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Abstract: 

Because of high heterogeneity and invasiveness, treatment of GlioBlastoma Multiform (GBM) still 

remains a complex challenge. Several recent advanced therapies have improved precision of treatment 

deliverance. Multimodality imaging plays an increasingly important role in this process and images 

segmentation has become an essential part of the pipeline of standard treatment planning system. With the 

sophistication of multimodality information, the development of reliable and robust segmentation algorithms to 

overcome manual segmentation and optimize targeted treatment is highly expected. 

In this paper, we first introduce targeted therapies applied in the GBM clinical care, from routine or 

research. Different segmentation methods from state of the art are highlighted to achieve GBM delineation. New 

trends in GBM segmentation such as machine learning and multimodal features are discussed. These additional 

frameworks may achieve segmentation with refining capacities, active tumour probability mapping and, even, 

tumour relapse prediction capacities. 

Keywords: segmentation,neuro-oncology, radiation oncology, high-grade glioma treatment, targeted 

therapies 

I. Introduction 

Central nervous system (CNS) cancer is the 10th leading cause of death by cancer in the population 

over 20 years. Gliomas represent about 3% of premature cancer death (aged less than 65) and is the 3rd cause of 

death by cancer for young adults (aged between 15 and 34) [1]. Among them, Glioblastoma Multiform (GBM) is 

the most common tumour with a very poor prognosis (median survival below 18 months). About 12,000 in the 

USA[2] are annually diagnosedand its incidence is estimated at 5 to 7 new cases each year for 100,000 

inhabitants [3].Nowadays, the main goal of the therapy is to improve lifespan while maintaining a decent quality 

of life for patient bearing GBM[3]. 

In this context and on behalf the European Organization for Research and Treatment of Cancer-National 

Cancer Institute of Canada (EORTC-NCIC), Stupp et al. [4]proposed a specific treatment protocol for high grade 

glioma. This protocol combined 3 main therapies: surgery, radiotherapy and chemotherapy. Nowadays, this 

combination still remains the standard protocol in the management of GBM. 

The quality of surgery is a documented prognostic factor of survival[5]. However, even in adequate 

removal, the invasive nature and rapid proliferation of GBM do not allow its control by conventional treatment 

protocols. Patients whose tumour location does not allow for tumour resection have then a limited survival. 

Thus, the main issue for the treatment of GBM relies on itsvery heterogeneoustumour tissue properties 

(see figure 1). GBM is made of a macroscopiccomponent, the tumourbulk,and a component infiltrating 
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thesurrounding tissue. Furthermore, oedemasurrounding the tumour may also be partially infiltrated with tumour 

cells.The differentiation between oedema, healthy tissue and tumours cells is a major issue when considering 

local therapy based on target definition such as radiation oncology[4], laser therapies[6], High Intensity Focused 

Ultrasound (HIFU)[7]. As, no segmentation approach can fit all brain tumour type, GBM segmentation results in 

specific strategy to manage its heterogeneous properties. 

 

Fig. 1Pre-operative MRI showing a high-grade glioma located in associative areas and ventricular 

crossroad. On the right, early post-operative control (<72h) with no more contrast enhancing tumour.  

We propose here a review of methods developed to address the issue of GBM segmentation. First, we 

introduce the therapies, based on target delineation, in use to tackle GBM. Then, we present different methods of 

segmentation from the literature. Finally, we highlight the new trends in GBM segmentation and discuss the 

rational of using approaches resulting in binary segmentation while addressing infiltrating tumour. 

II. Therapies of high-grade gliomas 

1. Standard protocol 

Depending on the GBM location, surgery is firstly achieved.It aims to achieve maximal cytoreduction 

without affecting the functional prognosis of patients because of their pejorative prognosis (see figure 1). After 

the resection of the tumour bulk, Fluorescence-Guided Resection (FGR) [8-10]can be used tooptimize the 

cytoreduction. FGR relies on the administration of a photosensitizer(or its precursor). FGR is mainly performed 

using 5-ALA which is the precursor of Protoporphyrin IX (PpIX; use in clinical practice of 5-ALA is authorized 

since 2007 in Europe, commercial name: Gliolan – Medac, Germany)[11]. PpIX is a photoactive compound that 

absorbs blue light (404 nm). PpIX is mainly fixed in the tumour cells. Indeed, Photodynamic detection offers 

89% sensitivity and 96% specificity [12]. After excitation of the PpIX by a filtered violet-blue light source [13, 

14], remainder of the tumour shines bright red through the blue surgical field. 

Several studies reportedits efficacy to achievecomplete resection:about 65 % of tumour tissue 

removed[15]. Nevertheless, temporary impairment of neurological function could occur more frequently. Those 

effects must be compared to the benefits and the impact on the lifespan. It was observed that the degree of 

surgical resection correlates approximately with the survival probability.Indeed, the progression-free clinical 

survival increased of about 6 months (6,73 months to 12,88 months) and clinical survival increased of about 8 

months (12,3 months to 20,9 months) [16]. 

In addition to surgery,radiotherapy is delivered[17]. Tumourdelineation isrequired to plan the treatment. 

First, Gross Tumour Volume (GTV) is easily delineated from T1, T1Gd and T2 weighted. Then, Clinical Target 
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Volume (CTV) is deduced from the GTV.Ballistic optimization is highly sensitive to this CTV butitsdelineation 

remains very complex because of the infiltrating component of the Glioma. 

Chemotherapy may be also delivered, in addition to the radiotherapy. Most of studies revealed that 

these adjuvant treatments could not bring solutions for the recovery of a patient.However, chemical application 

on residual tumour cells after resection surgery can produce an effect onlifespan[18]. 

2. Recent advanced therapies 

Recently,High-Intensity Focused Ultrasound (HIFU) has shown interest and significance for the 

managementof high-grade gliomas.HIFU is a targeted treatment based on high-intensity ultrasound [19, 20].This 

technology consistsof focusinghigh-energy ultrasounds in order to create thermal and mechanical effectson the 

targeted tissues. It can be delivered extracorporealy, intracavitarly and interstitially.The resulting heat and 

pressureincrease lead to a coagulation necrosis [21]. HIFU have been trained on different pathologies and 

tissues: glaucoma, pancreas,prostate, liver, thrombolysis, venous insufficiency and braintumour. A recent study 

demonstrated its benefit on antitumor effect paired with chemotherapy in the GBM case[7, 22]. 

Since 2002, a new modalityhas brought the possibility to treat non-resectable GBM using interstitial 

Photo-Dynamic Therapies (PDT)[23]. PDT is aselective therapy that consists in exposing photosensitized 

tumour cells to a specific wavelength light. Such exposition aims to generate a cytotoxic 

effect.Recentdevelopments offer new possibilities for the management of high-grade gliomas[24-26].  

 

In a general manner, PDT can be delivered extracorporealy, intracavitarly orinterstitially[27]. This 

therapy has been trained on other localizations like prostate cancer [28, 29], lung cancer [30]or dermatology [31, 

32]. PDT relies on three main parameters: 

- Photosensitizer (PS): previously administered to the patient, leads to a photosensitizer, preferentially 

fixed in the tumour site. Several studies [23, 33-36] reported the use of a precursor,5-AminoLevulinic 

Acid (5-ALA). 5-ALA induced a specific uptake of the PS: the Protoporphyrin IX (PpIX). Significant 

difference of PS concentration between healthy and tumour tissuesled to a selective treatment. 

- Light: illumination to an appropriate wavelength (corresponding to the red visible light, between 620 to 

690 nm) is the cornerstone that brings the required energy for the chemical reaction which ends up to 

production of cytotoxic molecule (singlet oxygen) [37]. 

- Oxygen:the tumour tissue needs to be oxygenated in order to induce cytotoxic reaction. The singlet 

oxygen is the most reactive product ofthe chemical reaction and will induce the deathof cells according 

to mainlytwo ways: necrosis and apoptosis. 

A recent study introducedpreliminaryexperiments of interstitial PDT(iPDT) applied tohigh-grade 

gliomas [38]. In this context, optical fibers were inserted into the tumour location under stereotactic conditions.  

3. Imaging of high grade glioma 

High-grade glioma is mainly diagnosed through MRI imaging and confirmed according to histopathology 

analysis from biopsies or biological material from surgical excision (see figure 2). T1 weighted imaging with 

contrast enhancement from gadolinium (T1Gd) is acquired to observe the blood brain barrier disruption. 

Necrotic area can be observed by hypo intense part of the tumour core. T2-weighted (T2) or FLuid-Attenuated 

Inversion Recovery (FLAIR) MRI, are used to determine the extent of the tumour and of the oedema[39]. MR 

spectroscopy imaging (MRSI) may be used to evaluate metabolite levels measured to detect viable tumour part, 

especially in the tumour border or in the oedema where infiltrating tumour cells occur[40]. Tumour infiltration 

may also be evaluated according to diffusion-tensor MR imaging using a metric, Tumour Infiltration Index (TII) 

where the TII is a measure of the change in Fractional Anisotropy (FA) probably caused by tumourcells 

infiltrating the peritumoral oedema[41]. Vessels proliferation is an important biomarker to stage the grade of 

gliomas, in that context perfusion MRI remains an important tool for diagnosis and prognosis of patient 

harbouring high-grade glioma [42].  

http://europepmc.org/abstract/MED/15220505/?whatizit_url=http://europepmc.org/search/?page=1&query=%22tumor%22
http://europepmc.org/abstract/MED/15220505/?whatizit_url=http://europepmc.org/search/?page=1&query=%22tumor%22
http://europepmc.org/abstract/MED/15220505/?whatizit_url=http://europepmc.org/search/?page=1&query=%22tumor%22
http://europepmc.org/abstract/MED/15220505/?whatizit_url=http://europepmc.org/search/?page=1&query=%22tumor%22
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Fig. 2Illustration of four different MRI modalities of the same clinical case: T1 in the top left-hand corner, T1Gd 

in the top right-hand corner, T2 in the bottom left-hand corner and FLAIR in the bottom right-hand corner 

(DICOM files are freely available on the National Institutes of Health Blueprint for Neuroscience Research 

(NITRC) website). We observe a strong hypo signal on the T1Gd, which is distinctive of necrotic tissue; an 

intense contrast on T1Gd for the enhancing part of the tumour; a diffuse signal on T2 and FLAIR showing the 

extent of the tumour and the oedema. 

4. Role of the segmentation 

In most of the therapies, optimization of the treatment (Radiotherapy, PDT, HIFU, tumourresection 

guided by neuronavigation[43] or augmented reality[44]) requires the delineation of a target. Although it is 

crucial to destroytumour tissue,sparing healthy tissue is a critical issue. Indeed, patients bearing a high-grade 

glioma have a restraint lifespanwhich most of therapies aim to enhance whilepreserving quality of life as much 

as possible[45].In this context, tumour segmentation is high of interest for both optimizing the treatment delivery 

to the tumour and sparing healthy tissues.Furthermore, manual delineation remains unsatisfactory because of its 

poor inter-observers reproducibility and because it is time consuming[46]. 

Thus, with the sophistication of multimodalityinformation[47],development of reliable and robust 

segmentation algorithms to overcome manual segmentation and optimize targeted treatment is highly expected. 

III. State of the art 
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In 2013, Gordillo et al. [48]has already proposed an extensive state of the art on MRI brain tumour 

segmentation. In this paper, we only focus on GBM segmentation. 

Four main classes can be highlightedforGBM segmentation among the literature: 

- Region-based approaches  

- Edge-based approaches 

- Classification based approaches 

- Atlas-based approaches 

1. Region-based approaches 

Region-based approaches aim to provide segmentation through the finding of coherent regions or pixel 

similarities (see conventional pipeline on figure 3). In the context of GBM segmentation, several methods have 

been explored. 

 

Fig. 3 Conventional pipeline of region-based approach: features of one voxel and their neighbourhoods 

are analysed. According to similarity criteria pre-defined, voxels are clustered. 

Letterboer et al. introduced a watershed segmentation algorithm in 2004 [49] applied to tumour 

segmentation from MRI images. This method was mainly dedicated to preoperative neurosurgery planning. 

Using neuro-navigation, pre-operative segmentation of the tumour allows to the neurosurgeon a quick distinction 

of the resection boundaries scheduled. To overcome the well-known issue of over-segmentation when applying 

watershed framework, the authors introduce a multiscale analysis. Usually, merging strategies are used to obtain 

larger regions corresponding to the object of interest. In their paper, Letterboer et al. describe a multiscale 

approach aiming to define how the catchment basins merge into larger structures.For their experiments, the 

authors applied the algorithm on T1GdMRI images from 20 patients. Gold standard was achieved by 

segmentations manually performed by three physicians. To evaluate the reproducibility, automatic delineation 

was applied twice to each dataset. The results tended to show that the watershed was more reproducible than 

manual delineation. Accuracy was found equal to manual delineation. With a computational time of 10 minutes 

for the watershed algorithm and between 1 to 15 minutes dedicated to the operator interaction. The authors 

claimed that their watershed approach was three times more efficient than manual delineation. 

Franz et al. presented a 3D region growing approaches in 2011 allowing distinction of the enhanced 

tumour part, necrotic area and perifocaloedema[50]. This algorithm used MRI T1Gd andFLAIR was dedicated to 

a regular clinical routine. This semi-automatic method, initialized by a starting point, or “seed”,dropped by the 

physician, only usedimage intensity as feature. Algorithm started a previoussubsamplinganalyse of T1Gd and 

FLAIR MRI prior to segmentation atnative resolution. Pixels with similar intensity were clustered in three sets: 

contrast enhancement, necrosis and oedema. Upper and lower intensity thresholds of the clusters could be 

definedautomatically or adapted by the user. 20 clinical cases were treated, including 15 glioblastoma and 5 

meningioma cases. A computational time of ten seconds was required to achieve a whole segmentation and 

classification. Nevertheless, over-segmentation was declared and only monofocal tumours leaded to correct 

results. 
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Finally, because of the intrusive nature of GBM, main drawback of region-based approaches remains 

over-segmentation frequently observed. 

2. Edge-based approaches 

Mainly, edge-based approaches applied in the context of GBM segmentation rely on deformable 

contours (see figure 4).Basically, deformable contour [51-55]area two or three-dimensionalshape (curve or 

surface)iteratively deformed under the influence of internal and external forces.In such a manner that boundaries 

fit the target volume. Internal forces tend towards to keep the shape inside the tumour boundaries while external 

forces pull the shape in order to increase the tumour volume segmented.Main drawbacks of this approach might 

be its dependence on the user initializationandthe issue encountered on tumourdiscontinuity or in presence of a 

weak contrast. 

 

Fig. 4 Conventional pipeline of edge-based approach: a rough delineation drew by the user is used to 

compute forces from neighbourhood voxel of the first contour. These forces iteratively deform the initial shape 

under constraints to obtain the final segmentation. 

In surgical and treatment planning context, Sachdeva et al. [56] described a deformable contour 

framework to achieve semi-automatic segmentation in 2.5 dimensions (volume extracted from 2D slices).Using 

intensity and texture features, this algorithm aimed to overcome weak boundaries between tumour and 

background and noisy sensitivity issues.MRI T1, T1Gd, T2 were used to perform this segmentation. 

Acharacterization map was computed by combining intensity (provided from a median filter) and texture 

estimations (provided from a local texture descriptor)fromtumour and non-tumour parts.From 

thecharacterization, anedge map was estimated to distinguish boundaries of intensity and texture estimationsfrom 

the tumourpart.In most of cases, this edge map did not perfectly fit the tumour contours. Thus,Static Motion 

Field (SMF) and Dynamic Motion Field (DMF),were achieved to guide the contour toward the tumour. This 

method tackled noisy images and complex tumour topologies issues.Experiments were achieved on images from 

10 subjects (260 images of astrocytoma, gliomaand meningiomatumours). Time computing for a tumourranged 

from 2 to 5 seconds. 

To improve variational segmentation framework, some authors propose to add multiple MR sequences 

and statistical distribution to prior knowledge. For example, Dirichlet distribution was explored by Popuri et al. 

[57] in order to perform a 3D segmentation. Dirichlet prior addition enables to perform a better distinction of 

tumour by discouraging cluster from the normal brain to move in the tumour part. After pre-processing (noise 

reduction, normalization and symmetry alignment), features were extracted from T1, T1Gd and T2 MRI images. 

Intensity and symmetry features were extracted on both T2 and T1/ T1Gd difference. Texture feature was only 

extracted from T2. All these data were clustered into 3D image. A training set was weighted by including 

Dirichlet distribution parameters to a better distinction between tumour and the surrounding brain tissue. Finally, 

an automatic post-processing removed the skull and CSF of the target, delineated on each slice the tumour 

largest part and then, declared all pixels inside the segmented area as tumour. This method was evaluated on 15 

volumes, including 11 GBM characterized by various size, location and intensity. Senior physicians segmented 

manually all the volumes. Tree labels were segmented by radiologists and were used as training data set using 

leave-one-out cross validation.  Four different metrics based on proportions between true, false, negative and 

positive voxels were provided for a manual segmentation comparison: Jaccard index (58%) and distance 

between manual and automatic delineations (named Hausdorff distance) (24 mm). Time consumption was not 

reported. 

Main drawbacks of edge-based approaches are their dependence on user’s interactions and issues 

encountered on tumour continuity or in presence of weak contrast. However, new frameworks including 

multimodality and prior knowledge seem to be an interesting approach to tackle these issues. 

3. Classification approaches 
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As introduced earlier, GBM imaging is usually achieved through multiple MR sequences or multi-

parametric MR. Thus, it makes sense to combine and exploit these data to achieve the segmentation. In this 

context, classification appears to be a good strategy. Classification methodsare widely used in imaging 

segmentation [58-61]. They aim at clustering pixels according to different features used as input vector 

(intensity, texture, neighboursand spatial distribution in the image) of a clustering algorithm(see figure 5). Pixels 

are thus represented in a multidimensional features space. Classification approaches usually referred as 

supervised or unsupervised. 

 

Fig. 5 Conventional pipeline of learning machine approach: in a first part, the algorithm is trained with 

several pre-segmented volume and learned features of voxels labelled previously. Then, the initial volume is 

classified according to rules learned previously by the algorithm. 

A pioneer work was proposed by Clark et al. to label GBM on MRI images [62]. This study was developed 

to assess tumour response. Four steps composed the algorithm. First, a pre-processing algorithm classified slices 

as “normal” or “abnormal” using detection of morphologic deviation (symmetry of the hemispheres, CSF 

localization) from slices considered as “normal”. Then, intra and extra-cranial tissues were discriminated: a 

roughly separation were performed between those two type of tissues followed by subsequent morphological 

operations to improve the separation. Three main tissues composed the intracranial: pathology, brain 

parenchyma and CSF. Using three different MRI modalities (T1, Proton Density (PD) and T2), two joint 

histograms were obtained: T1/PD and T2/PD to compute prior joint probability of tumour cells presence. Thus, 

GBM extraction could be generated by elimination of non-tumour pixels. 120 slices, including 17 for the training 

process were used to validate method by comparison to radiologist hand-labelled segmentation. 

Corso et al. have presented a Bayesian model classification in 2008 [63].This unsupervised method was 

based on two concepts: class model and graph-cuts. The aim was to combine speed of graph-cuts and statistical 

distribution accuracy of the class model. The first one used representation of tissues heterogeneity. This 

distinction was achieved by a previous statistical distribution of pixels sets called Segmentation by Weighted 

Aggregation (SWA), developed by Sharon et al. [64] in 2001. A graph showing the similarities with 

neighbouring pixels was created, using features such as intensity contrast, texture difference and boundary 

integrity. Then, similar pixels were classified in different groups, or nodes. The notion of cuts was introduced by 

the fact that all these nodes were linked by an affinity and “cut” defined the threshold between two groups. The 

proposed method was to introduce a probabilistic Bayesian model classification in the affinities computing on 

the graph. Using these new affinities, segmentation was executed using hierarchy between pixels sets. This 

model was applied to 20 GBM cases with T1, T1Gd, T2 and FLAIR previously analysed by experts. Correlation 

of about 70% was obtained with comparison of expert manual delineation. The entire segmentation of a volume 

was computed between one and two minutes and five minutes dedicated to pre-processing. 

In 2013, a semi-automatic graph-cut based method was proposed by Jiang et al. to segment brain tumours 

using T1, T1Gd, T2 and FLAIR MRI images [65]. This method used arithmetic operation over imaging 

modalities (subtraction between modalities like T1-T2 or T2-FLAIR) in order to obtain a better separation 

between brain tumour and background. Because of their high discrimination of tumour part in MRI images, 

texture properties were also extracted with the use of a Gabor filter. In addition, Real-AdaBoost algorithmdrew 

up a probability mapdiscriminating target from the background. Two classifiers (global and local) were trained 

with samples from features population set for the global classifier case and with seed points in the testing image 
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for the local classifier case. A cost function containing two parts (region term and boundary term) was dressed 

and defined the final segmentation. During 2 hours, the global classifier treated 57 cases with 4 modalities, 

which represents 228 images. AdaBoost algorithm was the most time-consuming phase of the segmentation. The 

DSC was about 84.5% ± 9.4, Jaccard 74.1% ± 14.5, sensitivity 87.2% ± 7.9 and specificity 83.1% ± 14.8. 

Fuzzy C-meansis a popular unsupervised clustering method. In 2014, Cordova et al. developed a semi-

automatic tumour segmentation tool using T1 images [66] based on fuzzy c-means. In the context of FGR, this 

approach was used to plan surgery on preoperative images and to assess the excision on the post-operative 

images. Fuzzy algorithm employs only intensity variance as feature to cluster voxels.A comparison between the 

three clusters fuzzy algorithm, a fuzzy algorithm with four clusters and another unsupervised algorithm based on 

similar clustering process was dressed. 37 cases of which 16 had received FGR had been studied. Fuzzy with 

three classes turned out to be the most in agreement with experts’ manual segmentation and also,more 

reproducible than the other (DICE coefficient which represents correlation with manual segmentation was about 

0.943 ± 0.018). Time computing was about 3 minutes which 86 seconds used only by fuzzy algorithm.  

Recently, Juan-Albarracín et al. proposed an automated classification dedicated to GBM segmentation 

[67]. After image pre-processing stage (denoising, skull stripping, intensity homogeneity and resolution 

corrections), intensity and texture features were extracted from T1, T1Gd, T2 and FLAIR MRI images. With 

these features, several others images were computed from arithmetical and statistical operations: absolute 

subtraction of T1 by T1Gd and shape of the histogram distribution (mean, skewness and peakedness). In this 

study, probabilities maps of white, grey matter and CSF were drawn to obtain representation biologically more 

relevant. These maps were computed by a comparison with a modified healthy brain atlas (the parts where 

tumour was located were deleted). The final segmentation was obtained by removing non-pathological tissues 

and discriminating pathological tissues with statistical distribution. GBM heterogeneity and infiltrative property 

were integrated in this segmentation approach; each tissue was modelled by a mixture of two Gaussians at least. 

Time reported was about 140 minutes. This technics achieved the first position of unsupervised method and the 

seventh of general position during the BraTS 2013 challenge (Brain Tumour Segmentation). 

 

4. Atlas-based approaches 

Segmentation of known healthy structures can help to extract GBM tissues. Atlas-based approaches 

have been investigated in that way. An atlas is a standard anatomical model in which, all internal structures and 

their associated properties are represented [68, 69] (see on figure 6). However, simple segmentation based on a 

brain atlas including GBM cannot be used due to GBM intrinsic properties. GBM location, shape, tissues 

heterogeneity, various volumes and impact on the brain patient topology make the creation of such an atlas 

tricky [70]. Nevertheless, some techniques use atlas as previous parameters in their method to optimize and/or 

increase complexity of their algorithm. In these statistical models [71], native images are matched to an atlas or 

template. 
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Fig. 6 Conventional pipeline of atlas-based approach: an atlas segmented previously is used to find 

similarities with the studied volume. Voxel are thus labelled in comparison with the atlas to obtain the final 

segmentation.  

In this way, Prastawa et al. created an automatic brain tumour segmentation including oedema’s 

detection [72]. This method used only T2 MRI. Pixels classification of Cerebro-Spinal Fluid (CSF), white and 

grey matter was performed from atlas template. Unclassified pixels were assigned to tumour or oedema. 

Generally, oedema was estimated as pixels located close to contrast enhancement. Finally, classification was 

refined from geometric and spatial properties of brain tumours. Three MRI volumes with tumours had been used 

to evaluate this method. Almost, 1 hour and 30 minutes were needed to process this pipeline. 

MRSI enables new approaches in brain tumour segmentation. In their study, Luts et al. proposed an 

atlas-based segmentation built with T2 MRI images [73] and including MRSI features to characterize tumour 

type and grade. Known spectra and peak-integrated values of each type of gliomas tissue allowed a tumour 

classification (grade II, III, IV glioma and meningioma). 11 clinical cases among 24 with brain tumour, 

including 3 GBM cases with severely brain deformation, were used to perform this study. The addition of MRSI 

information brought a new approach in classification of abnormal tissues and improved the visualization of high 

heterogeneity GBM. 

To overcome the tumour mass-effect on the brain patient, Gooya et al. proposed an atlas-based 

segmentation with an increased complexity in their prior atlas [74]. A glioma growth model (unknown grade) 

was implanted in a healthy atlas brain. Tumour, oedema and grey matter probability maps were generated using 

diffusion-reaction equation. Mass effect strength displacement, proliferation coefficient and spatial position were 

taken in consideration. Then, a joint segmentation-registration was applied on this atlas. Intensity distribution of 

each structure, atlas coefficient and deformation between the atlas and the reference model were estimated to 

complete this pipeline. 10 clinical cases of glioma imaged by T1, T1Gd, T2 and FLAIR were used. This model 

showed a mean difference of the dice overlap with previous expert manual delineation of less than 0.75%. The 

registration between modified atlas and the segmented patient images closely matched which demonstrated a 

good simulation of glioma growth. 

Atlas-based approach represents an interesting way to classify the type of tissues in the volume. However, 

creation of an atlas infiltrated by a GBM cannot be relevant due to the highly multiform morphology of GBM.  

IV. New trends 

1. Machine Learning 

As observed in the state of the art, classification and multimodality approaches are the most appropriate way 

to achieve GBM segmentation. Thus, finding the best combination of features over all the modalities available 

and the best classification becomes today a hot topic.Machine learning methodologies are progressively 

becoming a standard of segmentation since they are suitable for multimodality data, can include prior knowledge 

and their segmentation methodologies can continuously be updated from newer database. 

Machine Learning methods appear in various fields with many different aspects such as linear and 

probabilistic models, kernel learning or clustering analysis[75-79]. These methods rely on learning processes. 

During learning phase, the algorithm is fed with training data for which the segmentation is known such as 

manual delineation from experts. For instance, this learning phase enables to tune the parameters of an artificial 

neural network. Obviously, the more trained is the machine learning, the more accurate will be the final 

segmentation. 

Preliminary works on machine learning dedicated to brain tumours segmentation was achieved in 2009. 

Iftekharuddin et al. developed a segmentation and classification tool dedicated to paediatric brain tumours[80]. 

Their study used intensity and texture features computed from fractal-based algorithms (fractal dimension and 

fractal wavelet). Then, a map was labelled according to these three features. The Self-Organizing Maps (SOM) 

neural network clustered these inputs vectors into space data. After this update, classification discriminated 

tumour from non-tumour regions by computing the mean of the three features of each vector. Thus, the classifier 

indicated the location of high probability of tumour cells presence. This method was tested on 9 datasets (MRI 

T1, T2 and FLAIR) of patients with brain tumours, including two cases of GBM. Half of data was used as 

training set. The results showed a mean of 90% of true tumour tissues classified like tumour tissue. The author 

indicated a time computing of about 30 min to train the classifier for a single patient. 
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Forest classifier [81, 82] was studied by Zikic et al. [83] to automatically segment GBM on multi-

channel MRI images. This study was focused on GBM segmentation for radiotherapy and surgery purpose. Six 

different MRI sequences were used: T1, T1Gd, T2 turbo spin echo (T2-tse), FLAIR and two sequences diffusion 

tensor imaging (DTI). During training stage, the random forest algorithm created a set of binary decisions called 

tree. Each tree was composed of a node, which split training samples based on their feature representation. 

Random number of outputs of the node was generated according to dimension space feature considered. Tree 

growing stopped at predefined limit and formed a forest. During the testing stage, each part of image was sent in 

the decision forest. A generative model of tissue (active cells, necrotic core, oedema and background 

probabilities) was combining with forest input in order to classify each entrance in a class tissue. This approach 

was tested on 40 high-grade gliomas of which 38 GBM cases. Manual segmentation of active cells, necrotic core 

and oedema part were drawn on the 40 patients. Tree process of cross-validation was applied: 10/30, 20/20 and 

30/10 corresponding of the ratio training/testing process. Training part ranged from 10 to 25 minutes and testing 

part, between 2 to 3 minutes. This method was tested on the 2014 BraTS challenge [84] and obtained the best 

results. 

Support Vector Machine (SVM)[85-88], has been investigated in a recent 2D multimodal GBM 

segmentation approach by Wu et al. [89].SVM algorithm is used to solve vectors separation problem by 

determining the optimal mathematical solution. In addition to SVM learning process, the study introduced the 

notion of superpixel[90-92]. This feature, defined as group of pixels describing coarse image structure, reduced 

computational time, allowed a more efficiency representation with Support Vector and leaded to a more 

homogenous segmentation.The training data was a 4D image, composed of superpixels and containing vector 

value from T1, T1Gd, T2 and FLAIR.Features extracted from these vectors were the mean intensity value of 

each superpixel. These results were used to train the SVM classifier. Two parts composed the training process: 

first, the SVM was train on random negative samples and evaluate on non-tumour data. Thus, all positives were 

false positives. These false positives were injected in the previous negative data and used to train SVM again.  

Regarding to the testing data, the same process was applied to transform images with superpixels. SVM 

algorithm classified superpixels of the testing data. The results were sent to a Conditional Random Field (CRF) 

in order to regenerate pixels features from the superpixels and complete the segmentation. A last step of 

denoising process was applied to remove false positives.This method was experimented on 20 GBM cases with 

manual expert delineation. A comparison with other method (BratTs challenge, 2012) was dressed, especially 

with the Zikic et al. study [83], which brought better results. Time computing was about 30 min and training part 

was about one and a half hours. 

2. New strategies 

Progressively, it has appeared that classifying pixels as tumour or non-tumour cannot fit properly the 

complex structure of GBM. Thus, new strategies are applied to delineate different 

tumourcompartments[93](enhancing, non-enhancing tumour part, necrosis, oedema) or to map probabilities of 

active tumours cells(see figure 7). 
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Fig. 7 Automatic GBM segmentation generated with the software BraTumIA (Brain Tumor Image 

Analysis)[94]. It requires T1, T1Gd, T2 and FLAIR to perform a whole segmentation of the necrotic part, non-

enhancing, enhancing tumour andoedemain less than 5 minutes. Segmentation method used is based on a 

decision forest classifier. 

In a recent study [95, 96], Unkelbach et al. developed a method based on Fisher-Kolmogorov model to 

describe the anisotropic GBM growth. This segmentation was included in a radiotherapy planning in order to 

delineate a target volume. T1, T1Gd,T2 and FLAIR were used to simulate the process. Firstly, segmentation of 

tumour, cerebrospinal fluid, peritumoral oedema, white and grey matter was computed using Menze et al. 

algorithm [97], an unsupervised statistical method. Then, the Fisher-Kolmogorov equation, which 

mathematically represents the diffusion behaviour for tumours cells, was employed for modelling GBM growth 

from two parameters: Infiltration length and the ratio diffusion coefficient in white/grey matter. One main issue 

stemmed from the tumour cells density, which was unknown on images. Approximations were carried out in 

order to circumvent this difficulty. Combining these two properties, map of simulated tumour cell density were 

generated. 

In the same way, Hamamci et al. [98] proposed tumour segmentation, for radiosurgery purpose, based 

on T1Gd. The author described a tumour probability map obtained from “Cellular Automata” (CA) method. 

From a region of interest, CA algorithm was applied successively to foreground and background. Thus, two 

maps representing tumour and background strengths were provided. Fusion of these maps resulted in a tumour 

probability map. Finally, a probability threshold (above 0.5) delineated the tumour. Additionally, necrotic tissues 

were taken into account thanks to their hyposignal on T1Gd images. This method was evaluated on three 

different data sets: Five synthetic brain tumour data sets from the University of Utah [99], ten tumours including 

manual segmentation of Harvard experts [100] and nineteen tumours of fourteen patients from Anadolu Medical 

Center (AMC), Turkey. An average Dice overlap was given to compare this method to previous validated 

segmentation: 82,6 ± 17,3 for the five tumours of Utah, 89,3 ± 6,9 for the ten tumours of Harvard and 80,1 ± 6,9 
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for the nineteen tumours form AMC. Computation time ranged from 1 second to 16 minutes depending on the 

tumour volume (0,5 to 32 cc). 

Additionally, tumoursrelapse prediction is also challenging[101]. This topic is really high of interest, mostly to 

predict treatment response or to adapt in real time the therapy during surgical procedures. 

GBM prediction model using genomic analysis as new features has been recently proposed[102-106]. Tumour 

invasion, growth or recurrence location may be predicted and improve targeted therapy [107-110]. In these 

methods, conventional imaging is completed by additional molecular mapping and able to predict patient 

survival prognosis. Indeed, addition of multimodality imaging is continuously proposed to optimize the 

predictability of tumour relapse, in particular with the use of new Positron Emission Tomography(PET) tracers 

[111-114]. 
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Table 1summary of the segmentation approaches: advantages and drawbacks, evaluation and modalities 
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V. Discussion-Conclusion 

Gliomas are the most common primary brain tumour and GBM its most aggressive form. Nowadays, 

conventional treatments fail to cure it. To improve its management, new health technologies may be applied 

(HIFU, Laser therapies) relying on an accurate definition of the target. We proposed a general review on 

segmentation technics: region-based, edge-based, atlas-based and classification approaches. These usual 

approaches are summarizedin table 1. 

However, beyond usual segmentation frameworks, we have also highlighted new trends. First, 

multimodal strategies should clearly be added to segmentation frameworks. In particular, combining information 

from T1Gdand T2 is interesting since they respectively provide information on Blood-Brain Barrier Disruption 

and oedema. Additionally, new PET tracers [116-122]may provide more information (size, shape and 

radiopharmaceuticalconcentration) and thus, improve significantly GBM investigation.Furthermore, 

spectrometry MRSI [73, 109, 123, 124] also provides important tumours characteristics. With these new 

features, machine-learning strategies may achieve segmentation with refining capacities and active tumour 

probability mapping. With suchactive tumours or relapse probability maps, treatment planning might be 

achieved from a realistic model including tumour cell density around the tumour core.  
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