An edge-based scheme on polyhedral meshes for vector advection-reaction equations

Abstract : We devise and analyze an edge-based scheme on polyhedral meshes to approximate a vector advection-reaction problem. The well-posedness of the discrete problem is analyzed first under the classical positivity hypothesis of Friedrichs' systems that requires a lower bound on the lowest eigen-value of some tensor depending on the model parameters. We also prove stability when the lowest eigenvalue is null or even slightly negative if the mesh size is small enough. A priori error estimates are established for smooth solutions. Numerical results are presented on three-dimensional polyhedral meshes.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 〈10.1051/m2an/2016075〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01324545
Contributeur : Alexandre Ern <>
Soumis le : jeudi 23 novembre 2017 - 19:06:32
Dernière modification le : jeudi 26 avril 2018 - 10:28:54

Fichier

Paper_M2ANhal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pierre Cantin, Alexandre Ern. An edge-based scheme on polyhedral meshes for vector advection-reaction equations. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 〈10.1051/m2an/2016075〉. 〈hal-01324545v3〉

Partager

Métriques

Consultations de la notice

133

Téléchargements de fichiers

42