D. Maraninchi, N. Cerf, and P. Bousquet, Rapport sur la dynamique d'évolution des taux de mortalité des principaux cancers en France, 2010.

K. R. Hess and K. R. , Adult Glioma Incidence Trends in the United States, Cancer, vol.101, issue.10, p.7, 1977.

R. Stupp, Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up

R. Stupp, H. M. Mason, and W. , Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, The Lancet Oncology, vol.10, issue.5, p.8, 2009.
DOI : 10.1016/S1470-2045(09)70025-7

M. Lacroix, A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival, Journal of Neurosurgery, vol.95, issue.2, pp.95-190, 2001.
DOI : 10.3171/jns.2001.95.2.0190

S. E. Norred and J. A. Johnson, Magnetic Resonance-Guided Laser Induced Thermal Therapy for Glioblastoma Multiforme: A Review, BioMed Research International, vol.13, issue.1, p.761312, 2014.
DOI : 10.1021/ja2010175

F. Y. Yang, Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound, International Journal of Nanomedicine, issue.7, pp.965-74, 2012.
DOI : 10.2147/IJN.S29229

S. Hingtgen, Real-time multi-modality imaging of glioblastoma tumor resection and recurrence, Journal of Neuro-Oncology, vol.73, issue.8, pp.153-61, 2013.
DOI : 10.1007/s11060-012-1008-z

A. Johansson, Protoporphyrin IX Fluorescence and Photobleaching During Interstitial Photodynamic Therapy of Malignant Gliomas for Early Treatment Prognosis, Lasers in Surgery and Medicine, vol.22, issue.1, pp.225-259, 2013.
DOI : 10.1002/lsm.22126

H. A. Leroy, Fluorescence guided resection and glioblastoma in 2015: A review, Lasers in Surgery and Medicine, vol.29, issue.Suppl 1, pp.441-51, 2015.
DOI : 10.1002/lsm.22359

URL : https://hal.archives-ouvertes.fr/hal-01182307

B. Krammer and K. Plaetzer, ALA and its clinical impact, from bench to bedside, Photochem. Photobiol. Sci., vol.6, issue.8, pp.283-292, 2008.
DOI : 10.1039/B712847A

S. Kanako and K. M. , Photodynamic medicine in malignant glioma, the reason why ALA induced PpIX is accumulated, 2008.

W. Stummer, Technical Principles for Protoporphyrin-IX-Fluorescence Guided Microsurgical Resection of Malignant Glioma Tissue, Acta Neurochirurgica, vol.140, issue.10, pp.140-995, 1998.
DOI : 10.1007/s007010050206

W. Stummer, Intraoperative Detection of Malignant Gliomas by 5-Aminolevulinic Acid-induced Porphyrin Fluorescence, Neurosurgery, vol.42, issue.3, pp.518-543, 1998.
DOI : 10.1097/00006123-199803000-00017

W. Stummer, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, The Lancet Oncology, vol.7, issue.5, pp.392-401, 2006.
DOI : 10.1016/S1470-2045(06)70665-9

T. Jacquesson, Ex??r??se neurochirurgicale optimale des gliomes de haut grade guid??e par fluorescence??: mise au point ?? partir d???une s??rie r??trospective de 22??patients, Neurochirurgie, vol.59, issue.1, pp.9-16, 2013.
DOI : 10.1016/j.neuchi.2012.07.002

F. Dhermain, Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches, Chinese Journal of Cancer, vol.33, issue.1, pp.16-24, 2014.
DOI : 10.5732/cjc.013.10217

W. Stummer, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, The Lancet Oncology, vol.7, issue.5, pp.392-401, 2006.
DOI : 10.1016/S1470-2045(06)70665-9

C. P. Phenix, High Intensity Focused Ultrasound Technology, its Scope and Applications in Therapy and Drug Delivery, Journal of Pharmacy & Pharmaceutical Sciences, vol.17, issue.1, pp.136-53, 2014.
DOI : 10.18433/J3ZP5F

J. F. Aubry, Ultrasons focalis??s de forte intensit?? pour la th??rapie transcr??nienne du cerveau, IRBM, vol.31, issue.2, pp.87-91, 2010.
DOI : 10.1016/j.irbm.2010.02.013

F. Yang, G. L. Shih-cheng-horng, T. Chang, S. Wu, T. H. Wong et al., Pulsed High-Intensity Focused Ultrasound Enhances the Relative Permeability of the Blood?Tumor Barrier in a Glioma-Bearing Rat Model, IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, issue.5, pp.58-65, 2011.

C. Lafon, Développement d'un dispositif expérimental ultrasonore pour le largage ciblé et contrôlé d'une chimiothérapie encapsulée.IRBM, pp.171-173, 2009.

T. J. Beck, Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers in Surgery and Medicine, pp.386-93, 2007.

H. T. Whelan, High-grade glioma/glioblastoma multiforme: is there a role for photodynamic therapy?, J Natl Compr Canc Netw, vol.10, issue.2, pp.31-35, 2012.

J. P. Celli, B. Q. Imran-rizvi, C. L. Evans, K. S. Samkoe, S. T. Verma et al., Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization, Chemical Reviews, vol.110, issue.5, pp.110-154, 2010.
DOI : 10.1021/cr900300p

P. J. Muller and B. C. Wilson, Photodynamic therapy of brain tumors???A work in progress, Lasers in Surgery and Medicine, pp.384-389, 2006.
DOI : 10.1002/lsm.20338

P. Agostinis, Photodynamic therapy of cancer: An update, CA: A Cancer Journal for Clinicians, vol.4, issue.1, pp.250-81, 2011.
DOI : 10.3322/caac.20114

D. Zaak, Photodynamic Therapy by Means of 5-ALA Induced PPIX in Human Prostate Cancer ??? Preliminary Results, Medical Laser Application, vol.18, issue.1, pp.91-95, 2003.
DOI : 10.1078/1615-1615-00092

N. Betrouni, Image-guided laser therapies for prostate cancer. IRBM, 2013 A phase I study of Foscan-mediated photodynamic therapy and surgery in patients with mesothelioma, Ann Thorac Surg, vol.34, issue.303, pp.28-32, 2003.

S. M. Campbell, Clinical investigation of the novel iron-chelating agent, CP94, to enhance topical photodynamic therapy of nodular basal cell carcinoma, British Journal of Dermatology, vol.26, issue.2, pp.387-93, 2008.
DOI : 10.1111/j.1365-2133.2008.08668.x

C. Cochrane, New design of textile light diffusers for photodynamic therapy, Materials Science and Engineering: C, vol.33, issue.3, pp.1170-1175, 2013.
DOI : 10.1016/j.msec.2012.12.007

A. Johansson, 5-Aminolevulinic Acid-induced Protoporphyrin IX Levels in Tissue of Human Malignant Brain Tumors, Photochemistry and Photobiology, vol.71, issue.4, 2010.
DOI : 10.1111/j.1751-1097.2010.00799.x

W. Stummer, Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report, Journal of Neuro-Oncology, vol.65, issue.1, pp.103-112, 2008.
DOI : 10.1007/s11060-007-9497-x

S. Ito, Oedema formation in experimental photo-irradiation therapy of brain tumours using 5- ALA Experimental use of Photodynamic Therapy in high grade gliomas: a review focused on 5-aminolevulinic acid Photodynamic Therapy: Current Status and Future Directions, Acta Neurochir (Wien) Photodiagnosis Photodyn Ther Benov, L, vol.147, issue.37, pp.57-65, 2005.

G. Hennig, H. Stepp, and A. Johansson, Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy, Photodiagnosis and Photodynamic Therapy, vol.8, issue.3, pp.275-81, 2011.
DOI : 10.1016/j.pdpdt.2011.03.338

Z. Wen, MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast, NeuroImage, vol.51, issue.2, pp.616-638, 2010.
DOI : 10.1016/j.neuroimage.2010.02.050

D. Vigneron, Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors, Magnetic Resonance Imaging, vol.19, issue.1, pp.89-101, 2001.
DOI : 10.1016/S0730-725X(01)00225-9

S. Lu, Diffusion-Tensor MR Imaging of Intracranial Neoplasia and Associated Peritumoral Edema: Introduction of the Tumor Infiltration Index, Radiology, vol.232, issue.1, pp.221-229, 2004.
DOI : 10.1148/radiol.2321030653

H. Y. Kang, Comparison of the Effect of Vessel Size Imaging and Cerebral Blood Volume Derived from Perfusion MR Imaging on Glioma Grading, American Journal of Neuroradiology, vol.37, issue.1, pp.2015-2058
DOI : 10.3174/ajnr.A4477

D. G. Barone, T. A. Lawrie, and M. G. Hart, Image guided surgery for the resection of brain tumours, Cochrane Database Syst Rev, vol.115, issue.2, p.9685, 2014.
DOI : 10.1002/14651858.CD009685.pub2

R. R. Shamir, Trajectory planning with Augmented Reality for improved risk assessment in imageguided keyhole neurosurgery, Biomedical Imaging: From Nano to Macro IEEE International Symposium on, 2011.

E. M. Sizoo, Decision-making in the end-of-life phase of high-grade glioma patients, European Journal of Cancer, vol.48, issue.2, pp.226-258, 2012.
DOI : 10.1016/j.ejca.2011.11.010

B. H. Menze, Image based modeling of tumor growth in patients with glioma, in Optimal control in image processing, 2011.

S. Bauer, A survey of MRI-based medical image analysis for brain tumor studies, Physics in Medicine and Biology, vol.58, issue.13, pp.58-97, 2013.
DOI : 10.1088/0031-9155/58/13/R97

N. Gordillo, E. Montseny, P. Sobrevilla, and M. M. , State of the art survey on MRI brain tumor segmentation Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm, Magn Reson Imaging Acad Radiol, issue.810, pp.31-1426, 2004.

A. Franz, S. Remmele, J. Keupp, K. , M. Rak et al., Brain tumour segmentation and tumour tissue classification based on multiple MR protocols Deformable part models for object detection in medical images, Biomed Eng Online, vol.13, issue.1, p.1, 2011.

L. He, A comparative study of deformable contour methods on medical image segmentation, Image and Vision Computing, vol.26, issue.2, pp.141-163, 2008.
DOI : 10.1016/j.imavis.2007.07.010

J. Liang, T. Mcinerney, and D. Terzopoulos, United snakes. Med Image Anal, pp.215-248, 2006.

L. Germond, A cooperative framework for segmentation of MRI brain scans, Artificial Intelligence in Medicine, vol.20, issue.1, pp.77-93, 2000.
DOI : 10.1016/S0933-3657(00)00054-3

URL : https://hal.archives-ouvertes.fr/inserm-00402412

P. S. Adiga and B. B. Chaudhuri, Region based techniques for segmentation of volumetric histopathological images, Comput Methods Programs Biomed, issue.1, pp.61-84, 2000.

J. Sachdeva, A novel content-based active contour model for brain tumor segmentation, Magnetic Resonance Imaging, vol.30, issue.5, pp.694-715, 2012.
DOI : 10.1016/j.mri.2012.01.006

K. Popuri, 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set, International Journal of Computer Assisted Radiology and Surgery, vol.56, issue.1, pp.493-506, 2012.
DOI : 10.1007/s11548-011-0649-2

S. Tangaro, Automated voxel-by-voxel tissue classification for hippocampal segmentation: Methods and validation Automatic method for thalamus parcellation using multi-modal feature classification, Phys Med Med Image Comput Comput Assist Interv, vol.59, pp.17-169, 2014.

R. Meier, Patient-Specific Semi-supervised Learning for Postoperative Brain Tumor Segmentation, Med Image Comput Comput Assist Interv, vol.17, pp.714-735, 2014.
DOI : 10.1007/978-3-319-10404-1_89

J. Dolz, L. Massoptier, and M. Vermandel, Segmentation algorithms of subcortical brain structures on MRI for radiotherapy and radiosurgery: A survey, IRBM, vol.36, issue.4, 2015.
DOI : 10.1016/j.irbm.2015.06.001

M. C. Clark, Automatic tumor segmentation using knowledge-based techniques, IEEE Transactions on Medical Imaging, vol.17, issue.2, pp.187-201, 1998.
DOI : 10.1109/42.700731

J. J. Corso, Efficient Multilevel Brain Tumor Segmentation With Integrated Bayesian Model Classification Segmentation and Boundary Detection Using Multiscale Intensity Measurements, Proceedings of the, pp.629-640, 2001.

J. Jiang, 3D brain tumor segmentation in multimodal MR images based on learning populationand patient-specific feature sets, Comput Med Imaging Graph, vol.37, pp.7-8, 2013.

J. S. Cordova, Quantitative Tumor Segmentation for Evaluation of Extent of Glioblastoma Resection to Facilitate Multisite Clinical Trials, Translational Oncology, vol.7, issue.1, pp.40-47, 2014.
DOI : 10.1593/tlo.13835

J. Juan-albarracin, Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification, PLOS ONE, vol.12, issue.5, p.125143, 2015.
DOI : 10.1371/journal.pone.0125143.t005

F. Khalvati, Automated Segmentation of Breast in 3D MR Images Using a Robust Atlas, IEEE Trans Med Imaging, 2014.

J. F. Ullmann, Development of MRI-based atlases of non-human brains Multi-parametric analysis and registration of brain tumors: constructing statistical atlases and diagnostic tools of predictive value, J Comp Neurol Conf Proc IEEE Eng Med Biol Soc, pp.6979-81, 2011.

F. Lecellier, S. Jehan-besson, and J. Fadili, Statistical region-based active contours for segmentation: An overview, IRBM, vol.35, issue.1, pp.3-10, 2014.
DOI : 10.1016/j.irbm.2013.12.002

URL : https://hal.archives-ouvertes.fr/hal-00918290

M. Prastawa, A brain tumor segmentation framework based on outlier detection*1, Medical Image Analysis, vol.8, issue.3, pp.275-83, 2004.
DOI : 10.1016/j.media.2004.06.007

J. Luts, Nosologic imaging of the brain: segmentation and classification using MRI and MRSI, NMR in Biomedicine, vol.18, issue.3, pp.374-90, 2009.
DOI : 10.1002/nbm.1347

A. Gooya, Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model, Med Image Comput Comput Assist Interv, vol.17, issue.1, pp.532-572, 2011.
DOI : 10.1109/42.790458

T. Brosch, R. Tam, and N. , Initiative for the Alzheimers Disease, Manifold learning of brain MRIs by deep learning, Med Image Comput Comput Assist Interv, issue.16 2, pp.633-673, 2006.

R. Liu, Z. Lin, and Z. Su, Learning Markov random walks for robust subspace clustering and estimation, Neural Networks, vol.59, issue.0, pp.59-60, 2014.
DOI : 10.1016/j.neunet.2014.06.005

G. Prasad, Skull-stripping with machine learning deformable organisms, Journal of Neuroscience Methods, vol.236, issue.0, pp.114-124, 2014.
DOI : 10.1016/j.jneumeth.2014.07.023

S. Wang and R. M. Summers, Machine learning and radiology. Med Image Anal, pp.933-51, 2012.

K. M. Iftekharuddin, Fractal-based brain tumor detection in multimodal MRI, Applied Mathematics and Computation, vol.207, issue.1, pp.23-41, 2009.
DOI : 10.1016/j.amc.2007.10.063

D. Zikic, B. Glocker, and A. Criminisi, Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Med Image Anal, pp.18-1262, 2014.

F. W. Prior, Predicting a multi-parametric probability map of active tumor extent using random forests, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.6478-81, 2013.
DOI : 10.1109/EMBC.2013.6611038

D. Zikic, Decision forests for tissue-specific segmentation of high-grade gliomas in multichannel MR, Med Image Comput Comput Assist Interv, issue.15, pp.369-76, 2012.

B. Menze, J. A. Bauer, S. Kalpathy-cramer, J. Farahani, and K. , The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Transactions on Medical Imaging, vol.34, issue.10, 2014.
DOI : 10.1109/TMI.2014.2377694

URL : https://hal.archives-ouvertes.fr/hal-00935640

S. Kim, Deep learning of support vector machines with class probability output networks, Neural Networks, vol.64, issue.0, p.2014
DOI : 10.1016/j.neunet.2014.09.007

S. S. Mehta and N. S. Lingayat, SVM-based algorithm for recognition of QRS complexes in electrocardiogram, IRBM, vol.29, issue.5, pp.310-317, 2008.
DOI : 10.1016/j.rbmret.2008.03.006

J. Luts, A tutorial on support vector machine-based methods for classification problems in chemometrics Burges, C.C., A Tutorial on Support Vector Machines for Pattern Recognition, Analytica Chimica Acta Data Mining and Knowledge Discovery, vol.665, issue.88 22, pp.129-145, 1998.

W. Wu, Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features, International Journal of Computer Assisted Radiology and Surgery, vol.432, issue.7015, pp.241-253
DOI : 10.1007/s11548-013-0922-7

S. Ji, A New Multistage Medical Segmentation Method Based on Superpixel and Fuzzy Clustering, Computational and Mathematical Methods in Medicine, vol.2014, p.747549, 2014.
DOI : 10.1007/978-3-540-88693-8_52

J. Cheng, Superpixel Classification Based Optic Cup Segmentation, Med Image Comput Comput Assist Interv, issue.16, pp.421-429, 2013.
DOI : 10.1007/978-3-642-40760-4_53

T. Parag, S. Plaza, and L. Scheffer, Small Sample Learning of Superpixel Classifiers for EM Segmentation, Med Image Comput Comput Assist Interv, issue.17, pp.389-97, 2014.
DOI : 10.1007/978-3-319-10404-1_49

N. Porz, Multi-modal glioblastoma segmentation: man versus machine Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features Scientific Reports Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation, PLoS One Phys Med Biol Phys Med Biol, vol.59, issue.9533, pp.771-89, 2014.

B. H. Menze, A Generative Model for Brain Tumor Segmentation in Multi-Modal Images, Med Image Comput Comput Assist Interv, issue.13, pp.151-160, 2010.
DOI : 10.1007/978-3-642-15745-5_19

URL : https://hal.archives-ouvertes.fr/hal-00813776

A. Hamamci, Tumor-Cut: Segmentation of Brain Tumors on Contrast Enhanced MR Images for Radiosurgery Applications, IEEE Transactions on Medical Imaging, vol.31, issue.3, pp.31-790, 2012.
DOI : 10.1109/TMI.2011.2181857

M. Prastawa, E. Bullitt, and G. Gerig, Synthetic Ground Truth for Validation of Brain Tumor MRI Segmentation. Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.26-33, 2005.

N. Archip, F. A. Jolesz, and S. K. Warfield, A Validation Framework for Brain Tumor Segmentation, Academic Radiology, vol.14, issue.10, pp.14-1242, 2007.
DOI : 10.1016/j.acra.2007.05.025

H. P. Ellis, Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence, Frontiers in Oncology, vol.36, issue.3, p.251, 2015.
DOI : 10.1016/j.ejso.2009.07.010

I. Guyon, Gene Selection for Cancer Classification using Support Vector Machines, Machine Learning, pp.389-422, 2002.

R. Jain, Genomic Mapping and Survival Prediction in Glioblastoma: Molecular Subclassification Strengthened by Hemodynamic Imaging Biomarkers, Radiology, vol.267, issue.1, pp.212-232, 2013.
DOI : 10.1148/radiol.12120846

D. A. Gutman, MR Imaging Predictors of Molecular Profile and Survival: Multi-institutional Study of the TCGA Glioblastoma Data Set, Radiology, vol.267, issue.2, pp.560-569, 2013.
DOI : 10.1148/radiol.13120118

O. Gevaert, Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features, Radiology, vol.273, issue.1, pp.168-74, 2014.
DOI : 10.1148/radiol.14131731

P. O. Zinn, Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme Prognostic value of multimodal mri tumor features in glioblastoma multiforme using textural features analysis An integrated computational/experimental model of tumor invasion, ): p. e25451. 107. Taman Upadhaya, pp.66-1597, 2006.

E. Schreibmann, TH-CD-204-03: A Glioblastoma Tumor Growth Prediction Model Using Volumetric MR Spectroscopic Imaging for Radiation Therapy Response, Medical Physics, vol.42, issue.6, pp.42-3732, 2015.
DOI : 10.1118/1.4926250

M. A. Mazurowski, Computer-extracted MR imaging features are associated with survival in glioblastoma patients, Journal of Neuro-Oncology, vol.41, issue.4, pp.483-491, 2014.
DOI : 10.1007/s11060-014-1580-5

R. J. Harris, 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab, Neuro-Oncology, vol.14, issue.8, pp.14-1079, 2012.
DOI : 10.1093/neuonc/nos141

T. Pyka, Prediction of Glioma Recurrence Using Dynamic 18F-Fluoroethyltyrosine PET, American Journal of Neuroradiology, vol.35, issue.10, pp.35-1924, 2014.
DOI : 10.3174/ajnr.A3980

E. Bosnyak, Tryptophan PET predicts spatial and temporal patterns of post-treatment glioblastoma progression detected by contrast-enhanced MRI Multimodal imaging based on MRI and PET reveals [F]FLT PET as a specific and early indicator of treatment efficacy in a preclinical model of recurrent glioblastoma, J Neurooncol Eur J Nucl Med Mol Imaging, vol.114, 2015.

J. J. Corso, Efficient Multilevel Brain Tumor Segmentation With Integrated Bayesian Model Classification, IEEE Transactions on Medical Imaging, vol.27, issue.5, pp.629-669, 2008.
DOI : 10.1109/TMI.2007.912817

M. Niyazi, FET???PET for malignant glioma treatment planning, Radiotherapy and Oncology, vol.99, issue.1, pp.44-52, 2011.
DOI : 10.1016/j.radonc.2011.03.001

F. Walter, Technical Issues of [(18)F]FET-PET Imaging for Radiation Therapy Planning in Malignant Glioma Patients -A Review. Front Oncol, 2012. 2: p. 130. 118 Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas Increasing feasibility and utility of F-FDOPA PET for the management of glioma, Eur J Nucl Med Mol Imaging Nucl Med Biol, vol.119, 2015.

B. J. Fueger, Correlation of 6-18F-Fluoro-L-Dopa PET Uptake with Proliferation and Tumor Grade in Newly Diagnosed and Recurrent Gliomas, Journal of Nuclear Medicine, vol.51, issue.10, pp.51-1532, 2010.
DOI : 10.2967/jnumed.110.078592

F. Walter, Impact of 3,4-Dihydroxy-6-18F-Fluoro-L-Phenylalanine PET/CT on Managing Patients with Brain Tumors: The Referring Physician's Perspective, Journal of Nuclear Medicine, vol.53, issue.3, pp.2012-53
DOI : 10.2967/jnumed.111.095711

D. H. Pafundi, Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study, Neuro-Oncology, vol.15, issue.8, pp.15-1058, 2013.
DOI : 10.1093/neuonc/not002

D. S. Nachimuthu, A. Baladhandapani-ranjith, and G. , Multidimensional Texture Characterization: On Analysis for Brain Tumor Tissues Using MRS and MRI Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy, J Digit Imaging Neuroradiol J, vol.124, issue.2, pp.28-106, 2014.