of the covariance matrix are different from the
i.i.d. noise variance. Based on this property and on [23] and
[26], a threshold that separates the eigenvalues corresponding
to the useful information from those corresponding to the noise
was derived in [20] and [25], yielding

R̂ = min
r=1,...,L

(
λr < σ2

(
βc

N
2
3

s(α) + (1 +
√
c)2

))
− 1 (7)

where λ1 ≥ λ2 ≥ · · · ≥ λL are the eigenvalues of the sam-
ple covariance matrix Λ, s(α) can be found by using the
Tracy–Widom distribution, and

βc = (1 +
√
c)(1 +

√
c−1)

1
3 . (8)

This estimator is based on a sequence of nested hypothesis tests.
By construction, the proposed estimator is not fully consistent
as shown in [27]. In this paper, we are interested in deriving a
new estimator with better statistical properties.

One of the front-line research problems in RMT is the study
of the gap between consecutive eigenvalues [24], [26], [27].
Indeed, the eigenvalue differences can be used for the estima-
tion of the number of spikes under the following assumptions
[24], [28]: (i) N and L are related by the asymptotic regime

N → ∞, (L/N) → c > 0; (ii) the noise corrupting the data
is assumed Gaussian and independent of the signal;2 (iii) the
signal covariance matrix has a fixed rank R; (iv) the eigenvalues
of the sample covariance matrix are of multiplicity one;3 and
(v) γ1 > · · · > γR > 1 +

√
c which is referred to as the sepa-

ration condition. Note first that, under hypotheses (i) and (v), it
is shown in [26] that the eigenvalues of the covariance matrices
of SPMs satisfy almost surely

λr
a.s.−−−→

N→∞
σ2φ(γr) (9)

for each r ∈ {1, . . . , R}, while for r > R

λr
a.s.−−−→

N→∞
σ2(1 +

√
c)2 (10)

where φ(x) is defined by

φ(x) = (x+ 1)
(
1 +

c

x

)
. (11)

These results were used in [24] and [29] to infer the number
of components R in the case where σ2 = 1. In the general case
where σ2 �= 1, the authors of [24] stated that one should divide
the eigenvalues by the noise variance σ2 to apply the results
obtained for σ2 = 1. The estimation method in [24] considers
the following differences between successive eigenvalues:

δr = λr − λr+1, for r = 1, . . . , L− 1. (12)

The main idea is that, when approaching nonspiked values, the
eigengap δr shrinks to small values. Therefore, the number of
endmembers can be estimated as follows:

R̂ = min {r ∈ {1, . . . ,M}; δr+1 < dN} (13)

where M ≥ R is a fixed integer (large enough) and dN
N→∞−−−→

0 is a threshold to determine. According to [24], the consistency
of this estimator is ensured if dN → 0 and N2/3 dN → +∞.
The same authors proposed to use dN = (ψN/N2/3)βc with
ψN = 4

√
2 log(logN) that satisfies the former conditions. The

obtained algorithm was fully automatic in the sense that it did
not require tuning any parameter. The main difference between
this strategy and that in [20] and [25] is that the one in [24]
builds a test statistics based on the gaps between successive
eigenvalues and not on the eigenvalues themselves. An im-
portant consequence is that a theoretical estimator consistency
is ensured in the case of the gap approach while the method
described in [20] and [25] depends on a parameter α and is
nearly consistent as stated in [24].

2This assumption is introduced to satisfy [24, Assumption 3.1]. However, the
Gaussianity of the additive noise is not necessary, and the proposed approach is
valid under less restrictive assumptions described in the Appendix.

3This assumption is also considered in NWHFC and HFC algorithms [7],
[19] as well as in the ELM algorithm [19]. The general case of eigenvalues
with multiple multiplicities has been considered in [27] and will be studied in
future works.



III. PROPOSED ALGORITHM

The eigengap strategy assumes the noise to be i.i.d., which
is not true when considering hyperspectral images [6], [30].
Therefore, we propose to use a preliminary step before estimat-
ing the number of endmembers.

A. Noise Estimation

A great effort has been devoted to the noise estimation prob-
lem since it is essential for many signal processing applications
requiring whitening and/or dimension reduction. Among these
algorithms, we distinguish those assuming spatial homoge-
neous regions such as the nearest neighbor difference (NND)
[31], the geometrical based algorithm [32], and algorithms
estimating the noise such as the multiple regression-based
methods [6], [7], [33]. The NND algorithm requires homoge-
nous areas that are not always available in hyperspectral images
[6]. The Meer algorithm does not account for noise spectral
correlation since it estimates the noise variance for each band
separately [34]. This paper considers the multiple regression-
based method proposed in [6] since it has been studied in many
subspace identification algorithms [34], [35] and has shown
similar results as the residual method in [7] as stated in [34].
However, the proposed approach is still valid when considering
other noise estimation algorithms.

The multiple regression method [6] assumes that the �th
spectral band of each pixel vector is connected to the other
L− 1 bands by a linear model. More precisely, denoting by y�

the N × 1 vector containing the pixel elements of the �th band
and by Y −� the (L− 1)×N matrix obtained by removing the
�th row from the matrix Y , we assume that

y� = Y �
−�b� + ε� (14)

where ε� is the modeling error vector of size N × 1 and b� is the
(L − 1)× 1 regression vector that is estimated using the least
squares estimator [6]

b̂� =
(
Y −�Y

�
−�

)−1
Y −�y�. (15)

The noise vector is then estimated by ε̂� = y� − Y �
−�b̂�, and its

covariance matrix is given by

Σ̂ =
(ε̂1, . . . , ε̂L)

�(ε̂1, . . . , ε̂L)

N
. (16)

Once the noise covariance matrix has been estimated, a whiten-
ing procedure can be performed as described in the next section.

B. Rank Estimation

Before applying the eigengap test, let us first remove the
effect of colored noise. This can be achieved by whitening
the observed pixels Y using the estimated noise covariance
matrix Σ̂. However, it has been shown in [20] and [21] that
this procedure leads to an overestimated subspace dimension
R when combined to RMT approaches. Therefore, we will
consider the strategy used in [20] which is valid even in the

case of a full noise covariance matrix. Under the assumption
that v�

i wi �= 0, ∀ i = 1, . . . , L, it has been shown in [20] that

λ̂r =

⎧⎨⎩ρr +
v�
r Σ̂wr

v�
r wr

, if r ≤ R
v�
r Σ̂wr

v�
r wr

, otherwise
(17)

where vr and wr denote the eigenvectors of RY and RS ,
respectively. Note that (17) is similar to (6) except that the noise
term has been estimated differently as

σ̂2
r =

v�
r Σ̂wr

v�
r wr

. (18)

Note that (18) converts the effect of the full matrix Σ̂ to an
equivalent independent noise (whose variance is σ̂2

r ) which
makes the proposed estimator more robust (see the next sec-
tion). Equations (17) and (18) require the computation of the
eigenvectors of RS . The covariance matrix RS is unknown but
can be estimated using (3) as follows:

R̂S = RY − Σ̂. (19)

Finally, to account for colored noise, one has to include the
noise variance (18) in (9) and (10) by dividing each eigenvalue
λr by the corresponding noise variance σ̂2

r , as stated in [24].
The resulting rank estimator is given by

R̂ = min {r ∈ {1, . . . ,M}; Δr+1 < dN} (20)

with

Δr =
λ̂r

σ̂2
r

− λ̂r+1

σ̂2
r+1

and dN =
ψN

N
2
3

βc. (21)

The resulting algorithm is summarized in Algorithm 1.

Algorithm 1 Proposed NWEGA Algorithm

1: Compute the sample covariance matrix RY

2: Estimate the noise covariance matrix Σ̂
3: Compute the matrix V containing the eigenvectors of RY

(sorted in descending order of the eigenvalues)
4: Compute the matrix W containing the eigenvectors

of R̂S = RY − Σ̂ (sorted in descending order of the
eigenvalues)

5: Compute λ̂r , r ∈ {1, . . . , L}, the eigenvalues of RY

(sorted in descending order)
6: Compute σ̂2

r according to (18)
7: Compute Δr and dN according to (21)
8: Estimate the number of endmembers K̂ = R̂+ 1 by

evaluating (20)

IV. SIMULATION RESULTS ON SYNTHETIC DATA

This section analyzes the performance of the proposed noise-
whitened eigengap approach (NWEGA) with simulated data.
The proposed approach is first compared to EGA (considering
σ2 = 1 in all bands) to highlight the benefit of the noise-
whitening step. NWEGA is also compared to the NWHFC



approach since it has been shown in [7] to provide better
results than the approaches based on information criteria such
as AIC [16] and MDL [17], [18]. Note that the NWHFC
algorithm4 requires the definition of the false alarm probabil-
ity Pf . We have considered in our experiments three values
Pf ∈ {10−3, 10−4, 10−5} denoted by NWHFC1, NWHFC2,
and NWHFC3, respectively. The NWEGA is also compared to
the NWRMT approach proposed in [20] since it uses similar
theoretical tools. Indeed, this method uses a noise-whitening
step as described in Section III-A followed by the estimator pre-
sented in (7). The well-known Hysime algorithm [6] is also in-
vestigated since it has been used in many studies [20], [35]. The
considered data sets were constructed based on the USGS spec-
tra library used in [6]. As in [20], we considered 20 minerals
that vary widely (some spectra are similar, others are different,
some spectra have low amplitude, etc.). These spectra are
shown in [36] but are not represented here for brevity. The
abundances were drawn uniformly in the simplex defined by
the PSTO constraints using a Dirichlet distribution [6]. The
following sections present three kinds of results: (i) robustness
w.r.t. noise; (ii) impact of the image size; and (iii) performance
w.r.t. the number of endmembers. In all these experiments, we
considered the parameters N = 104 pixels, L = 224 bands,
SNR = 25 dB, and K = 4 endmembers when fixed accord-
ing to the experimental setup (i), (ii), or (iii). We performed
50 Monte Carlo simulations for each experiment.

A. Robustness to Noise

This section studies the robustness of the proposed approach
w.r.t. noise. Two experiments were considered. The first exper-
iment studies the performance of the different algorithms when
the noise variance is inaccurately estimated. Except EGA that
assumes σ2 = 1 for all spectral bands, the studied algorithms
account for a noise estimation step that may introduce some
errors. Therefore, we simulated synthetic images using K = 4
fixed endmembers (chosen from the 20 spectra) with an i.i.d.
Gaussian noise with variance σ2 (corresponding to SNR =
25 dB). Then, we applied the noise-whitened algorithms when
considering a noise variance given by σ2(1 + ε), to simulate
an error in the noise estimation step. Fig. 1 shows the obtained
accuracy (in percent) of the estimated number of endmembers
when varying ε (the accuracy represents the percentage of good
estimates). This figure shows the failure of EGA in capturing
the number of endmembers, highlighting the need for the noise-
whitening step (the noise level and shape affects the EGA
performance). It also shows the robustness of the remaining
algorithms w.r.t. noise overestimation. However, observe that
both NWRMT and Hysime algorithms are sensitive to noise
variance underestimation since they provide incorrect results
for ε ≤ −0.1 and ε ≤ −0.4, respectively. The results show the
robustness of the proposed NWEGA since it provides an accu-
racy higher than 90% for ε > −0.5. The best performance was

4The NWHFC is obtained by preceding the HFC algorithm by a noise-
whitening step. We have considered the HFC algorithm available in: http://
www.ehu.es/computationalintelligence/index.php/Endmember_Induction
_Algorithms.

Fig. 1. Robustness of the algorithms w.r.t. the accuracy of the noise estimation.

obtained with the NWHFC approach. This algorithm applies a
Neyman–Pearson test on the difference between covariance and
correlation eigenvalues. Therefore, the additive noise perturba-
tion introduced by (1 + ε) is eliminated (or greatly reduced).
The proposed NWEGA is more robust than NWRMT and
Hysime to noise estimation errors, which is of great interest,
particularly when considering real data.

The second experiment considers the effect of the noise cor-
relation between the different spectral bands denoted as spectral
correlation, which is generally observed in real data [22], [34].
To simulate data with spectral correlation, we considered the
following covariance structure5 when band j is correlated with
band j + 1 with a correlation coefficient C:

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
1 0 · · · 0

0
. . .

...
... σ2

j Cσ2
j+1

Cσ2
j+1 σ2

j+1

. . .
0 0 · · · σ2

L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

This covariance structure was chosen to compare our results
with that in [34], which used a similar matrix structure. We
first varied the number of correlated spectral bands when
considering a correlation coefficient C = 0.5. The correlated
bands are chosen randomly from the set {1, . . . , L− 1}. For all
the algorithms, we considered the noise estimation algorithm
described in Section III-A. Fig. 2 (top) shows a linear evolution
of K̂ w.r.t. the number of correlated bands for both NWRMT
and Hysime (which is in agreement with the results in [34]).
Both NWEGA and NWHFC show a stable result as the number
of correlated bands increases. Note that NWEGA presents the
best results. In a second study, we varied C when considering
ten correlated bands (drawn randomly between 1 and L). The

5We represented the covariance structure for one correlated band j. The case
of multiple correlated bands can be obtained by considering multiple values
for j.



Fig. 2. Estimated K w.r.t. (top) number of correlated bands and (bottom)
variation of the correlation coefficient. The actual number of endmembers
is K = 4.

TABLE I
ESTIMATED K WITH RESPECT TO THE IMAGE SIZE N . ESTIMATED

MEDIAN VALUE AND THE ACCURACY IN PERCENT BETWEEN BRACKETS

results are shown in Fig. 2 (bottom). The NWEGA shows the
best performance except for C > 0.8 where NWHFC has more
stable results. To summarize, the obtained results highlight the
need for the noise-whitening step and illustrate the robustness
of the NWEGA w.r.t. noise estimation error and noise corre-
lation. It is more robust to noise correlation than NWRMT,
Hysime, and NWHFC. Both NWEGA and NWHFC are robust
to noise estimation error.

B. Robustness to the Image Size

As described in Section II-C, EGA and NWEGA are valid
when γ1 > · · · > γR > 1 +

√
c, with c = L/N . While this

condition suggests that the image size should be large to obtain
good results, we will see in this section that acceptable results
are also obtained for small images. The simulated images were
obtained by using the previous K = 4 endmembers and an i.i.d.
Gaussian noise with SNR = 25 dB. Table I shows the median of
the estimated K̂ over 50 Monte Carlo results, and the obtained
accuracy indicated between brackets when varying the image
size. Without a noise-whitening step, EGA fails in capturing
the endmember number for all image sizes. All the remaining
algorithms provided poor results for N = 100. However, both
NWEGA and NWHFC provided accurate estimates for N ≥
400 pixels. Hysime offered accurate estimates for N ≥ 2500
pixels, while NWRMT required the largest number of pixels,
N = 10000 pixels. These results show that the asymptotic

regime of NWEGA is reached for smaller values of N than
for the NWRMT approach. Indeed, the NWEGA is based on a
consistent estimator, while the NWRMT algorithm is not fully
consistent as recently demonstrated in [24]. Note that the ob-
tained results are also in agreement with those in Section IV-A.
Indeed, the estimated noise covariance Σ̂ in (16) depends on the
considered number of pixels, i.e., a reduced number of pixels
increases the estimation error of Σ̂. Therefore, algorithms that
are robust to noise estimates are expected to perform better
when reducing the image size, which is observed in Table I. To
conclude, the results of this section show the fast convergence
of NWEGA w.r.t. N , which makes this algorithm applicable
even for small images.

C. Performance

This section studies the performance of the NWEGA when
varying the number of endmembers, the noise level, and the
noise shape, as in [6] and [35]. The synthetic images were gen-
erated using the standard parameters described in Section IV.
For each Monte-Carlo simulation, the endmembers were ran-
domly chosen in a database containing 20 minerals. Moreover,
and similarly to [6] and [35], we considered two noise shapes
w.r.t. spectral bands: 1) a constant shape w.r.t. spectral bands
which represents an i.i.d. Gaussian noise and 2) a Gaussian
shape for the noise variance w.r.t. spectral bands defined as
follows:

σ2
� = σ2

exp
[
−(�−L/2)2

(2η2)

]
∑L

i exp
[
−(i−L/2)2

(2η2)

] , � = 1, . . . , L (23)

where σ2 is fixed according to the required SNR and η con-
trols the width of the Gaussian shape of the noise variance.
Table II shows the obtained results with an i.i.d. Gaussian
noise.6 This table shows that all the algorithms provide good
estimates for all SNRs when considering a reduced number of
endmembers K ≤ 5. However, the NWHFC algorithm shows
poor results for large values of K even for high SNRs. Note
that the Hysime, NWRMT, and NWEGA algorithms provide
good estimates for high SNR (SNR > 25 dB) while the Hysime
performance decreases for low SNR. Note finally that NWRMT
and NWEGA provide similar performance. Table III shows
the results when considering a Gaussian shape for the noise
variance. This table shows poor results for NWHFC even for
small values of K . However, the results are slightly improved
when using the actual noise covariance matrix instead of the
estimated one (see results between brackets). The Hysime,
NWRMT, and NWEGA algorithms have a similar behavior
as shown in Table II, i.e., the Hysime performance decreases
for low SNR while the NWRMT and NWEGA results are
slightly better. These results show the accuracy of the NWEGA
that provides equal or better results than the state-of-the-art
algorithms.

6Without a noise-whitening step, EGA estimated 3 endmembers for all
scenarios.



TABLE II
MEDIAN OF THE ESTIMATED K FOR DATA CORRUPTED BY

WHITE NOISE (50 MONTE CARLO SIMULATIONS). FOR NWHFC,
WE SHOW BETWEEN BRACKETS THE RESULTS WHEN USING

THE GROUND-TRUTH NOISE COVARIANCE MATRIX

TABLE III
MEDIAN OF THE ESTIMATED K FOR DATA CORRUPTED BY COLORED
NOISE (GAUSSIAN SHAPE) WITH 50 MONTE CARLO SIMULATIONS.

FOR NWHFC, WE SHOW BETWEEN BRACKETS THE RESULTS WHEN

USING THE GROUND-TRUTH NOISE COVARIANCE MATRIX

V. SIMULATION RESULTS ON REAL DATA

A. Comparison With State-of-the-Art Algorithms

This section compares the NWEGA performance to that of
the state-of-the-art algorithms by considering four real hyper-

spectral images. The performance of EGA is also presented to
show the importance of the noise-whitening step. The first im-
age (denoted by Madona) was acquired in 2010 by the Hyspex
hyperspectral scanner over Villelongue, France (00 03’ W and
4257’ N). The data set contains L = 160 spectral bands
recorded from the visible to near infrared (400–1000 nm)
with a spatial resolution of 0.5 m [37]. The considered subset
contains 702 × 1401 pixels and is mainly composed of forested
areas [14], [30] as shown in RGB colors in Fig. 3(a). According
to Sheeren et al. [37], the ground truth of this image contains
12 tree species that are as follows: ash tree, oak tree, hazel
tree, locust tree, chestnut tree, lime tree, maple tree, beech tree,
birch tree, willow tree, walnut tree, and fern. Consequently,
the number of endmembers is expected to be at least equal
to 12. Table IV (first column) shows the experimental results.
The NWEGA estimated K = 12 endmembers, which is in
agreement with the ground-truth information. The NWRMT,
HFC, and NWHFC provided a larger estimate, while Hysime
underestimated the number of endmembers. Note that the re-
sults obtained with HFC and NWHFC were expected since
they estimate not only the endmember sources but also the
interferences [2], [35].

The second image (denoted by Cuprite) was acquired by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over
the Cuprite mining site, Nevada, in 1997. This image contains
182 spectral bands with a spectral resolution of 10 nm acquired
in the 0.4–2.5-μm region (the water absorption bands 1–5,
105–115, 150–170, and 220–224 were removed) and a spatial
resolution of 20 m [20], [38]. The considered image subset
contains 351 × 351 pixels and is shown in RGB colors in
Fig. 3(b). This image has been widely studied, and ground-truth
information is available. According to USGS,7 this image con-
tains at least 18 minerals [39]. The considered algorithms were
applied to this image, leading to the results in Table IV (second
column). Except EGA, the algorithms estimated the number
of endmembers to be larger than 18. NWEGA provided a
more realistic value than NWRMT, which suffers from the
spectral correlation when considering a multiple regression
noise estimation algorithm [20]. However, the results obtained
with Hysime, HFC, and NWHFC were in better agreement with
the ground truth (closer to 18 endmembers).

The third image (denoted by Indian Pines) was also ac-
quired by the AVIRIS sensor, in June 1992 over an agricul-
tural area of the northwestern Indiana8 (Indian Pines). The
considered data set contains 145 × 145 pixels, 185 spectral
bands with the same spectral resolution and spectral range as
the Cuprite image (the water absorption bands 1–3, 103–113,
148–166, and 221–224 were removed), and a spatial reso-
lution of 17 m [6]. As shown in Fig. 3(c), the observed
image is a mixture of agriculture and forestry. According to
the ground-truth information [6], [35], this image contains at
least 16 endmembers that are as follows: alfalfa, corn-notill,
corn-mintill, corn, grass-pasture, grass-trees, grass-pasture-
mowed, hay-windrowed, oats, soybean-notill, soybean-mintill,

7Available: http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
8Available: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral

_Remote_Sensing_Scenes



Fig. 3. Real images. (a) Hyspex Madonna image, (b) AVIRIS Cuprite scene, (c) AVIRIS Indian Pines, and (d) ROSIS Pavia University.

TABLE IV
ESTIMATED K FOR REAL IMAGES

soybean-clean, wheat, woods, buildings-grass-trees-drives, and
stone-steel-towers. Therefore, the estimated number should be
greater than 16. Table IV (third column) reports the experi-
mental results. Except Hysime that underestimated the number
of endmembers and HFC that overestimated it, all algorithms
detected 18 components in the Indian Pines image.

The fourth image (denoted by Pavia University) was acquired
by the Reflective Optics System Imaging Spectrometer (ROSIS)

sensor during a flight campaign over Pavia University, Italy.9

This image contains 103 spectral bands with a spectral reso-
lution of 4 nm acquired in the 0.4–0.9-μm region (the water
absorption bands were removed) and a spatial resolution of
1.3 m. Fig. 3(d) shows the considered image of size 181 ×
71 pixels. The ground truth of this image contains at least
9 endmembers consisting of asphalt, meadows, gravel, trees,
painted metal sheets, bare soil, bitumen, self-blocking bricks,
and shadows. As shown in Table IV (fourth column), both
NWRMT and Hysime provide bad estimates, while HFC and
NWHFC underestimate the number of endmembers. NWEGA
estimates 11 endmembers, which is in better agreement with
the ground truth (closer to nine endmembers).

The experimental results provided in this section illustrated
the accuracy of the NWEGA when applied to real data, acquired
by different sensors (AVIRIS, Hyspex, and ROSIS) and con-
taining different physical elements (trees, grass, and minerals).

9Available: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral
_Remote_Sensing_Scenes



Fig. 4. Eigengap and eigenvalue (with whitening) repartitions for the Indian
Pines image.

Fig. 5. Robustness of the algorithms w.r.t. the accuracy of the noise estimation
for the Indian Pines image (ground truth ≥ 18).

B. Robustness to Noise and Image Size

This section analyzes the behavior of the NWEGA when
considering the Indian Pines image. Fig. 4 shows the eigengaps
and eigenvalues associated with the Indian Pines image. This
figure highlights the higher level of separation between the sig-
nal and the noise obtained with the eigengaps when compared
to the eigenvalues. To study the robustness of NWEGA w.r.t.
additive noise, we corrupted the estimated noise covariance as
in Section IV-A and considered the corrupted variances in the
different algorithms. Fig. 5 shows the estimated numbers of
endmembers for different values of ε. Similarly to the synthetic
data, the NWRMT deviates first followed by the Hysime algo-
rithm, while the proposed NWEGA and the different NWHFC
are more robust to the presence of additive noise. Note that
EGA provides poor results since it considers σ2 = 1, which

TABLE V
ESTIMATED K W.R.T. THE IMAGE SIZE N FOR THE INDIAN PINES IMAGE

is too far from the estimated noise variances for the Indian
Pines image. The last experiment studies the behavior w.r.t.
the image size as shown in Table V. EGA provides a quite
stable estimated number of endmembers that is much less than
the ground truth for large image sizes. All other algorithms
tend to overestimate the number of endmembers. The NWEGA
provides quite competitive results when compared to the other
methods. To conclude this section, the experiments conducted
with the Indian Pines image tend to show that the proposed
NWEGA algorithm is quite robust to the presence of additive
noise and provides interesting results for different image sizes
when compared to other state-of-the-art algorithms.

VI. CONCLUSION

This paper proposed a fully automatic algorithm for deter-
mining the number of endmembers in hyperspectral images.
This algorithm consisted of two steps that are noise estimation
and determination of the endmember number. Noise estima-
tion was achieved by a multiple regression estimation method
even if other algorithms could be investigated. The second
step was performed by thresholding the difference between
successive eigenvalues of the sample covariance matrix. The
resulting algorithm is nonparametric (it does not require any
user-determined parameter) and efficient in the presence of
i.i.d. and colored noise. Synthetic experiments showed a robust
behavior of NWEGA w.r.t. noise estimation errors, noise corre-
lations, and noise levels. It also showed good performance when
considering different image sizes. The obtained results on real
images confirmed the accuracy of the proposed algorithm that
showed comparable or better results than some state-of-the-art
algorithms. Future work includes the study of robust estimation
for the pixel covariance matrix. Considering the recent method
proposed in [27], [40], and [41] for source detection is also an
interesting issue which would deserve to be investigated.

APPENDIX

HYPOTHESES

This appendix describes some assumptions required for the
RMT to be applied. Note that the Gaussianity of the additive
noise is not necessary and only a finite eighth-order moment
is required on the entries [24]. Moreover, the assumptions
described in Section II-C are more specific than the classical
assumptions used in the RMT literature as follows [42].

1) Λ has uniformly bounded spectral norm ∀L ∈ N
∗, i.e.,

∀ i ∈ [1, L], λi < ∞.



2) Let E ∈ R
L×N have i.i.d. entries eij with zero mean

and unit variance and be absolutely continuous with
E[|eij |8] < 1.

3) Let E ∈ R
L×N be defined as in (2) then, its distribu-

tion is invariant by left multiplication by a deterministic
unitary matrix. Moreover, the eigenvalue empirical PDF
of (1/N)EE� a.s. converges to the Marcenko–Pastur
distribution with support [(1 −

√
c)2, (1 +

√
c)2].

4) The maximum (respectively minimum) eigenvalue of
(1/N)EE� a.s. tends to (1 +

√
c)2 (respectively to

(1 −√
c)2).

5) The eigenvalues γr, r = 1, . . . , R, satisfy the separation
condition.
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