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The agitation of the liquid phase has been investigated experimentally in a
homogeneous swarm of bubbles rising at high Reynolds number within a thin gap.
Owing to the wall friction, the bubble wakes are strongly attenuated. Consequently,
liquid fluctuations result from disturbances localized near the bubbles and direct
interactions between them. The signature of the average wake rapidly fades and the
probability density function of the fluctuations becomes Gaussian as the gas volume
fraction « increases. The energy of the fluctuations scales differently with o depending
on the direction, indicating that hydrodynamic interactions are different in the
horizontal and vertical directions. The spatial spectrum shows that the length scales of
the fluctuations are independent of « and exhibits a k=* subrange, which results from
localized random flow disturbances of various sizes. Comparisons with the dynamics
of the gas phase show that liquid and bubble agitations are driven by the same
mechanism in the vertical direction, whereas they turn out to be almost uncoupled in
the horizontal direction. Comparisons with unconfined flows show that the generation
of liquid fluctuations is very different. However, the cause of the k=3 spectral subrange
is the same for confined flows as for the spatial fluctuation of unconfined flows.

Key words: drops and bubbles, gas/liquid flow, multiphase and particle-laden flows

1. Introduction

In a previous companion paper (Bouche et al. 2012), we explored the dynamics
of the gas phase in a homogeneous swarm of bubbles rising in a narrow cell in the
inertial regime. In the present contribution, we focus on the dynamics of the liquid
phase to achieve a complete description of the flow in a confined swarm.

We have already explored the agitation induced in the liquid phase by an isolated
bubble rising in a Hele-Shaw cell at high Reynolds number (Roig et al. 2011). Owing
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to the confinement, the velocity perturbation induced in the liquid phase presents
specific characteristics: (i) the velocity defect in the wake decreases exponentially,
with a characteristic time scale controlled by the viscous diffusion across the gap of
the cell, and (ii) two-dimensional vortices, which are released at the bubble rears, are
damped before in-plane diffusion can affect them. The objective of the present paper
is to give a comprehensive description of the agitation generated in the liquid phase
by a confined swarm of rising bubbles and to evaluate the role of hydrodynamic
interactions on this agitation.

This flow configuration is of interest for applications involving two-dimensional
columns, such as those used in nuclear or spacecraft technology for cooling purposes
(Spicka, Dias & Lopes 2001). Reliable predictions of the performances of these
systems need careful investigations, as the confinement strongly affects the flow with
respect to the reference case of a bubble swarm free to evolve in a three-dimensional
space. In particular, the mixing of a high-Schmidt-number solute in a homogeneous
swarm of bubbles rising in a Hele-Shaw cell was observed to be a non-Fickian
process, contrary to what happens in unconfined flow (Bouche et al. 2013).

Moreover, this configuration is especially attractive for the fundamental under-
standing of the agitation induced by large-Reynolds-number rising bubbles. In an
unconfined bubble swarm, the agitation has a dual nature (Risso et al. 2008) and
combines two different contributions: the first, referred to as the spatial fluctuation,
corresponds to the local spatial flow inhomogeneities in the vicinity of the bubbles;
while the second, referred to as the temporal fluctuation, results from a collective
instability of the bubble wakes, which produces turbulent fluctuations. Separating
these two contributions is a hard task because the bubbles move. It is, however,
possible by using both time and spatial averaging in a frame where the bubbles are
at rest. This has been achieved experimentally by considering the flow crossing a
random array of fixed spheres, which was proved to generate velocity fluctuations
similar to those observed in a swarm of rising bubbles (Risso er al. 2010). It has
also been done numerically from large-scale simulations of a homogeneous bubble
swarm (Riboux, Legendre & Risso 2013). In the present configuration, the liquid
agitation is generated by large-Reynolds-number rising bubbles with unstable wakes,
while turbulence production is prevented by the strong confinement. Bubble-induced
agitation in a confined cell thus involves a single contribution, which results from
spatial flow inhomogeneities localized in the vicinity of the bubbles.

Fundamental issues are addressed from the present experimental investigation. We
discuss how the properties of the bubble wakes and of their interactions determine
the dynamics of the liquid agitation in confined and unconfined bubble swarms. We
investigate the energy and the probability density functions (p.d.f.s) of the velocity
fluctuations for various gas volume fractions «, with a particular focus on anisotropy
and scaling laws. We also explore the spectra of the fluctuations and discuss them
by considering the theoretical model of Risso (2011), which assumes uncorrelated
velocity disturbances of random sizes and occurrences.

The paper is organized as follows. Section 2 describes the experimental set-up and
the measuring methods. Section 3 successively presents and discusses the velocity
perturbations around a test bubble, the statistics of the velocity fluctuations and the
spatial spectra. Section 4 concludes with a synthesis of the main results.

2. Experimental set-up and instrumentation
2.1. Description of the cell

The experimental set-up is a Hele-Shaw cell consisting of two vertical glass plates of
size 800 mm x 400 mm, separated by a gap of width w=1 mm and filled with water
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FIGURE 1. Schematic of the experimental set-up. (a) View of the cell, the CCD camera
and the laser. (b) Side view of a bubble of equivalent diameter d confined within the gap
of width w.

(Bouche et al. 2012). Bubbles are produced at the bottom of the cell by injection of
air through a set of 16 capillary tubes (figure 1a). The gas volume fraction can be
varied within the range 0.01 <« <0.12, by adjusting the inlet air flow rate. A small
amount of magnesium sulphate (MgSO,4) has been added to the water in order to
prevent coalescence from occurring without significantly modifying either the density,
the viscosity or the surface tension of water (Tsao & Koch 1994). The equivalent
diameter of the bubbles is defined as d = +/4A /7, where A is the bubble area projected
onto the cell plane. The mean diameter varies from 3.9 to 4.6 mm as « increases and
is large enough compared to the width w of the gap to ensure that the bubbles are
strongly flattened due to the confinement (figure 1b).

The Archimedes number, Ar = \/gdd/v, the Bond number, Bo = pgd*/o, and the
confinement ratio, w/d, respectively, lie in the following ranges: 650 < Ar < 1100,
1.7 < Bo < 3.5 and 0.21 < w/d < 0.25 (where g is the acceleration due to gravity,
p is the water density, v is its kinematic viscosity and o is the surface tension).
For such dimensionless groups, isolated bubbles rise at both large in-plane Reynolds
number (Re = Vyd/v ~300-500, where V, is the mean velocity of the bubble) and gap
Reynolds number (20 < Re(w/d)? <24), with constant elliptical in-plane shapes (aspect
ratio &~ 1.3) and unstable wakes with periodic vortex shedding (Roig et al. 2011).

In the region of investigation, far enough from the injection, the profiles of the gas
volume fraction and of the bubble velocities were proved to be uniform, showing that
the flow in the swarm is homogeneous (Bouche et al. 2012).

2.2. Velocity measurements

The liquid velocity within the gap is parallel to the cell walls, except in the close
vicinity of the bubbles. We therefore describe the liquid motion by the velocity
averaged over the gap: u(x, y, t) = u.e, + ue,. It is measured by means of particle



image velocimetry (PIV) with volume lighting, a particular technique described in
Roudet er al. (2011). This velocity proved to be relevant to analyse the coupling
between the dynamics of a single bubble and its wake (Roig ef al. 2011). For the
present study, the two-dimensional velocity field u(x, y, ) provides a rather complete
description of the liquid motion in a bubble swarm, except in the close vicinity
of the bubbles. One advantage of confined bubbly flows is that there is no bubble
overlapping. Bubble contours are therefore easily detected on each image (Bouche
et al. 2012). The volume fraction is accurately determined from the ratio of the area
occupied by the bubbles to the total flow area. Furthermore, the liquid velocity is
measured without the need for complex phase discrimination.

PIV is performed using a Nd:YAG pulsed laser (Quantel Multipulse, two x200 mJ,
A = 532 nm) and a charge-coupled device (CCD) camera (PCO, 1376 pixel x
1024 pixel) equipped with a lens of 85 mm focal length. A high-pass optical filter
with a cut-off wavelength of 580 nm is fixed on the lens in order to filter the
incident laser light. The optical axes of the camera and the incident laser beam are
both horizontal, but while the camera is perpendicular to the cell, the laser is set
at an angle of 30° to avoid direct illumination of the CCD (figure 1a). Poly(methyl
methacrylate)-encapsulated particles of rhodamine B of 10-20 wm are added to the
aqueous solution to serve as fluorescent tracers. The camera depth of field is larger
than the width of the gap, and an array of spherical micro-lenses make the laser beam
diverge, providing volume illumination of the cell (figure la). The measurement
window is a rectangle of size 120 mm x 90 mm, the centre of which is located
360 mm above the capillary tubes and at the middle of the cell in the horizontal
direction (figure 1a). It is divided into PIV interrogation cells of 16 pixel x 16 pixel
with an overlap of 50 %, resulting in a spatial resolution of 1.45 mm.

The velocity field is calculated from pairs of images separated by A¢ = 3 ms.
The sampling frequency, f =1 Hz, is low enough to ensure that successive velocity
fields are uncorrelated, which ensures a rapid statistical convergence of the p.d.f.s.
The calculation is done by means of a home-made PIV software (PIVis) based on
an iterative multi-pass algorithm. In order to obtain relevant PIV measurements, the
number of tracers in an interrogation cell must be larger than >~ 10-15 (Adrian 1991).
This leads to an additional experimental difficulty coming from the depletion of
the tracers, which are captured by the bubble interfaces and progressively brought
to the free surface at the top of the cell. This process, which is enhanced as the
gas volume fraction increases, does not allow the recording of long time series. A
preliminary test was performed to determine the optimal recording duration. For each
gas volume fraction, velocity fields are computed every second during 500 s. The
quality of the PIV calculations is then assessed from the examination of the average
signal-to-noise ratio, the width and the amplitude of the intercorrelation peak, as well
as the occurrence of peak locking. It turned out that the maximum duration allowing
reliable and accurate measurements was between 60 and 100 s, depending on «.

After running the PIV algorithm, two-dimensional velocity fields show spurious
vectors, which are detected by means of the method based on the normalized median
residual introduced by Westerweel & Scarano (2005). The proportion of spurious
vectors increases with the gas volume fractions: it was 2.8 % at « =1.2% and 25 %
at o =12 %. However, most of them are located in the immediate vicinity of bubbles,
within interrogation cells that are either crossed by a portion of a gas-liquid interface
(where trapped rhodamine tracers accumulate) or dazzled by the light reflected by
a close interface. We therefore removed all measurements obtained at less than
3—4 interrogation cells from a gas—liquid interface. After this operation, the number
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FIGURE 2. Two-dimensional velocity fields for (a) « =2.1% and (b) o =9 %. Bubbles
are marked in black; regions near the bubble interfaces where the velocity is not measured
are empty of vectors.

of spurious vectors becomes insignificant at low « and remains less than 5% in
the worst case at the largest volume fraction. The few remaining spurious vectors
detected outside the vicinity of any bubble have been removed and replaced by
interpolating correct vectors by using the MATLAB function ‘griddata’, which is
based on Delaunay’s triangulation.

Statistical quantities of the liquid velocity (average, variance and spectrum) are
calculated from at least 120 PIV fields, so that statistical convergence is ensured.

3. Results and discussion

Figure 2(a,b) shows instantaneous velocity fields for two gas volume fractions (o =
2.1% and 9 %). At low volume fraction (figure 2a), it is clearly seen that bubble-
induced perturbations are localized close to the bubbles: vortices generated at the
bubble rears are clearly identifiable in short von Karmdan streets, and regions distant
from any bubble are at rest. When the gas volume fraction is increased (figure 2b), the
bubbles become closer to each other and the flow perturbations they induce combine
themselves. It becomes less easy to detect motionless regions or to identify the wake
associated with a given bubble. In addition, unsteady velocity perturbations of various
sizes are present in the flow.

The velocity disturbances generated by the bubbles are the cause of the liquid
agitation. Before considering the statistics of the liquid agitation, it is therefore
relevant to start by considering the average flow around a bubble inside the bubble
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FIGURE 3. (Colour online) Average liquid velocity field around a bubble within the
swarm: (a—c) vertical velocity U,; (d—f) horizontal velocity U,; for (a,d) isolated bubble
(@¢=0), (bye) x=2.1% and (c,f) @ =9 %. The bubble contour at an instant when its axis
is vertical is marked by a black line. No measurement is available in the close vicinity
of the bubble, which is dark coloured (blue online). In print in grey levels, the scale
represents the absolute value of the velocity components, |U,| and |U,|. Viewed online
in colour, the scale represents the signed values, U, and U,.

swarm. The way this flow depends on the gas volume fraction should shed light on
hydrodynamic interactions.

3.1. Average liquid flow around a bubble

The average velocity perturbation U (x, y) around a bubble inside the swarm has been
determined from PIV measurements. It has been calculated as the average of the liquid
velocity conditioned by the location of the considered point relatively to each bubble
centre. Figure 3 shows the fields of the vertical and horizontal average perturbations,
U, and U,, normalized by the average bubble velocity (V), for « =2.1% and 9 %.
These velocity fields are very similar to the average velocity of a bubble conditioned
by the presence of another bubble located at the origin (see figure 7 of Bouche et al
(2012)), which confirms the dominant role of the entrainment by the wakes in the
dynamics of the gas phase. The vertical perturbation U, has larger intensity and spatial
extension than U,, indicating the significant contribution of an average quasi-parallel
wake. However, for both directions, these results confirm the small spatial extension of
the average perturbation, which remains confined in the close vicinity of the bubble. In
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through the bubble centre, normalized by the average bubble velocity (V), for various
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FIGURE 5. Horizontal profiles of the average vertical liquid velocity U, normalized by the
average bubble velocity (V), at (a) 2d and (b) 5d below the bubble centre, for various
gas volume fractions.

order to quantify the decay of the wake, figure 4 shows the evolution of U, along the
vertical axis passing through the bubble centre, while figure 5 shows the horizontal
profiles of U, at respectively 2d and 5d behind the bubble centre, for various gas
volume fractions.

At low gas volume fraction (« < 1.2 %), bubble interactions have a weak influence
and the average perturbation induced by a bubble inside the swarm is almost the same
as that of an isolated bubble, which has been described in detail by Roig et al. (2011).
Above the bubble, the average flow perturbation is potential. Behind the bubble, the



wake decays exponentially as U,/(V) =~ exp(—x/l,) (figure 4), where the length scale
[, =4.2d is fixed by the wall friction and can be expressed as a function of the viscous
length scale as [, = (V)w?/(6.7v). It is worth noting that, while the wake decays very
quickly, the width of the wake does not significantly evolve with the distance to the
bubble (figure 5). This confirms that momentum diffusion in the plane of the cell is
negligible, the wake decay being controlled by the friction on the cell walls.

As the gas volume fraction is increased, the average perturbation above the bubble
is weakly influenced by the presence of the other bubbles and remains potential.
On the other hand, the decay of the average wake is enhanced by the perturbations
induced by the neighbouring bubbles. It remains exponential, with a length scale that
first decreases as « increases, and eventually reaches a constant value for o = 2%
(figure 4). For o >4 %, the average perturbation can be considered as negligible from
a distance of 5d behind a bubble.

The flow perturbation around a bubble inside a three-dimensional unconfined swarm
has been described by Risso & Ellingsen (2002), Roig & Larue de Tournemine
(2007) and Risso et al. (2008). Surprisingly, it shares the same characteristics as
the present average flow measured around a bubble in a confined swarm: potential
flow above the bubble and exponentially decaying wake behind. Moreover, the
length scale of the exponential decays is observed in both cases to become almost
independent of the gas volume fraction beyond a certain value of «. Nevertheless, the
physical mechanisms responsible for the wake attenuation are totally different. In a
three-dimensional bubble swarm, the wake attenuation is caused by wake interactions
that start to become significant from a volume fraction of approximately 0.5%. In a
two-dimensional bubble swarm, it is caused by the friction at the cell walls.

Even if the hydrodynamics of confined and unconfined flows are of a different
nature, we may expect that the statistical properties of the liquid agitation in a
two-dimensional bubble swarm may share some properties with that of the spatial
fluctuation in a three-dimensional bubble swarm. This now needs to be checked,
since the average perturbation of the flow around a bubble does not account for the
contributions of the unsteady vortices that are released at the bubble rears.

3.2. Statistics of the velocity fluctuations

Figure 6 shows the standard deviations of the two liquid velocity components as a
function of the gas volume fraction. For & = 1 %, the two fluctuations have similar
intensity. Then, the vertical fluctuation (u?)'/? increases as «®*¢, while the horizontal
fluctuation (u7)'/? increases as «***, which leads to an increasing predominance of
the vertical fluctuation. In the absence of hydrodynamic interactions between the
flows induced by each bubble, the fluctuating energy is expected to be proportional
to the volume fraction, and the standard deviations should therefore scale as «'/?.
The deviation of the exponents relative to 1/2 is hence a signature of hydrodynamic
interactions. Here, the fact that two different exponents are observed indicates that
hydrodynamic interactions have different effects in the two directions. It is reasonable
to think that the combination of the wakes of the bubbles that are close to each other
are more efficient in enhancing vertical fluctuations.

Figure 7 presents p.d.f.s of the fluctuations for various gas volume fractions. In
panels (a) and (b), a linear scale is used and the fluctuations are normalized by
the velocity V; of an isolated bubble rising within the cell. As expected, the p.d.f.s
broaden as « is increased. The horizontal p.d.f.s are symmetric whereas the presence
of the wakes behind the bubbles makes the vertical p.d.f.s asymmetric, with large
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variance.



fluctuations that are more probable in the upward direction. In panels (c) and (d), a
semi-logarithmic representation is used and the fluctuations are normalized by their
standard deviation. At o = 1.2 %, the departure from a Gaussian distribution of the
same standard deviation is significant. Then, as « increases, the p.d.f.s converge
towards a Gaussian distribution. At o =12 %, even the signature of the bubble wakes
in the p.d.f. of the vertical fluctuations, which is characterized by a tail for large
positive values of u,, has almost disappeared.

It is interesting to compare the statistics of the liquid velocity to those of the
bubble velocity, which have been described in Bouche et al. (2012). In the vertical
direction, bubble fluctuations show the same trends as liquid fluctuations: their
standard deviation also scales as a®*%; their p.d.f.s exhibit similar asymmetric shapes
at low o that converge towards a Gaussian distribution when o is increased. This
suggests that bubble and liquid vertical fluctuations result from the same physical
mechanism. On the contrary, in the horizontal direction, bubble and liquid fluctuations
manifest totally different trends. Bubble fluctuations are driven by wake instabilities
that generate bubble path oscillations. Consequently, their standard deviation turns
out to be independent of «, while their p.d.f.s distinctly show the signature of these
oscillations. Since the intensity of horizontal liquid fluctuations instead regularly
increases with «, bubble and liquid fluctuations turn out to be uncoupled in the
horizontal direction.

Let us now compare the present results to the liquid fluctuations that are observed
in an unconfined bubble swarm for a similar flow regime. Experimental measurements
obtained in a three-dimensional homogeneous bubble swarm (Riboux, Risso &
Legendre 2010) show different features compared to two-dimensional bubble swarms.
Vertical and horizontal fluctuations both scale as «%*, which implies that the level of
anisotropy remains constant as « increases. The p.d.f.s are independent of o when
normalized using the standard deviation and show an exponential decay as u, or u,
increases. Moreover, the signature of the wake does not disappear and the p.d.f.s
do not tend towards a Gaussian distribution. The results of large-scale simulations
(Riboux et al. 2013) show that both the spatial and temporal contributions to the
fluctuations adopt exponential self-similar p.d.f.s. In addition, neither the standard
deviations of the spatial fluctuations, nor that of the temporal ones, show a scaling
with o that corresponds to what is observed in the confined bubble swarm. Even if
exponentially attenuated wakes are observed in both confined and unconfined flows,
the statistics of the velocity fluctuations do not have the same characteristics. In
three-dimensional bubble swarms, the major mechanism is the development of a
collective instability of the flow generated by all the bubbles. In two-dimensional
bubble swarms, the confinement constrains hydrodynamic perturbations to remain
localized in the vicinity of the bubbles. The major mechanism corresponds therefore
to one-to-one interactions between bubbles. Since these interactions are not the
same in the vertical and horizontal directions, the scaling of the fluctuations with «
depends on the direction. Moreover, these interactions are very efficient in attenuating
the steady part of an individual wake, which causes the signature of the wakes to
vanish and the p.d.f.s to converge towards a Gaussian distribution.

3.3. Spatial spectra of the fluctuations

In unconfined bubbly flows, liquid fluctuations are known to present particular features
(Lance & Bataille 1991; Resen, Luther & Lohse 2005; Martinez Mercado et al. 2010;
Riboux et al. 2010; Mendez-Diaz, Serrano-Garcia & Zenit 2013). In the absence of



shear-induced turbulence, a k~* subrange is always observed in the spectra. Riboux
et al. (2013) showed that both the spatial and temporal fluctuations exhibit such a
spectral behaviour, which implies that a k=3 subrange should be observed whether
fluctuations are dominated by the flow disturbances generated by individual bubbles
or by real bubble-induced turbulence. It is therefore interesting to consider the spectra
in a confined bubbly flow, where liquid fluctuations are only due to flow disturbances
in the vicinity of the bubbles.

The determination of spectra in bubbly flows is complicated by the fact that velocity
signals are interrupted by the passage of the bubbles. As reported in the literature,
different methods have been used to deal with this difficulty, such as smoothing the
discontinuities by a Gauss function (Lance & Bataille 1991), considering only intervals
between bubbles where the signal is continuous (Martinez Mercado et al. 2010), and
investigating the flow behind a rising swarm of bubbles (Riboux et al. 2010).

Here, we have chosen to use a method similar to that of Martinez Mercado et al.
(2010). We consider each uninterrupted piece of length [ of the one-dimensional
signals along the columns (vertical direction) or the rows (horizontal direction) of
the PIV velocity field. Then, we compute the average spectrum, S,,, of the vertical
velocity along the vertical direction and the average spectrum, S,,, of the horizontal
velocity along the horizontal direction. The choice of [ results from a compromise.
If chosen too short, significant large scales are not described. If chosen too long,
the number a samples is too small to ensure statistical convergence. The value of [
that has been chosen corresponds to the maximum value ensuring that the variance
of the fluctuations computed on the retained velocity samples matches the value
computed over all measurements. Depending on the direction and on the gas volume
fraction, the optimal values of / varied between 72 and 121 mm. Owing to the spatial
resolution of the PIV, the present method thus allows the description of length scales
ranging between 2.9 and ~100 mm.

Figure 8 shows the vertical and horizontal spectra as a function of the reciprocal of
the wavelength, A=' = k/27, for various gas volume fractions. Comparably to what is
observed for the p.d.f.s, the spectra of the vertical and horizontal fluctuations are quite
similar. Provided they are normalized by the variance of the corresponding fluctuations,
all horizontal spectra (vertical spectra) collapse onto a single curve, indicating that the
length scales of the velocity fluctuations do not depend on « — a property already
observed for the large scales in unconfined bubbly flows. The Eulerian integral length
scale (estimated from the extrapolation of the normalized spectrum at wavenumbers
tending to zero) is close to 20 mm. A power-law evolution as A* is observed in the
range from A, ~5 to A4 ~20 mm, in both vertical and horizontal spectra.

A theoretical model has been developed by Risso (2011) for the spectrum of
the spatial contribution to the bubble-induced agitation. Bubbles are assumed to
generate localized random velocity disturbances, which have the following elementary
properties: they have a smooth and regular pattern, they are uniformly distributed over
space, their strength and size are statistically independent, and their size is uniformly
distributed between two finite lengths A,,;, and A,.. Under these assumptions, it is
demonstrated that the spectrum evolves as A° between A, and .

Here, the fluctuations generated by the bubbles result from both (i) the average
velocity disturbance, which has been described in § 3.1, and (ii) the unsteady vortices
that are released from the bubble rears. Since the locations of the bubbles have been
proved to be independent of each other (Bouche et al. 2012), the disturbances they
generate can be assumed to be uniformly distributed over space. In addition, the
fact that the p.d.f.s tend towards a Gaussian distribution as « increases suggests that
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FIGURE 8. Normalized longitudinal spatial spectra of the liquid velocity fluctuations, for
various gas volume fractions: (a) vertical spectra S,,; (b) horizontal spectra, S,.

fluctuations result from the addition of independent stochastic events. Moreover, the
flow structures visible in the instantaneous velocity fields (figure 2) have dimensions
that range between approximately d (~4-5 mm) and the length of the average
wake, 5d (~20 mm), which approximately correspond to the values of A,;, and A,
obtained from the measured spectra.

Confined bubbly flows thus seem to ideally fit in the domain of validity of the
model, and the explanation of the existence of a A° range is similar to that of the
spatial fluctuations in unconfined flows.

4. Conclusion

Owing to the confinement, neither turbulence nor a collective instability involving
distant wakes can develop. Liquid velocity fluctuations in a Hele-Shaw cell mainly
result from velocity disturbances localized near the bubbles and direct interactions
between them. These disturbances include the contributions of the average wakes and
of unsteady vortices that are generated at the bubble rears. The wakes are strongly
attenuated by wall friction, so they decay exponentially and have almost vanished at
a distance of 5d behind a bubble. The energy of the fluctuations increases with the
gas volume fraction, but the evolution of the standard deviation differs depending on

the direction: it scales as «®*° in the vertical direction, whereas it scales as «®3® in the



horizontal direction. Hydrodynamic interactions therefore do not have the same effect
in both directions. As the gas volume fraction increases, the relative contribution of
the average wakes decreases and the p.d.f.s of the fluctuations tend towards a Gaussian
distribution. Provided they are normalized by the variance of the fluctuations, spatial
spectra turn out to be independent of «, with an integral length scale close to the
wake length. Moreover, the power spectral density is observed to evolve as k= in the
range from A, ~5 to A,u ~ 20 mm.

The dynamics of vertical liquid fluctuations shows characteristics similar to that of
the vertical bubble fluctuations: same scaling of the energy with «, similar p.d.f.s, and
an integral scale that is imposed by the wake length and that does not depend on
a. In the vertical direction, bubble and liquid agitations are hence controlled by the
same physical mechanism. In the horizontal direction, the properties of the two phases
are instead totally different; the liquid agitation is almost uncoupled from the bubble
dynamics, which is driven by bubble path oscillations induced by wake instabilities.

In an unconfined bubbly flow, two causes of fluctuations are present: (i) flow
disturbances that are localized in the bubble vicinity, and (ii) a collective instability
that involves all the bubble wakes and generates the development of turbulence. In a
confined flow, only the first source of agitation is present. The comparison between
confined and unconfined bubbly flows is therefore particularly useful to understand
the physical mechanisms responsible for the singular properties of the bubble-induced
agitation. Surprisingly, average wakes are observed to decay exponentially in both
two- and three-dimensional cases. However, this a coincidence since the causes of
the wake attenuation are of different natures: wall friction in confined flows and
interactions with neighbouring wakes in unconfined flows. The statistics of the liquid
velocity fluctuations show different properties in unconfined flows: the standard
deviation of the fluctuations scales as a®* and does not depend on the direction; the
signature of the wake remains clearly visible in the p.d.f.s (of both temporal and
spatial contributions), which keep an exponential decay as « increases. On the other
hand, the spectra share the same main characteristics: independence of the large scales
with the gas volume fraction, with an integral scale that corresponds to the wake
length, and the existence of a k=3 subrange. Interestingly, the cause of the existence
of a k=3 subrange is the same for confined flows as for the spatial fluctuation of
unconfined flows (Risso 2011). It results from localized random flow disturbances of
various sizes.
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