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An edge-based scheme on polyhedral meshes for
vector advection-reaction equations

Pierre Cantin* Alexandre Ernt

Abstract

We devise and analyze an edge-based scheme on polyhedral meshes
to approximate a vector advection-reaction problem. The well-posedness
of the discrete problem is analyzed first under the classical positivity hy-
pothesis of Friedrichs’ systems that requires a lower bound on the lowest
eigenvalue of some tensor depending on the model parameters. We also
prove stability when the lowest eigenvalue is null or even slightly negative
if the mesh size is small enough. A priori error estimates are established
for solutions in W"4(Q) with ¢ € (£,2]. Numerical results are presented
on three-dimensional polyhedral meshes.

Subject classifications. 65N12, 656N15, 76R99, 76D07, 76W05

Keywords. Vector advection-reaction problems, polyhedral meshes, Friedrichs’
assumptions, quasi-optimal a priori error estimates

1 Introduction

Let Q be a polyhedral domain of R? with d = 3 and consider a polyhedral mesh
of Q. We use boldface fonts for R? or R**?-valued quantities. The purpose of
this paper is to devise an approximation, using scalar degrees of freedom (dofs)
attached to the edges of a mesh, of the R%-valued function u solving the vector
advection-reaction problem:

V(Bu)+ (Vxu)xB+pu=s ae. inf), (1a)
u =up a.e. on 00" . (1b)

The R?-valued advective field 3 is assumed to be Lipschitz continuous in € and
the R%*%_valued reaction tensor p is assumed to be bounded in . The subset
00~ C 0N denotes the inflow part of the boundary where 3-n < 0 with n the
unit outward normal to €.

The model problem (1) is encountered in various situations. For example,
it models the static advection of a magnetic field (u here) by a moving plasma
of velocity 3 and of anisotropic conductivity . In the context of differential
geometry, the operator V(B-u) 4+ (Vxu)x3 is the proxy of the Lie derivative
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of a differential 1-form (also called circulation) in R?® (see Abraham et al. [1] or
Heumann [18]). The Lie derivative describes more generally the advection along
the vector field 8 of a differential form on a manifold. The model problem (1) is
also relevant to study, in the advection-dominant regime, the advection-diffusion
of a Re-valued field, which is one the building blocks of the Oseen problem or
of the magneto-hydrodynamic problem. Using vector calculus rules, we observe
that

V(Bu) = (VB)'u+ (Vu)'B, (2a)
(Vxu)xB = (Vu)B — (Vu)'B, (2b)

where we have denoted Vv the Jacobian matrix of v : Q — R3 such that its
(¢,7)-th component is J;v;. As a result, combining the two above equations
yields V(B-u) + (Vxu)xB = (Vu)B + (VB) u, so that the particular choice
u = —(VB)" yields the pure advection problem (with the more usual writing
(Vu)B = (B-V)u in this context):

(BV)u=s ae. inQ, (3a)
u =wup a.e. on 9. (3b)

Edge-based schemes, that is, schemes using one scalar degree of freedom
(dof) per mesh edge, are rarely addressed in the literature despite the fact that
they are the natural way to discretize differential 1-forms, such as the electric
field in electromagnetism or the flow velocity in fluid mechanics. For the Maxwell
and the Stokes problem respectively, we mention for example the work of Za-
glmayr [25] and that of Girault [17] using Nédélec edge elements. In the context
of our problem (1), Heumann and Hiptmair proposed in [19] an H(curl; Q)-
conforming discretization of arbitrary order using Nédélec edge elements on
simplicial meshes with a stabilization term in the spirit of the discontinuous
Galerkin method (see Lesaint & Raviart [22], or Johnson & Pitkéaranta [20]). In
a different context and motivated by the discretization of the Lie derivative of
a l-form, we mention the Ph.D. thesis of Palha [24] approximating on square
meshes a problem similar to (1) with the spectral element method. Based on
the work of Bossavit [7], Mullen et al. also studied in [23] an approximation
of (1) by extruding the edges of a simplicial mesh along the vector field 3. All
of the above schemes are devised on either simplicial or tensor-product meshes.

The first salient contribution of this work is to devise an edge-based scheme
to approximate the model problem (1) on polyhedral meshes. The advantage of
considering polyhedral meshes is multifold; it allows for more flexibility when
meshing a complex geometry, it provides a natural framework to handle non-
matching mesh refinement and mesh coarsening by cell agglomeration, and it
may even yield lower computational costs and better accuracy compared to
the case of the simplicial meshes (see Bonelle’s Ph.D. thesis [3]). The analysis
framework for our scheme hinges on the notions of reduction and reconstruction
maps as, e.g., in the mimetic approach of Kreeft et al. in [21], see also Ger-
ritsma [16], or the Compatible Discrete Operator (CDO) approach of Bonelle &
Ern [5, 6]. In particular, we consider a reconstruction map defining piece-wise
constant vector-valued functions on an edge-based diamond partition of each
mesh cell. This map has been introduced by Codecasa et al. in [10] and has
been recently revisited in the context of CDO schemes in [5]. The novelty here



is to perform the stability analysis in L?-spaces for ¢ € [1,00) and to prove a
quasi-local consistency result by composing the reconstruction map on the right
with a novel reduction map a la Clément that is stable for all integrable func-
tions on a macro cell collecting all diamonds attached to the cell edges. This
technique is key to establish an O(h?) convergence rate as soon as the weak
solution belongs to Wh(Q) with ¢ € (%, 2] without invoking a more stringent
regularity assumption.

The second salient contribution of this work is to extend the well-posedness
analysis at the discrete level to the non-coercive case. Specifically, we introduce
an extended hypothesis on the problem coefficients (the fields 8 and u) that
allows one to go beyond the classical (and somewhat restrictive) assumption a
la Friedrichs requiring the positivity of the minimal eigenvalue of the symmetric
tensor

ogu=(VB+VB) - (VBId+ (u+p"): Q— R,

Under this hypothesis, the well-posedness of the discrete problem classically
hinges on a coercivity argument. However, this assumption is somehow restric-
tive; e.g., the basic case of a constant vector field B with no reaction term
does not fulfill this hypothesis. Motivated by our recent work [8] related to
scalar advection-diffusion problem (see also the work of Deuring et al. in [11]
for face-based finite volume schemes), we propose to extend the analysis to
the non-coercive case where the minimal eigenvalue A, can take null or slightly
negative values. Even if our analysis is presented here for our scheme, we em-
phasize that the main idea can be adapted to other schemes, such as Nédélec
edge elements. We denote A, the minimal eigenvalue of o3 ,, over the domain
Q, ie.

A, = ess inf min —(0'57“(113)27;,;1/)@2

wED  yeRrd Yl

)

where |-|,2 denotes the Euclidean norm induced by the Euclidean inner-product
(-,-)e2 in R%. Assuming that s € L*(Q), up € L? (|3-n|;00) and that dist (90Q~, 90+) >
0 (with 997" the outflow part of the boundary), we infer from Ern & Guermond
in [14] that the problem (1) is well-posed in the graph space Vg(Q2) = {v €
L*(Q) | (B-V)v € L*(Q)} if the fields @ and p satisfy the following hypothesis:

(H1) )\, > 0. We define the reference time 7 = /\b_l.

(H2) —C\ < A\, < 0, where Cy > 0 is a constant independent the mesh
size, and there exists a potential ¢ € W1 (Q) satisfying ¢ > 1 and
ess infq (—B-V¢) > 0. We define the reference time 7 = (ess infq (—3-V¢)) ™.

In the case of a continuously differentiable vector field 8 € C*(Q), the existence
of the potential ¢ is proved by Devinatz et al. in[12, Lemma 2.3] by considering
the Cauchy problem d;x(t) = B(x(t)), z(0) = zo € Q when the solution remains
in the domain Q for a finite time only. As a result, the hypothesis (H2) is
satisfied if the vector field 3 has no closed curves and no stationary points in €.
The analysis of our polyhedral edge-based scheme under this second hypothesis
(H2) differs since the key idea is now to bound, at first-order in the mesh size,
the commutator between the reconstruction map and the multiplication by the
potential (. Using this technique, we can prove inf-sup stability (and infer the
same convergence rates as above) as soon as the mesh size is smaller than a
reference length that linearly depends on the quantity |VB" + /4||Eio(9). In



particular, for the advective problem (3) (where u = —V3"), inf-sup stability
holds with no restriction on the mesh size.

This paper is organized as follows. In Section 2, we introduce the notation
and the analysis tools on polyhedral meshes. In Section 3, we introduce the
edge-based reconstruction map and we present the numerical scheme with dofs
attached to edges. In Section 4, we state the main analytic results, namely, sta-
bility under hypothesis (H1) or (H2), boundedness and a priori error estimates
delivering quasi-optimal decay rates for solutions in Wl’q(Q) with ¢ € (%, 2].
The proofs are postponed to Section 6 to facilitate the reading. Finally, we
present in Section 5 numerical results on three-dimensionnal polyhedral meshes.
A natural perspective for this work is to use the present scheme to discretize the
advective operator in the Oseen (and Navier—Stokes) equations, while using the
CDO scheme of [6] to discretize the Stokes operator in curl-curl formulation.

2 Notation and analysis tools on polyhedral meshes

We consider a general mesh M of Q € R? with d = 3, composed of polyhedral
cells ¢ € C (3-cells), planar faces f € F (2-cells), straight edges e € E (1-
cells), and vertices v € V (0-cells). We collect the interior faces in the set
Fe={f =0cndd|c# ¢ and ¢,d € C}, and we define F? = F\F° the set
collecting boundary faces. For any A, X € {V,E,F, C}, we define the subset X,
with @ € A as {z € X|a C Jdz} if the dimension of a is smaller than that of the
elements of X and as X, = {z € X |z C Ja} otherwise. For example, the set
C. = {c e Cle C dc} collects all the mesh cells containing the edge e, whereas
the set E. = {e € E|e C Oc} collects all the mesh edges contained in the cell ¢,
and so on. For any geometric entity x, we denote |z| its Hausdorff measure of
appropriate dimension. In this paper, we assume mesh regularity in the sense
that

e Themesh M := {V,E,F, C} defines a cellular complex (see Christiansen [9]),
i.e. the boundary of any k-cell, 1 < k < d (recall d = 3), is composed of
a uniformly finite number of (k — 1)-cells in M.

e Faces and cells are star-shaped with respect to their barycenters.

e Let x, denote the coordinates of v € V in R%. Let ¢ and x. denote the
coordinates of the barycenters of f € F and ¢ € C, respectively, in R%.
Then, the simplicial sub-mesh composed of the tetrahedra [, ./, s, x.]
(where [@1, ..., zky1] is the convex hull of the set {x1,...,xr41}) for all
ceC,all feF,andall e € Ef with e = [x,,x,] (see Figure 1, left
panel) is shape-regular in the usual sense of Ciarlet.

For every cell ¢ € C, we introduce the edge-based diamond partition P,
which plays a central role in our analysis. We define B. = U{pec; € € E.}
where the diamond p. . is defined by

Pec = U [.’131,, Ly, L f, :I:C] with e = [.’131,, xv’] s
fEF.NF,

see Fig. 1, right panel. Note that B, is composed of #E. diamonds and that
each diamond p. . is composed of two tetrahedra, since #(F. NF.) = 2, with #



Figure 1: Left panel: tetrahedron [x,,z,,xf, z.]. Right panel: local diamond
Pe,c-

the cardinal operator. Owing to the star-shaped property of faces and cells, we
have ¢ = U{p; p € P.}. The skeleton of the global partition P = U{P.|c € C}
consists of the collection of all the triangular sub-faces defining the boundary
of each diamond p. .. There are two types of sub-faces: intra-cell sub-faces
attached to a cell ¢ € C and collected in the set Fo = {f = Ope,c N Operc| € #
e’ and e, e’ € E.} sothat f ¢ Oc, (see Figure 2, left panel) and inter-cell sub-faces
attached to an interior face f € F° and collected in the set §5 = {f = Opcc N
Opee |c# ¢ and ¢, € Cy, e € Ef} (see Figure 2, right panel). All the sub-

Figure 2: In blue. Left: intra-cell sub-face f = Opc. N Operc € Fe. Right:
inter-cell sub-face f = Ope,c N OPe,cr € Fy-

faces are oriented by a fixed unit normal vector n;. For all f = 0p. .NOPer c € Fe
with e, e’ € E. and m; pointing from p . to pes ., we define the jump and the
average, respectively, as

1
[v] = vp... —vpp,,, and fo} =7 (’U\pe,c + v|p€/,c) :

Similarly, for all § = 0pe,c N Ope,r € 5 with ¢, ¢’ € Cy, e € Ef, and n; pointing
from pe . to Pe.r, we define

(’Ulpe‘c + /U‘pe,c/) :

N |

[v] ==, . —v)p, ., and {v}:=



We denote ||, the Euclidean and the Frobenius norm on R? and R¥*4
respectively. For every set w C Q, we denote L?(w) with ¢ € [1, 00] the Banach
space of R? or R**“-valued functions v such that [v] () = | [v]e | Le@w) < oo.

Lemma 2.1 (Mutliplicative trace inequality). There exists Cy > 0 such that
1-1 1 1
[olzagy < Crllvl padyy (hc ol fa + vlévmoa)) : )

for all ¢ € C with h, the diameter of ¢, allp € B, all f € Ap and allv € WH(p)
with g € [1, 00].

Proof. Observing that p C B, is composed of two tetrahedra connected by a
sub-face f € §., this result follows proceeding as in Ern & Guermond [15]. O

3 Discrete Scheme

3.1 Degrees of freedom

We consider an approximation of the continuous problem (1) with scalar dofs
attached to edges. We denote & = R#F the linear space collecting these dofs
and we denote v, the entry of v € £ attached to the edge e € E. We additionally
introduce the linear space &, collecting the dofs attached to the subset E. for
all ¢ € C. We denote v a generic element of £ or &,..

3.2 Reconstruction map

The global reconstruction map Lg is defined locally, so that Le(v). = Le (v),
for all ¢ € C. The local reconstruction map Lg, : & — Po(B.;RY), where
Po(Be; RY) is composed of piece-wise constant R%-valued polynomials over the
diamond partition B, is such that

Le.(W)(@) = ) Veleo(x), WEE, Vaec, (5)
ecE.

where for all e € E,, the basis function £, . € Po(P; R?), is defined by

;<e'>®e'> fle)  file)

+
d|p6',c| |C| d|pe,c|

Ee,c|pelyc = (Id - e,es ve' e E, (6)

and d. . is the Kronecker symbol equal to 1 if e = ¢’ and 0 otherwise. Moreover,
for all e € E, t. is a fixed unit tangent vector to e, such that e = [e[t., and
f(e) = ff.(e) nf () Where the dual face f(e) is composed of two elementary
triangles

fc(e) = U [3367£Bf,33c],

fEF.NF.

see Fig. 3, and where nj () is the unit normal vector to fc(e) satisfying N o) te >
0. The basis functions £. . were first considered in the context of the Discrete
Geometric Approach by Codecasa et al. [10] and were recently revisited by
Bonelle & Ern in [5, 6] to build Hodge operators within the CDO framework.
They satisfy the following properties:



Figure 3: Local dual face f,(e).

(£1) [Unisolvence] For all e, ¢’ € E, £ .(x)-€ = d. . for all & € per ..

(€2) [Primal Po-consistency] > cp £ec(z)®e =1d for all z € c.
(£3) [Dual Py-consistency] For all e € E,, [ £c.(x) = f.(e).

The property (£1) relies on the geometric relation |pe | = 5 f.(e)-e whereas
o

the property (£2) results from the geometric relation ) ., e®f.(e) = > cp, f.(e)®e =
|e|1d.

3.3 Discrete scheme
The discrete scheme is formulated using the global bilinear form Ag ,, : Ex& —
R such that

Aﬁ’u(U,V) = Aﬁ,u(uvv) +A8(ﬂ~n)*(uvv)7 (7)
where Ag ,, approximates (la) and AO( Bon)- weakly enforces the boundary con-

dition (1b). The bilinear form Ag, : ExE — R is composed of three bilinear
forms also defined on £xE&:

A[—]_]H(U,V) = gﬁ»#(u’v)—i_nﬂ(u’v) +Sﬂ(uav>' (8)
The bilinear form gg ,, is assembled cell-wise as
g,@,M(U7V) = Z gﬁ’ﬂ;C(uﬂ v), 9)
ceC

and each local bilinear form gg, ;.. results from the standard Galerkin approxi-
mation of (1a) in ¢ using the reconstruction map Lg,_:

8o pe(U,v) = Y /(V(ﬁLsC(U))+(VxLEC(U))Xﬂ)-LSC(VH/uLsc(U)-l-sc(V)-
peP. P ¢ (10)

Using the identities (2) and since Lg_(v) is piece-wise constant, we can reformu-
late this expression as

g,@,u;C(u7V) = /(VﬁT + N) Le (u) - Le, (V) (11)



Because Lg,_(v) jumps across inter-cell and intra-cell sub-faces, we also consider

the bilinear form ng such that
v) = Z nﬁ;C(uvv) + Z nﬁ;f(uvv)v
ceC feFe
where the local bilinear forms ng, with z = f or x = c are defined as
naa(u) == 3 [Bn)lte{Lem),
feg. /T
and the stabilization bilinear form sg such that
v) = Zsﬁ;tﬁ(uvv) + Z Sﬁ;f(u7v)a
ceC feFe
where the local bilinear forms sg,, with = f or = c are defined as

saia(uv) = 3 [18mlILe(w)HLe(v)]

jeg.

(12)

(15)

The bilinear forms ng and sg are devised similarly to the discontinuous Galerkin
method; ng corresponds to centered fluxes and ng+sg to upwind fluxes. Finally,
the Dirichlet boundary condition is weakly enforced by means of the bilinear

form A2, : € x £ = R (with o = (8-n)~) such that
v) = Z AL p(uv
feFo

The local bilinear form A?, f is defined as

0, () = /f ale, (W)-Le, (v,

with ¢y is the unique cell containing the boundary face f.
The discrete scheme consists in finding u € £ such that

Ag,(u,v) =X(s,up;v), We¢,
with the right-hand side form X(s,up;-) : £ — R such that

E(s,up;v Z/csLs Z/,@n ) up-Le, (V).

ceC fero

4 Stability and error analysis

4.1 Properties of the reconstruction map
Proposition 4.1 (Stability). There exists Cy > 0 such that
IVllg.c < Ite.(V)]La(e) < Cyllvllg.c,

forallce C, allve&,., all g € [1,00) and where

1

- (Z pecl, e|q>

lIv

(16)

(17)



Remark 4.2 (Alternative definition). In lieu of (20), we could also consider the
simpler discrete LY-norm given by [Iv||2, = h&™93" g [Ve|?. Owing to mesh
regularity, this definition is equivalent to (20) up to a uniform constant with
respect to the mesh-size. We prefer to use (20) since it simplifies the proof of
Proposition 4.1.

We introduce the reduction map Rg : L*(Q) — & such that

Re(v)le := |]J1@| </pc v-e) , Veek, (21)

where p. = U{pc¢; ¢ € C.} is the diamond volume surrounding the edge e and
¢ is the local diamond patch é = U{p.; e € E.} surrounding the cell ¢; notice
that ¢ C ¢. We also define the local reduction map Re, : L'(¢) — &, from
definition (21) for all e € E..

Remark 4.3 (De Rham’s map). Requiring more reqularity, the usual de Rham’s
reduction map defined by Re(v)]e = |e|™! [ v-e for every e € E can be used as

well, provided that v € H'T(Q) [15] or v € {w € H>¢(Q), Vxw € L*T(Q)}
[2] with € > 0.

For each cell ¢ € C, we denote Z¢, the local interpolation operator obtained
by composing the local reconstruction map with the local reduction map, i.e.
Ze. = Le, oRe_, so that Zg, : L'(¢) — Po(Pe; RY).

Proposition 4.4 (Consistency). For all ¢ € C and all U € Py(¢;R?) (so that
U is a constant function in ¢), we have g (U) = U|,.

Lemma 4.5 (Interpolation error). There exists Cy,, > 0 such that for all c € C
and all v € WH9(&) with q € [1,00),

|v —Ze.(V)[Loe) € Crar e [Vlyyr1as) (22)
and for all p € P,

1—1
“’U — Igc(’l])”Lq(ap) S CIW hc a |'U‘W1,q(é) . (23)

4.2 Well-posedness under (H1)
We consider the following stability norm on the edge dof space &:

— 2 2 %
= (7 B + M2+ ) (24)

where the reference time 7 > 0 is defined by assumption (H1) or (H2), |-||3

>cccll-l3.. is the discrete L?-norm with [|-[|2,c defined by (20), Hi = a‘ﬁ_n‘(-, )

is the semi-norm induced by the bilinear form A g.,,| defined by (17), and HSZ =
sa(-,-) is the semi-norm induced by the bilinear form sg defined by (14).

Proposition 4.6 (Coercivity). Assume that (H1) holds. Then,
1
LM < gy, Wee

Consequently, the discrete problem (18) is well-posed.



4.3 Well-posedness under (H2)

In this section, we address the stability of the bilinear form Ag ,, under the hy-
pothesis (H2). We consider the reference length hy' = 4CZLe7|p+VB" | L= (q),
where Cj results from Proposition 4.1 and L¢ = |C|Wl’°°(Q) is the Lipschitz con-

stant of (. If p = —VB", we conventionally set hg = +oco. Recalling that
A, denotes the smallest eigenvalue of the tensor o, over the domain 2, we
assume that

14+297A >0 and h < hg(1+4+297)\), (25)

where 9 > 0 is a non-dimensional constant that linearly depends on |(]ze(q) +
CyCyL¢ max (|, |Blz><(yT). By convention, the second condition in (25) is
void if u = —V3"

Proposition 4.7 (Inf-sup stability). Assume that (H2) and (25) hold. Then,
there exists o > 0 such that

oVl < sup  Agu(v,w), WeE.
wee [lwli=1

Consequently, the discrete problem (18) is well-posed.

In the proof of Proposition 4.7, the idea is to introduce a discrete test func-
tion (v € & defined as (Cv)e = ((xe)ve for all v € € and for all e € E. The
key argument to obtain the well-posedness of the discrete problem (18) under
hypothesis (H2) is then to bound the commutator § defined as

0(v)|c = Le.(Cv) —(CLe (v), We&, VeeC. (26)
Lemma 4.8 (Bounds on d). For all ¢ € C, we have
100 L2(e) < 2CiLehellvlize, Vv € E. (27a)

and for all f € F,

160l 52(s) < 205 CiLehé Mlae, W € Eeo (27h)

Table 1 recapitulates the different situations where the discrete problem (18)
is well-posed.

A, >0 —ﬁ <A <0
(H1) (H2)
p=-Vp' p#-Vp'
heRso| heRyg h € (0,ho (1+297N\,))

Table 1: Stability of the discrete problem (18) with respect to A, and the mesh-
size h.

10



4.4 Bound on consistency error and a priori error estimate

In this section, we derive an a priori error estimate by bounding the consistency
error
E(u)= sup [Agu(Re(u),v) —X(s,up;v)|.
vee, fIivli=1
In what follows, the notation A < B stands for A < CB where C is a positive
constant uniform with respect to the mesh size and the model parameters.

Lemma 4.9 (Bound on consistency error). Assume that the exact solution
satisfies w € W9(Q) with q € [1,2]. Then, the following holds:

1

a, L(g—2 !

E(u) < (Zum it — (VB R fu zgc<u>||%q(c)>
ceC

(d—1)

4 -2
[0 Y 1Bl ke = P = Te ()] o

ceCpeP.

We can now state the main result of this paper which follows from Lem-
mata 4.5 and 4.9.

Theorem 4.10 (A priori estimate). Assume that the assumptions stated in
Table 1 hold. Assume that the exact solution of (1) satisfies w € WH9(Q) with

q € <%,2}. Then, we have

T q o, B2a-35) | g ‘
o =Re(@I 5 { 2IV8+ 4"~ (V- 74 he [l oo
ce

q

£ L (g-24)
{22 2Bl he™ T uliyag

ceCpeP,.

For d = 3, it follows that |Ju — Re(u)| = O (h%%) for all g € (3,2].

5 Numerical results

We investigate numerically the edge-based scheme (18) on four sequences of
three-dimensional polyhedral meshes. Each mesh is obtained as a uniform re-
finement of an initial mesh. Meshes from the first sequence, denoted H, are
composed of hexahedra, those from the second one, denoted PrT, are composed
of prisms with a triangular basis, those from the third one, denoted PrG, are
composed of prisms with a hexagonal basis, and those of the last one, denoted
CB, are composed of hexahedra with non-matching interfaces; see Figure 4. The
domain is the unit cube Q := |0, 1]‘3. The exact solution corresponds to a
Taylor—Green velocity field, the advective vector field 3 is affine (see Figure 5,
left panel) and the reaction tensor w is diagonal and constant:

sin(mz) cos(my/2) cos(mz/2) 1 (x —2y)/2 1
u = [ cos(mx/2)sin(wy) cos(rz/2) |, B = B (y—2z)/2]|, wp= ild'
cos(mx/2) cos(my/2) sin(rz) -z

11
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Figure 4: Examples of meshes from the four sequences. From left to right: hex-
ahedral mesh (H), prismatic mesh with triangular basis (PrT), prismatic mesh
with hexagonal basis (PrG), and Checkerboard mesh with non-matching inter-

faces (CB).

Note that V-3 = 0 and that the eigenvalues of the tensor o, are {0, %, %}, SO

that the discrete scheme (18) is well-posed owing to Proposition 4.7 if the mesh

size is small enough.
We perform a convergence study by computing the relative discrete L*-error

attached to edge dofs, denoted Erg(u), and defined by

i Rew)ls
Bre(w) = TRetl,

with the norm |||z on every cell of the mesh by (20). The convergence rates,

/ 100 —— S
ic)
W
S
© &)
047 1071 F 1
0.2 - i
q 1 vl vl vl il 4
08 06 - . 102 103 10* 10° 108
: 0.4 2
v 0. 00 T #E

Figure 5: Left panel: inflow boundary 92~ in blue and some streamlines of the
vector field 8. Right panel: Discrete errors on H (—8—), PrT (——), PxG (—<—),
and CB (—e—) mesh sequences.

shown in the right panel of Figure 5, lie between % and 1 for the PrT and PrG
mesh sequences and are closer to 1 for the H and CB mesh sequences. Note
that the considered meshes being quasi-uniform, we have h ~ (#E)~/3; the
reference slopes indicated in Figure 5 are based on this scaling, i.e., are with
respect to h. Table 6 provides additional information on the computational costs
by reporting the size of the linear system (#E), the mean stencil St, the values
of the discrete error Erg(u), and the ratios #E/#V and #E/#C, indicating
that the present scheme may involve less dofs than traditional Finite Volume
schemes placing R%valued unknowns at mesh vertices or at mesh cells. Note
that owing to the Euler—Poincaré characteristic formula (in dimension d = 3;

see e.g. [26, Chapter 8]), % + % - % = ﬁ -1~1

12



#E St Erg(u) % % #E St Erg(u) % %
3.0e+02 21 3.9e-01 240 4.694.7e+03 38 2.4e-01 3.55 2.37
1.9e+03 25 1.8e-01 2.67 3.88.5e+04 46 1.5e-01 3.76 2.18
1.4e4+04 28 9.4e-02 2.82 3.39.1e+05 48 1.1e-01 3.84 2.12

1.0e+05 30 4.9e-02 291 3.12.7e4+05 49 9.1e-02 3.88 2.09

#E St Ere(u) Zy IE #E St Erg(u) Zy IE

7.2e+03 83 2.2e-01 2.34 5.9Hh5e+03 112 3.6e-01 2.46 5.33
4.9e+04 110 1.4e-01 241 b5.802e+04 144 1.8e-01 2.61 5.00
1.5e+05 120 1.1e-01 2.44 5.3%9e+04 162 9.8e-02 2.70 4.83
3.5e+05 125 8.5e-02 245 5.260e+05 180 5.1e-02 2.75 4.75

Figure 6: Mean stencil St and discrete error Erg (u) for the H (upper left panel),
PrT (upper right panel), PrG (lower left panel), and the CB (lower right panel)
mesh sequences.

Remark 5.1 (Stabilization parameter). As observed in Bonelle et al. [4], one
can reformulate the basis functions €. . as a consistent term plus a stabilization
term:

ee,c

Per,e ™

G § ACPEC O ACOA R
‘C| d |pe,6| ' ‘pe’,C‘ |C|

Consistent term Stabilization term

Numerical experiments show that it is possible to replace the parameter d~' by a
positive value that is reasonably close to d~'; however, in the stability analysis,
this modification impacts the property (1) which is used to obtain the lower
bound in Proposition 4.1.

6 Proofs

6.1 Properties of the reconstruction map

Proof of Proposition 4.1. Let c € C, let v € &, and let ¢ € [1,00).
(i) Lower bound. Owing to the definition (5) of Lg_, we have for all e € E,,
Lgc (V)\Pe,c = v.a, + b, with

e e
Qe = W and be = (»6676 — |e|2> Ve —+ Z Ve/fe/,c.

e’eE.\{e}
Recalling that [-|pe) = ||-[e2] e, we infer that
q
HLfc (V)”qu(c) = Z |Veae + be|gz La .
oCE, (Pe.c)

Using the Property (£1), we observe that a.-be = 0 on p. , so that |veae + be,. >
[Ve@e|,2, whence

e, %0, >

ecE.

q
— q q
|Veae|42 La(pe,c) B eg |Ve‘ ”a'e HLq(pE,c)'

13



Hence, the expected lower bound follows from [a.[}, (o) =
(i) Upper bound. The discrete Holder inequality yields

”LSC(V)”Lq(C) #E q ! Z|Ve|q”£

ecE.

|CH|£e c

Loo(c), we have er,c"qu(c) < Cj(#E )= qlpecl it

le|a
ER%
— (#E) ((m ) |e|||ee,c||Lm<c)),

that is uniformly bounded owing to mesh regularity, yielding the expected upper
bound. Specifically, a straightforward calculation shows that

7 3
@l 1 |
e |e| cos?(ter, M7 (1))

Since | e . Lq(c)
the constant

[fe(e)] (]
¢ < d
ool = T g w0 [
leading to
lel|f(e)] el 1 ’
Ee cl|L*°(c S 0 ) 1 N Y7
lell€e,cll () ( ] max dlpe.c| e,egﬁl};#e + COSQ(tG’?nfC(e/))

O

Proof of Proposition 4.4. Let ¢ € C and let ¢/ € E.. The consistency property
relies on the property (£2). Indeed, given U € Py(¢;R?), we infer that, for all
T € Pelc,

LgCRg ZRS |e ec ) Z(Ue <Z£ec 6>U=U

ecE. ecE, eckE
O

Proof of Lemma 4.5. Let ¢ € C and let v € Wh9(¢&) with ¢ € [1,00). Owing to
the triangle inequality and the Py-consistency of the reconstruction map from
Proposition 4.4, we infer that

lv—Ze, (v)|Lae) < v —velpae) + |1 Ze. (v —ve)|La(e)

with v = [¢[~! [, v. In addition, we observe that, for all w € L9(¢),

_ N el | 1 Pecl,,
= 32 T pa e = 2 el = 3 prolte,

ecE. ecE.
where we have used that [pe.c| < |pe| to infer the last inequality. Owing to
the Holder inequality, it then follows that [w]], lw|, “(p. )||1HqL 7 (pe) with

5_1_ 7= = 1. Since H1”

IR, (w)

p)—|

q—1
L (pe) = |pe|?!, we infer that

IRe, (w)12,. < %,

14



Using this estimate and the upper bound from Proposition 4.1, we obtain
|Ze. (v = ve)|La(e) < CyllRe. (v = ve)llg.c < Cilv —ve|La(e),

so that |v — Zg, (v)|pae) < (14 Cy)|v —ve|pae). Hence, |v — Ze, (v)|pa) <
(1 + Cﬁ)(bé:q hc |U|W1"7(é) Wlth

|w — we|pae
pog= sup — KO
wewla(e) e |[Wlyiae

Finally, we observe that the diamond ¢ can be decomposed as
¢= U Pe = U U Pe,c)
ecE. ecE. ceC.

where p. . consists of two tetrahedra, so that ¢ is composed of 2Z€€EC #C,
tetrahedra connected through elements of §. and §¢ with f € F.. Then, pro-
ceeding as Ern & Guermond in [15, Lemma 5.7], we infer that the quantity ¢; ,
is uniformly bounded for all ¢ € C and all ¢ € [1,00). O

6.2 Well-posedness under (H1)

Proof of Proposition 4.6. Let ¢ € C and consider v,w € &.. The definition of
the bilinear form gg ,,.c together with the definition of the tensor o3, yield

8.uic(V, W) +88,uic(W, v) = /LEC( v)-o8,Le (W Z /V (BLe.(v)-Le (w)).
¢ peB.
(28)
Choosing w = v in this relation leads to

= V-(B|Le, (V)|72) B-ns)[Le(v)]-{Le(v) Bn.)|Le, (V)|7,
PO AL "3 3 Jpnae

with n, the unit outward normal vector to ¢, so that recalling the definition (13)
of ng,., we infer that

D (88, V) + ngie(v,v)) = Z/'—s V)-opule (v ZZ/ﬁnclLs V)l

ceC CEC CEC fEF.

The above rightmost term is reformulated as

fzz/m»ngzf u%w+zz/mmgmwm

ceC feF. feR? feF° feSy
72/ lLe, W+ 3 ngy(vv)
feF? fere

so that, using the definition (12) of ng, we arrive at

g8,u(v,v) +ng(v,v) Z/Lg ‘op,uLe. (v Z / n)lLe, ( V)7

ceC feF8

15



Recalling the definition (7) of Ag,, and combining the above relation with the
bilinear forms sg and Ag.,,)-, defined by (14) and (16) respectively, we obtain

1 1 1
bouv) = 53 [Le )00 ule )+ JA (i) + goalver). (20)
cec”¢

The expected result is inferred from (H1) . O

6.3 Well-posedness under (H2)
Proof of Lemma 4.8. Let v e £ and let ¢ € C.

(i) Proof of (27a). Let (. be the mean-value of ¢ over ¢ given by (. =
le|= [ ¢. Since Lg, (Cev) = CeLe, (v) because (. is constant, we have 8(v)). = ((—
Ce)le, (v) — Le ((C— ¢e)v), so that the triangle inequality, the Hélder inequality
and the upper bound in Proposition 4.1 yield

160)z2(e) < 1C = Cell ooy Ile. (V) L2y + ILe. (T = CeV) I L2 (e
< Gyl€ = Cellzoe(ollvllz,e + Cill (€= Ce)v
< 2G41€ — Celnoe (o) IVIl2,e-

Observing that [ — (| r=(c) < Lche, the expected result follows.

2,

(ii). Proof of (27b). Let p € B, and let f C dp. Owing to the multiplicative
trace inequality (4), we have

16 1z2) < CrldM 72y (he F180) 2y + 1651y, ) -

Observe that [6(v)|g1,) = [IV(V)[p2|r2(p) where |V6(v)|§2 = Z?,j |8j6(v)l_|2
in the Cartesian basis of R? and where 9; is the weak derivative in the direc-
tion 4. Since Lg,(v) is piece-wise constant on ‘B, it then follows that |V6(v)|§z =

d
Y ILe (V)i05¢ I = |Le (V)| 7 V¢l Asaresult, [8(v)] g < Lelle. (V)| z2p)-
Moreover, proceeding as in (7), we infer that |6(v)|z2(p) < 2Lc¢hellLe, (V) L2(p)-
Collecting these bounds, we infer that

1
602y < 2CrLehé |Le, (V)| L2 (p)-

Then, summing over §; and using the upper bound of Proposition 4.1 yield the
expected result. O

In what follows, we consider the non-dimensional number we = L¢ max(|Q|#, | 3] Lo (Q)T)-

Lemma 6.1 (Multiplicative stability). There exists Cc > 0 independent of the
mesh size and the model parameters such that

levll < Ce (Il L) +we) IV, W e&.

Proof. Let v € € and let us rewrite [|Cv]? as

vl =7 VB e + ) 5pe(Cv, Q) + Y Algg (Qv. V) + D sp Qv Tv)

ceC ceC feF? fEF°
=T +T+ T3+ T}
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We want to use the Lipschitz regularity of ¢ to bound separately these terms
by [[v]|>. We recall the notation ¢, = |¢|=" [ ¢ from the proof of Lemma 4.8.

(i) Bound on Ti. First, the triangle inequality implies that

c=T11+T2.

1
D DE e AV I W (SR AN

ceC ceC

Sine Gl < [l o, we nfr that Ty < 3 cc 7¢I < Kl I
The bound T 2 easily follows from the Lipschitz regularity of ¢ since Th o <

> ceC T’lL?hz VI3, < L%hf Iv||*. Combining these two bounds with h, < \Qﬁ
and the definition of w¢ yields

T <2 (wf + [T~ ) IMIP-

1) Bound on Ts. Since the bilinear form sg.. is symmetric and positive, we
3; Y
infer that

%T2 < Z SB;c (CCV, CCV) =+ Z SB;c ((C - CC)V, (C - CC)V) =To1+ Tz,

ceC ceC

and we have directly that To1 < 3 cclCl7(58,c(v:V) < I¢|70 (g lVI?. To
bound T 2, we use the multiplicative trace inequality (4) and that Lg, is piece-
wise constant to infer that

sc((C—Co)V, (C—Co)v) z:ﬂﬁmHk(@ Ve <2C2BlL~@) Y Y. hi'Ile (C—Cov)IFz )

fGSc fESe Pe‘ﬁcﬂ‘ﬁr

where B; = {p € P|f C Ip}. Observing that the boundary of each diamond
Pe,c is composed of 4 sub-faces in §., exchanging the sums yields

53:c((C=Co)v, (G=C)v) < 8CHIBlL=() Y he'ILe. (C—Co)ITap) = 8CHIBlL= (o M ILe, (C=CoV) T2 o).

pEP.

Owing to upper bound from Proposition 4.1, the Lipschitz regularity of ¢, and
the definition of w¢, we infer that

spic((C—Ce)V, (C=Co)v) < 8CTCE[Bl L= (ohe I(C—CW)l3 e < 8CTCEZT VIS .

Finally, collecting these two bounds leads to
Ty <2 (JCl3 e ) +8C2CF2) IV

(#4i) Bound on T3. We proceed as in the previous step (%i) to infer that
Ty <2 (¢~ o) + nr.0C2CEE) IVIP,

where np g = (maxcec #(F. NF?)) is the naximal number of boundary faces
that a mesh cell can have.

17



(iv) Bound on Ty. To bound this last term, we use a different decomposition,
namely

Ty = Z Sc2p:£(V,V) + Z Ap(v) =Ty + Ty o,
feFe feFe

with A (v) = sg,r(Qv, Cv)—=s¢2g. r (v, v). Observing that sc2g. r(v,v) < ||§H%Oo(f)53;f(v, v)
for all f € Fe, it follows that Ty, < HC||2LOQ(Q) IIvl?. To bound the second term
Ty 2, we recall the quantity d(v) defined by (26) and we obtain

2
87 = [ 18] (B +CILewil) = ClLewF )
Then, applying Young’s inequality and the trace inequality (27b) yields

As(v)| <2 /f B [5)]° + /f 1Bms| L)

<A42CrCLe)? 1Bl () D hellv]

ceCy

be F 1T (y58:5 (Vi V).

As a result, since #Cy = 2 for all f € F° and introducing w¢, we infer that
Tip < 3202CH2  IVMBHIC w ) Y 50 (v,¥) < (8202032 + ¢l ey ) VI,
fere

whence
Ty <2 (1607 CFeRLeh + I ey ) IMIP-

(v) Conclusion. The expected inequality then follows from the above four
bounds. O

Proof of Proposition 4.7. Let v € £ and define

S= sup Apg (v, w)
weerfor  lwll

Let us take w = (v+6v with 8 > 0 to be chosen below. We infer from Lemma 6.1
that
Ag (v, w) <S|wll <S (6 + Cc (I¢] Loy +we)) VI,

so that it remains to prove that Ag,(v,w) > |v||>. First, we split Ag, as
follows:

Aﬁwﬂ(\/?W) = AﬁyivﬁTJr%(v_ﬁ)Id(V,W) + H;LJrVﬁTf%(V-ﬁ)Id(VﬂW) = Tl + :ij7

where the bilinear form H,, is defined on £€x& by

Ha(v,w) =Y [ ale (v) - Le (W),

cecve

for all a € L>(2). Let us bound from below the two terms 77 and T5.

18



(i) Bound on Ti. We bound from below this term by considering the follow-
ing decomposition

T = A,B»—Vﬁ'lv+%(v~ﬂ)ld(v7w) = ACBa—V(Cﬁ)T-‘r%C(V-ﬁ)Id(Vv V)
+Ap,—vpr (v, Qv) — Agg —v(cpy (v, V)
+ H%(V'B)Id("’ v) — H%C(V-,@)Id(vvv)
+ 9A,37—V,3T+%(V‘,B)Id(v7 V) = Tl,l + T1,2 + T173 + T174.

Regarding T7 1, we use the relation (29) to infer that

1
=3 (Z Le. (V)0 ¢ -vicoy+icvprale (V) + Al (v,v) + 545(\&\/))
cecve

1
> 3 (2(:} ] Le. (V)0 g —vicay+icv-puale.(v) + Algp (Vs V) + SB(VaV)> )
ce

since ( > 1. Then, observing that OB, -V(CB) +1¢(V-B)Id = —3-V(Id and
using hypothesis (H2) together with the lower bound from Proposition (4.1),
we infer that 771 > 2|lv||?. The next step consists in bounding the perturbation
term T 2. To do so, we recall the identity (11) for gg .., and we observe that
g3,-vpre = 0 and geg _v(ep)ye = 0, so that Ti 2 solely consists of surfacic
terms:

T o= (ng(v7 Qv) — ngg(v,v)>+<sf}(v, Lv) — scg(v,v)>+<A?6_n), (v, Qv) = Alegin) - (v,v)) .

Now, introducing the function §(v) locally defined by (26) and recalling that
BeWh>(Q),¢>1,and ¢ € WH®(Q), , so that ({Le, (V)} = {¢Le. (V) }, we
observe that

112, ) — negn(viv) = 3 /f (Bn)[LeW)]- {6},

IS

S (V. OV) = Sepia(V,V) = ) /f|ﬂ'nf|[[|-£(v)ﬂ‘[[5(v)]]a

FE€ES
for all x € F° or z € C, and
Ay s (v, OV) = Aigpony- 1 (Vi V) = /f(ﬁ'n)_LS(V)ﬁ(V%

for all f € F?. Then, applying the Cauchy—Schwarz inequality to these three
terms yields

2

1
2
Tio <6 (VL +IvE)" (2218l D 160)32p)

ceC pPEP.

In addition, observing that o5 _ggry1(v.g1a = 0 and using the identity (29),
we have

1 2 2
AB,—Vﬁ"’—&-%(Vﬂ)Id(V,V) = 5 (|V|a + |V|s) )

19



so that combining this expression with the above estimate yields

2

1
2
Th2 <12 (ABﬁVBT L(v. B)Id v,V ) E ||/5'||L°°(c) E o (v ||L2(ap)
ceC peP.

Finally, we use the inequalities (27a)-(27b) together with the definition of w¢,
to infer that

3 1
Ti2 < Cowe (Ap vy wmmalvay)) (7 IVI3)?

where Cs > 0 depends exclusively on the numerical constants C; and Cy. Now,
we collect the bounds on T7 ; and T 2 and we apply Young’s inequality to obtain

I

1
Ag _vprii(v.pralv,w) > EMV + (0 — C3wi)Ag v +1wpalv,v) + Tis.

As a result, choosing 6 = C3w? yields

Ao v 3wpualvw) = 2V + s (30)
(i) Bound on T. First, we rewrite this term as:
Ty = 9Hp+VﬁL%(v.3)Id(V7V)
HH (iver—3(vp1a) (V2 V)
+Huivp 1 (v.pralv, Qv) — Hg(“Jrvgr,%(v.ﬁ)Id) (v,v) =Tp1 +To2 + T 3.
Concerning 75 1, we have

Toq =5 Z/Gﬁu'-s )Le.(v) = bZ:H'-s WLz
C

ceC ceC

where we have used hypothesis (H2) (recall that A\, < 0) and the upper bound
from Proposition 4.1. The second term T5 5 is treated similarly:

To = Z/CaﬁuLs )-Le,(v) >

cGC

@ IvI3-

Collecting these bounds yields
Ab 9
T, > Zolulf + To (31)

with ¥ = C2(0 + [¢ ]~ (a))-

(#1i) Bound on Ty + T5. Collecting the estimates (30) and (31), we obtain

T)\b

Ap v, w) > *III I + =797 VI3 + Tis + Tos.
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We observe that

T3+ Tos =Hywgralv, &) = Hicwpra(viv) + Hupopr -t (v.piaVs V) = He(uyvpr 1 (v.gna) (V- V)

— Husw (. ) ~ Heguoan () = 3 [ (4 987) Le. (v):8(4),

ceC

Applying successively the Holder inequality, the inequality (27a) and the upper

bound from Proposition 4.1, we infer that

IT15+ T3] < D Iut+VB" |pe (o ILe W) L2 (0 160) |20 < I+ VBT [ p () CF LhlIVI3.
ceC

As a result, we obtain

1 T)‘b h _
R e e

—1
with the reference length hy = (40ﬂ2 lpe + V,BT”LOO(Q)'TLC) . Hence, there
exists o’ > 0 such that Ag ,(v,w) > o'||v[|, as soon as A, and h satisfy (25). O

6.4 Bound on consistency error and a priori estimate

Proof of Lemma 4.9. Let y|. = (u —Z¢(u)), for all c € C. Note that y|5, €
L%(0p) for all p € P.. Let v € £. Owing to the definitions of Ag, and %, it
follows that ¥(s,up;v) — Ag (Re(u),v) =T + To + T3 + Ty, with

Tl_Z/ (VB+u" = (V-AId) Le,(V)y, Toi= > > Z/ )]y},

ceC Xe{F°,C} zeX §f€F.
= Y Y Y [t wd 7= Y Y [ ke, )y
Xe{F°,C} z€X f€Fa fEFT €39

Indeed, the first term T} is obtained using the definition (11) of gg .. together
with the following integration by part formula (28) and

> [(avw L Z/ BV 3 [(VB)Le v y+2/v (ByLe.(v)),

peP. P peEP. peB.

holding for all ¢ € C and all v € £. The terms T» and T3 result from the
rightmost term of the relation (28) and the fact that (8-n)[u]); = 0 for all
f € §z. Finally, the term T} is inferred observing that up = ujpq. It remains
to bound these four terms. First, let us consider 77. Let ¢ € [1,2] and denote
q' > 2 its conjugate number, i.e., 1 = 1/¢ + 1/¢’. From the Holder inequality,
we infer that

[wosu - oL, (v)-y] < Noolylzoo e, o o

(&

with Noo = |[VB + pu" — V-BId|g~(,). Then, using a local inverse inequality
(see [13, Lemma 1.138]), we infer that

/(Vﬁ +p' = (V-P)Id) Le, (V)'y‘ < Neohllyloge)ILe. W22 (o),

c
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é), so that the Holder inequality yields

1

<Z NS h6q|y|Lq(c)> <Z|L€ ||L2(c ) :

ceC ceC

Z/ VB + u' — (V-A)Id)Le, (v

ceC

Moreover, recalling that ¢" > 2 so that |-[, < |-|,2, and using the upper bound
in Proposition 4.1 leads to

1= | [ (98 +u' = (VA L

ceC

1
(ZNgohﬁﬂwuq(c)) Ivie.

ceC

To bound the two terms T» and T3, we consider a sub-face f € §, for all z € X
with X € {F°,C}. As above, the Holder inequality yields

] /f <ﬂ~nf>[[Ls<v>ﬂ~{{y}}] < 181y M Lo l18-m51* TLe (W]l 5

so that using a local inverse inequality, we obtain

| /f <ﬁ-nf>uLg<v>ﬂ-{{y}}\ < W18y My Mo I Bn0)|E [Le )] z20r)

with 8’ = (d — 1) (% - %) Hence, denoting 3 = > xcipo o) 2ovex Dojega
it follows from the triangle inequality, the Holder inequality and ¢’ > 2 that

q

3 /f(anf)[ug(v)ﬂ{y}} < [ STRl B MG | | ol 712 e W12z )
i f ¥

Next, owing to the definitions (12) and (14) of ng and sg respectively, the mesh
regularity and recalling the inequality |a & b7 < 2971(|al? + |b|?), we infer that

1

T3S (30 S AUBIE L Il | ssvw)t.
ceCpePB.

Nl

Finally, proceeding similarly, we also infer that

1
q

T S [ S0 Bl | Al (i),
feF?

N‘H

and the expected result follows from the above bounds. O
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