Estimating the Intrinsic Dimension of Hyperspectral Images Using a Noise-Whitened Eigengap Approach

Abstract : Linear mixture models are commonly used to represent a hyperspectral data cube as linear combinations of endmember spectra. However, determining the number of endmembers for images embedded in noise is a crucial task. This paper proposes a fully automatic approach for estimating the number of endmembers in hyperspectral images. The estimation is based on recent results of random matrix theory related to the so-called spiked population model. More precisely, we study the gap between successive eigenvalues of the sample covariance matrix constructed from high-dimensional noisy samples. The resulting estimation strategy is fully automatic and robust to correlated noise owing to the consideration of a noise-whitening step. This strategy is validated on both synthetic and real images. The experimental results are very promising and show the accuracy of this algorithm with respect to state-of-the-art algorithms.
Type de document :
Article dans une revue
IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2016, vol. 54 (n° 7), pp.3811-3821. <10.1109/TGRS.2016.2528298>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01325467
Contributeur : Open Archive Toulouse Archive Ouverte (oatao) <>
Soumis le : jeudi 2 juin 2016 - 11:42:30
Dernière modification le : mercredi 17 août 2016 - 15:39:20
Document(s) archivé(s) le : samedi 3 septembre 2016 - 10:54:25

Fichier

Halimi_15873.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Abderrahim Halimi, Paul Honeine, Malika Kharouf, Cédric Richard, Jean-Yves Tourneret. Estimating the Intrinsic Dimension of Hyperspectral Images Using a Noise-Whitened Eigengap Approach. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2016, vol. 54 (n° 7), pp.3811-3821. <10.1109/TGRS.2016.2528298>. <hal-01325467>

Partager

Métriques

Consultations de
la notice

301

Téléchargements du document

116