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Abstract

In this paper, we consider nonnegative solutions of spatially heterogeneous Fisher-
KPP type reaction-diffusion equations in the whole space. Under some assumptions
on the initial conditions, including in particular the case of compactly supported initial
conditions, we show that, above any arbitrary positive value, the solution is increasing
in time at large times. Furthermore, in the one-dimensional case, we prove that, if the
equation is homogeneous outside a bounded interval and the reaction is linear around
the zero state, then the solution is time-increasing in the whole line at large times. The
question of the monotonicity in time is motivated by a medical imagery issue.

1 Introduction and main results

In this paper, we consider the Cauchy problem for the following reaction-diffusion equation set
in the whole space RN

{
ut = div(A(x)∇u) + f(x, u), t > 0, x ∈ RN ,

u(0, x) = u0(x).
(1.1)

Here ut stands for ut(t, x) = ∂u
∂t
(t, x) and the divergence and the gradient act on the spatial

variables x. We are interested in the monotonicity in time for large times, when the initial
condition is localized and equation (1.1) is of the monostable Fisher-KPP type. More precisely,
the assumptions are listed below.

∗This work has been carried out in the framework of Archimède Labex (ANR-11-LABX-0033) and of the
A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government
programme managed by the French National Research Agency (ANR). The research leading to these results
has also received funding from the ANR within the project NONLOCAL ANR-14-CE25-0013 and from the
European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) /
ERC Grant Agreement n.321186 - ReaDi - Reaction-Diffusion Equations, Propagation and Modelling.
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Framework and main assumptions

The initial condition u0 is in L∞(RN) with 0 ≤ u0(x) ≤ 1 a.e. in RN and u0 is non-trivial, in
the sense that ‖u0‖L∞(RN ) > 0. We also assume that either there exists β > 0 such that

u0(x) = O(e−β|x|2) as |x| → +∞ (1.2)

(a particular important case is when u0 is compactly supported), or there exist 0 < γ ≤ δ
and λ > 0 such that

γ e−λ|x| ≤ u0(x) ≤ δ e−λ|x| for all |x| large enough, (1.3)

where | · | denotes the Euclidean norm in RN .
The diffusion term A is assumed to be a symmetric matrix field A = (Aij)1≤i,j≤N of

class C1,α(RN) for some 0 < α < 1 and uniformly definite positive: there exists a constant ν ≥ 1
such that

ν−1I ≤ A(x) ≤ νI for all x ∈ R
N , (1.4)

in the sense of symmetric matrices, where I ∈ SN(R) is the identity matrix. One also assumes
that A is locally asymptotically homogeneous at infinity, in the sense that

∀ 1 ≤ i, j ≤ N, |∇Aij(x)| → 0 as |x| → +∞. (1.5)

A particular example of a C1,α(RN) matrix field satisfying (1.5) is when Aij(x) converges to
a constant as |x| → +∞ for every 1 ≤ i, j ≤ N . An important subcase is that of a matrix
field A which is independent of x. Notice that, since A is of class C1,α(RN), the condition (1.5)
is equivalent to the fact that the local oscillations of the functions Aij converge to 0 at infinity,
that is, for every R > 0 and 1 ≤ i, j ≤ N ,

osc
B(x,R)

Aij := max
B(x,R)

Aij − min
B(x,R)

Aij → 0 as |x| → +∞,

where B(x,R) denotes the open Euclidean ball of center x and radius R. However, notice that
the matrix fields A(x) satisfying this property may not converge as |x| → +∞ in general, even
in dimension N = 1.

The reaction term f : RN × [0, 1] → R is a continuous function, of class C0,α in x uniformly
with respect to u ∈ [0, 1], and Lipschitz continuous in u, uniformly with respect to x ∈ RN .
Throughout the paper, one assumes that

f(x, 0) = f(x, 1) = 0 for every x ∈ R
N (1.6)

and that

u 7→ f(x, 1− u)

u
is non-increasing in (0, 1] (1.7)

for every x ∈ R
N . One also assumes that there exist µ > 0 and s0 ∈ (0, 1) such that

f(x, s) ≥ µ s for all (x, s) ∈ R
N × [0, s0]. (1.8)

These assumptions imply in particular that f is positive in RN × (0, 1) and even that
infx∈RN f(x, s) ≥ µs > 0 for every s ∈ (0, s0] and infx∈RN f(x, s) ≥ µs0(1 − s)/(1 − s0) > 0
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for every s ∈ [s0, 1). Furthermore, f is assumed to be of class C1 with respect to u
in RN × ([0, s0] ∪ [s1, 1]) for some s1 ∈ (0, 1) with fu = ∂f

∂u
bounded and uniformly continuous

in RN × ([0, s0] ∪ [s1, 1]), and of class C0,α with respect to x uniformly in s ∈ [0, s0] ∪ [s1, 1].
Lastly, one assumes that fu(·, 0) is locally asymptotically homogeneous at infinity, in the sense
that, for every R > 0,

osc
B(x,R)

fu(·, 0) → 0 as |x| → +∞. (1.9)

Notice that (1.9) holds if fu(·, 0) ∈ C1(RN) and |∇fu(x, 0)| → 0 as |x| → +∞ or
if fu(x, 0) converges to a constant as |x| → +∞ (in particular, if fu(·, 0) is constant).
An important class of examples of functions f satisfying the aforementioned hypotheses
is when f(x, u) = r(x) g(u), where g is of class C1, concave in [0, 1], positive in (0, 1)
with g(0) = g(1) = 0, and r is of class C0,α(RN), locally asymptotically homogeneous at
infinity and 0 < infRN r ≤ supRN r < +∞. The archetype is the homogeneous logistic Fisher-
KPP [9, 13] reaction f(x, u) = u(1−u) with r(x) = 1 and g(u) = u(1−u) as above. However,
for general functions f(x, u) satisfying the above assumptions, slow oscillations at infinity are
not excluded, even in dimension N = 1 (see [11] for the study of one-dimensional equations of
the type (1.1) with slow oscillations as x → ±∞).

From the parabolic regularity theory, the solution u of (1.1) is well-defined for all t > 0
and it is classical in (0,+∞)× RN with

0 < u(t, x) < 1 for all t > 0 and x ∈ R
N , (1.10)

by the strong parabolic maximum principle. From the assumptions made on f , even with-
out (1.9), it is shown in [5] that any stationary solution p(x) of (1.1) such that 0 ≤ p ≤ 1
in RN is either identically equal to 0 in RN or is bounded from below by a positive constant
in R

N . Since infx∈RN f(x, s) > 0 for every s ∈ (0, 1), it then follows immediately in the latter
case that p is identically equal to 1 in RN . Therefore, again from [5], the solution u of (1.1)
satisfies u(t, x) → 1 as t → +∞ locally uniformly in x ∈ RN .

Lastly, from [4], it is also known that there is c > 0 such that

min
|x|≤ct

u(t, x) → 1 as t → +∞. (1.11)

In other words, the state 1 invades the whole space as t → +∞ with at least a positive
spreading speed c > 0. But, the asymptotic spreading speed of u may not be unique, in the
sense that some oscillations of the spreading rates of the level sets of u between two different
positive speeds are possible in general even for compactly supported initial conditions, see [11].
This means that, in general, there is no speed c0 > 0 such that (1.11) holds for all c ∈ [0, c0)
and max|x|≥ct u(t, x) → 0 as t → +∞ for all c > c0. However, when the equation (1.1) is
homogeneous and the initial condition is compactly supported, there exists such a positive
spreading speed c0, see e.g. [2].

Main results

The main result of our paper is the following asymptotic time-monotonicity of the solutions
of (1.1).
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Theorem 1.1. Under the above assumptions (1.2) or (1.3), and (1.4)-(1.9), the solution u
of (1.1) satisfies

inf
x∈RN

ut(t, x) → 0 as t → +∞. (1.12)

Furthermore, for every 0 < ε < 1, there is a time Tε > 0 such that

∀ (t, x) ∈ [Tε,+∞)× R
N , u(t, x) ≥ ε =⇒ ut(t, x) > 0. (1.13)

Property (1.13) means the monotonicity in time at large times in the time-dependent sets
where u is bounded away from 0. On the other hand, in the sets where, say, t ≥ 1 and u is
close to 0, then ut is close to 0 too.1 Therefore, property (1.13) easily yields (1.12). Lastly,
since

u(t, x) → 0 as |x| → +∞ locally uniformly in t ∈ [0,+∞), (1.14)

as will be easily seen in the proof of Theorem 1.1 (more precisely, see the proof of Lemma 2.1 be-
low), property (1.13) implies that, for every T ≥ Tε, the set

{
(t, x) ∈ [Tε, T ]×RN , u(t, x) ≥ ε

}

is compact, whence
min

(t,x)∈[Tε,T ]×RN , u(t,x)≥ε
ut(t, x) > 0.

Let us now comment some earlier related references in the literature. In [16], the question
of the time-monotonicity at large times had been addressed for the solutions of some reaction-
diffusion equations in straight infinite cylinders with advection shear flows and with f being
independent of the unbounded variable. Other time-monotonicity results have been obtained
in [3] for time-global transition fronts of space-heterogeneous reaction-diffusion equations of
the type (1.1) connecting two stable limiting points. In [19], the time-monotonicity of the solu-
tions u of equations ut = ∆u+f(x, u) with reactions f of the ignition type or involving a weak
Allee effect has been established for large times in the set where 0 < ε ≤ u(t, x) ≤ 1 − ε < 1,
for any ε > 0 small enough. Lastly, we refer to [7] for some results on time-monotonicity for
small t and large x for the solutions of the homogeneous equation ut = ∆u + g(u) which are
initially compactly supported.

For the heterogeneous Fisher-KPP type equation (1.1), we conjecture that, under the as-
sumptions of Theorem 1.1, ut(t, ·) > 0 in RN for t large enough. This is still an open question.
However, we can answer positively under some additional assumptions on (1.1) in dimension 1.

Theorem 1.2. In addition to (1.2) or (1.3), (1.4) and (1.6)-(1.8), assume that N = 1,
that A′(x) = 0 for |x| large enough and that there are λ± > 0, θ ∈ (0, 1) and two functions

f± : [0, 1] → R such that f(x, u) = f±(u) for ±x large enough and f±(u) = λ±u for all

u ∈ [0, θ]. Then there is τ > 0 such that the solution u of (1.1) satisfies

ut(t, x) > 0 for all t ≥ τ and x ∈ R. (1.15)

1Indeed, if u(tn, xn) → 0 with (tn, xn) ∈ [1,+∞) × RN , then the functions vn(t, x) := u(t + tn, x + xn)
converge locally in C

1,2
t,x ((−1,+∞)× RN ), up to extraction of a subsequence, to a solution v of an equation of

the type vt = div(A∞(x)∇u) + f∞(x, u) for some diffusion and reaction coefficients A∞ and f∞ satisfying the
same type of assumptions as A and f . Furthermore, v(0, 0) = 0 and 0 ≤ v ≤ 1 in (−1,+∞)×R

N , whence v = 0
in (−1, 0]×RN from the strong maximum principle and then v = 0 in (−1,+∞)×RN from the uniqueness of
the solutions of the associated Cauchy problem. Finally, vt(0, 0) = 0 and ut(tn, xn) = (vn)t(0, 0) → vt(0, 0) = 0
as n → +∞.
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Let us now describe the main ideas of the proof of Theorems 1.1 and 1.2 and the outline of
the paper. In Section 2, the solution u is proved to be T -monotone in time (u(t+T, x) ≥ u(t, x))
at large time t and for all T large enough, by using the decay of u0 at infinity and some
Gaussian estimates for the fundamental solution associated with the linear equation obtained
from (1.1). This T -monotonicity is then improved in Section 3 by compactness arguments in
the region where u is away from 0 and from 1 and then in Section 4 by using in particular
the assumption (1.7) and by an application of the maximum principle in some sets which are
defined recursively. In Section 5, the monotonicity in time is proved in the region where u is
close to 1 by using Harnack inequality applied to the function 1− u and some passage to the
limit. In Section 6, the τ -monotonicity in time, for any τ > 0, is shown in the region where u is
close to 0, by using some Gaussian estimates as well as some new quantitative inequalities for
the fundamental solutions associated with families of linear equations similar to (1.1) (these
new estimates are proved in Section 8). Section 7 is devoted to the proof of properties (1.12)
and (1.13) of Theorem 1.1. Lastly, Section 9 is concerned with the proof of Theorem 1.2,
where explicit estimates of the Green function associated to some one-dimensional initial and
boundary value problem in half-lines are used.

Remark 1.3. Assume in this remark that, instead of the whole space RN , equation (1.1)
is set on a smooth bounded domain Ω ⊂ RN with Neumann type boundary conditions
µ(x) · ∇u(t, x) = 0 on ∂Ω, where µ is a continuous vector field such that µ(x) · ν(x) > 0
for all x ∈ ∂Ω and ν denotes the outward normal vector field on ∂Ω. Then it follows from
the arguments used in the proof of Theorem 1.1 (see especially Section 5) that, under assump-
tions (1.4) and (1.6)-(1.8), any solution u with a nontrivial initial condition 0 ≤, 6≡ u0 ≤, 6≡ 1
is increasing in time in the whole set Ω at large times.

Modeling and background

The question of the monotonicity of the solution for large times comes from a simple medical
imagery question. A natural way to model a tumor is to introduce a function φ(t, x) describing
the density of tumor cells. In some types of cancers, tumor cells migrate and multiply. They
migrate randomly and multiply according to logistic type laws. The simplest model of tumor
is therefore the classical KPP equation, as described by Murray [14]

φt − ν∆φ = λφ(1− φ),

with positive coefficients ν and λ. Treatments like radiotherapy or chemotherapy induce the
death of a part of tumor cells. A simple way to model a treatment at time t0 is to say that φ
is discontinuous at t0 and

φ(t+0 , x) = β φ(t−0 , x)

for all x and for some 0 < β < 1. Now the tumor size can be evaluated through medical
imagery devices which detect tumor cells only if their density is large enough, above some
threshold σ > 0. The measured size of the tumor is therefore

S(t) =

∫

RN

1φ(t,x)>σdx.

A natural question is to know whether S(t) can decrease just after a treatment, namely: can
the observed size of a tumor decrease whereas its actual total mass

∫
RN φ(t, x)dx increases ?
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Let us detail the link between this question and the positivity of φt. For this
let Ω(t) = {x ∈ RN ; φ(t, x) > σ}, and let x0 ∈ ∂Ω(t+0 ). We have

φt(t
+
0 , x0) = ν∆φ(t+0 , x0) + λφ(t+0 , x0)(1− φ(t+0 , x0))

= νβ∆φ(t−0 , x0) + λβφ(t−0 , x0)(1− βφ(t−0 , x0))

= βφt(t
−
0 , x0)− λβφ(t−0 , x0)(1− φ(t−0 , x0)) + λβφ(t−0 , x0)(1− βφ(t−0 , x0))

= βφt(t
−
0 , x0) + λβ(1− β)φ2(t−0 , x0).

The second term is positive, hence if φt(t
−
0 , x) > 0 everywhere on ∂Ω(t+0 ), this implies

that φt(t
+
0 , ·) is positive on ∂Ω(t+0 ), hence that S(t) is increasing just after t0. The medi-

cal imagery question therefore reduces to the study of the sign of φt.

2 T -monotonicity in time

Throughout this section and the next ones, one assumes that the conditions (1.4)-(1.9) are
fulfilled and u denotes a solution of (1.1) with initial condition u0 having Gaussian decay at
infinity as in (1.2) or satisfying (1.3). The first step in the proof of Theorem 1.1 consists in
showing that u is T -monotone in time.

Lemma 2.1. There is T > 0 such that

u(1 + t, x) ≥ u(1, x) for all t ≥ T and x ∈ R
N . (2.1)

Proof. First of all, as already emphasized, the strong maximum principle implies
that u(1, x) < 1 for all x ∈ RN . Remember also that u(1, ·) is actually of class C2(RN).
The strategy consists in bounding u(1, x) from above as |x| → +∞ by a function having the
same decay as u0, and then in showing that u(1 + t, ·) is above u(1, ·) in R

N for all t > 0 large
enough. To do so, we will use some lower and upper bounds for the heat kernel associated
with the linearized equation (2.3) below, as well as the spreading property (1.11). For the sake
of clarity, the two cases – Gaussian decay for u0 or (1.3)– will be treated separately.

Case 1: Gaussian decay. Assume here that u0 has Gaussian decay at infinity, that is, there
exists β > 0 such that u0(x) = O(e−β|x|2) as |x| → +∞. Since u0 ∈ L∞(RN ; [0, 1]), there is
then C > 0 such that

0 ≤ u0(x) ≤ C e−β|x|2 for a.e. x ∈ R
N .

Remember that the function f is globally Lipschitz continuous in its second variable, uniformly
with respect to x ∈ RN . Since f(·, 0) = 0 in RN , let then L > 0 be such that

f(x, s) ≤ Ls for all (x, s) ∈ R
N × [0, 1]. (2.2)

The maximum principle yields

0 ≤ u(1, x) ≤ eL v(1, x) for all x ∈ R
N ,

where v denotes the solution of the Cauchy problem
{

vt = div(A(x)∇v), t > 0, x ∈ RN ,

v(0, ·) = u0.
(2.3)
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Therefore,

0 ≤ u(1, x) ≤ C eL
∫

RN

p(1, x; y) e−β|y|2 dy for all x ∈ R
N ,

where p(t, x; y) denotes the heat kernel associated to the linear equation (2.3), that is, for
every y ∈ RN , p(·, ·; y) solves (2.3) with the Dirac distribution δy at y as initial condition. It
follows from the bounds of p in [15] (see also [1, 6, 8, 10] for related results) that there is a
real number K ≥ 1 such that

e−K|x−y|2/t

K tN/2
≤ p(t, x; y) ≤ K e−|x−y|2/(Kt)

tN/2
for all t > 0 and (x, y) ∈ R

N × R
N . (2.4)

In particular,

0 ≤ u(1, x) ≤ K C eL
∫

RN

e−|x−y|2/K−β|y|2dy

Let η ∈ (0, 1) be such that η < β K (1− η) and denote ρ = β − η/(K(1− η)) > 0. By writing

−|x− y|2
K

= −|x|2
K

+
2(x · y)

K
− |y|2

K
≤ −|x|2

K
+

(1− η)|x|2
K

+
|y|2

K(1− η)
− |y|2

K

= −η |x|2
K

+
η |y|2

K (1− η)
,

it follows that

0 ≤ u(1, x) ≤ K C eL e−η|x|2/K
∫

RN

e−ρ|y|2dy for all x ∈ R
N .

To sum up, since the continuous function u(1, ·) is less than 1 in RN by (1.10), one infers that
there exist some real numbers θ ∈ (0, 1) and ω > 0 such that

u(1, x) ≤ min
(
θ, ω e−η|x|2/K) for all x ∈ R

N . (2.5)

Let us now show that u(1+ t, ·) is above u(1, ·) in RN for all t > 0 large enough. Since f is
nonnegative in RN × [0, 1], one infers from the maximum principle that u(1+ t, x) ≥ v(1+ t, x)
for all t ≥ 0 and x ∈ RN , where v solves (2.3). Since u0 is nonnegative a.e. in RN and
non-trivial, there is R > 0 such that

σ :=

∫

B(0,R)

u0(y) dy > 0

and

u(1 + t, x) ≥
∫

RN

p(1 + t, x; y) u0(y) dy ≥ 1

K (1 + t)N/2

∫

B(0,R)

e−K|x−y|2/(1+t) u0(y) dy

for all t ≥ 0 and x ∈ RN , from (2.4). By writing

−K |x− y|2
1 + t

≥ −2K |x|2
1 + t

− 2K |y|2
1 + t

≥ −2K |x|2
1 + t

− 2KR2
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for all t ≥ 0, x ∈ R
N and y ∈ B(0, R), one gets that

u(1 + t, x) ≥ e−2KR2

e−2K|x|2/(1+t)

K (1 + t)N/2

∫

B(0,R)

u0(y) dy =
σ e−2KR2

e−2K|x|2/(1+t)

K (1 + t)N/2
(2.6)

for all t ≥ 0 and x ∈ RN .
We finally show that (2.1) holds for some T > 0 large enough. Assume not. Then there

exist a sequence (Tn)n∈N of positive real numbers and a sequence (xn)n∈N of points in RN such
that Tn → +∞ as n → +∞ and u(1 + Tn, xn) < u(1, xn) for all n ∈ N. Since u(1, ·) ≤ θ < 1
in RN and min|x|≤ct u(t, x) → 1 as t → +∞ with c > 0 by (1.11), it follows that |xn| ≥ c(1+Tn)
for n large enough, while u(1 + Tn, xn) < u(1, xn) and (2.5)-(2.6) yield

σ e−2KR2

e−2K|xn|2/(1+Tn)

K (1 + Tn)N/2
< ω e−η|xn|2/K for all n ∈ N,

whence

σK−1 ω−1 e−2KR2

(1 + Tn)
−N/2 < e−η|xn|2/K+2K|xn|2/(1+Tn) ≤ e−η|xn|2/(2K) ≤ e−ηc2(1+Tn)2/(2K)

for all n large enough. This clearly leads to a contradiction. As a consequence, there is T > 0
such that (2.1) holds.

Case 2: assumption (1.3). Since 0 ≤ u0 ≤ 1 a.e. in R
N , it follows from (1.3) that there

is δ′ > 0 such that u0(x) ≤ δ′ e−λ|x| for a.e. x ∈ RN . Therefore, with the same notations as in
case 1, one infers that

u(1, x) ≤ δ′ eL
∫

RN

p(1, x; y) e−λ|y| dy ≤ K δ′ eL
∫

RN

e−|x−y|2/K−λ|y| dy for all x ∈ R
N .

Hence,

u(1, x) ≤ K δ′ eL
∫

RN

e−|y|2/K−λ|x−y| dy ≤ K δ′ eL e−λ|x|
∫

RN

e−|y|2/K+λ|y| dy for all x ∈ R
N

and, since u(1, ·) is continuous and less than 1 in RN , there are then θ′ ∈ (0, 1) and ω′ > 0
such that

u(1, x) ≤ min
(
θ′, ω′ e−λ|x|) for all x ∈ R

N . (2.7)

On the other hand, assumption (1.3) yields the existence of R > 0 such that u0(x) ≥ γ e−λ|x|

for all |x| ≥ R. It follows then from (2.4) and the nonnegativity of f and u0 that, for all t ≥ 0
and x ∈ RN ,

u(1 + t, x) ≥
∫

RN

p(1 + t, x; y) u0(y) dy ≥ γ

K (1 + t)N/2

∫

RN\B(0,R)

e−K|x−y|2/(1+t)−λ|y| dy

=
γ

K

∫

{z∈RN ; |x−
√
1+t z|≥R}

e−K|z|2−λ|x−
√
1+t z| dz.

(2.8)
Assume now by contradiction that property (2.1) does not hold for any T > 0. Then there

exist a sequence (Tn)n∈N of positive real numbers and a sequence (xn)n∈N of points in RN such
that Tn → +∞ as n → +∞ and u(1 + Tn, xn) < u(1, xn) for all n ∈ N. Since u(1, ·) ≤ θ′ < 1
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in R
N and min|x|≤ct u(t, x) → 1 as t → +∞ with c > 0 by (1.11), it follows that |xn| ≥ c(1+Tn)

for n large enough, while u(1 + Tn, xn) < u(1, xn) and (2.7)-(2.8) yield

ω′ e−λ|xn| >
γ

K

∫

{z∈RN ; |xn−
√
1+Tn z|≥R}

e−K|z|2−λ|xn−
√
1+Tn z| dz for all n ∈ N.

Since lim infn→+∞ |xn|/Tn ≥ c > 0, one has B(xn/|xn|, 1/2) ⊂ {z ∈ RN ; |xn−
√
1 + Tn z| ≥ R}

for n large enough, whence

ω′ e−λ|xn| >
γ

K

∫

B(xn/|xn|,1/2)
e−K|z|2−λ|xn−

√
1+Tn z| dz ≥ γ e−9K/4

K

∫

B(0,1/2)

e−λ|xn−
√
1+Tn (xn/|xn|+y)| dy

for n large enough. For n large enough so that
√
1 + Tn ≤ |xn|, it follows that, for

all y ∈ B(0, 1/2),

∣∣∣xn −
√

1 + Tn

( xn

|xn|
+ y

)∣∣∣ ≤ |xn|
(
1−

√
1 + Tn

|xn|
)
+

√
1 + Tn

2
= |xn| −

√
1 + Tn

2
,

whence

ω′ e−λ|xn| >
γ e−9K/4 e−λ|xn|+λ

√
1+Tn/2

K

∫

B(0,1/2)

dy

for n large enough. This leads to a contradiction since Tn → +∞ as n → +∞.
As a conclusion, (2.1) holds when (1.3) is fulfilled and the proof of Lemma 2.1 is thereby

complete. �

From Lemma 2.1 and the maximum principle, the following corollary immediately holds.

Corollary 2.2. For every t ≥ 1, T ′ ≥ T and x ∈ RN , one has u(t+ T ′, x) ≥ u(t, x).

Remark 2.3. Notice from the proof of Lemma 2.1 that time 1 could be replaced by any
positive time t0 in the statement: namely, for any t0 > 0, there exists T0 > 0 such
that u(t0 + t, x) ≥ u(t0, x) for all t ≥ T0 and x ∈ RN . However, this property does not
hold in general with t0 = 0. Indeed, if 0 ≤ u0 ≤ 1 is continuous and maxRN u0 = 1, then u0

can never be bounded from above in RN by u(t, ·) for any t > 0, since u(t, x) < 1 for all t > 0
and x ∈ RN by the strong parabolic maximum principle.

Remark 2.4. The assumptions (1.2) or (1.3) were crucially used in the proof of Lemma 2.1,
in order to trap u(1, x) between two comparable functions as |x| → +∞, the lower one
giving rise to a solution which, after some time, is above the upper one at time 1. The
conclusion of Lemma 2.1 may not hold for more general initial conditions u0, for instance
if γ e−λ1|x| ≤ u0(x) ≤ δ e−λ2|x| for |x| large enough, with γ, δ > 0, 0 < λ2 < λ1,
lim inf |x|→+∞ u0(x) e

λ1|x| < +∞ and lim sup|x|→+∞ u0(x) e
λ2|x| > 0. For such initial condi-

tions, more complex dynamics may occur in general, even for homogeneous one-dimensional
equations, see e.g. [12, 18].
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3 Improved monotonicity when u(t, x) is away from 0

and 1

In this section, we improve the T -monotonicity result stated in Corollary 2.2, for the
points (t, x) such that 0 < a ≤ u(t, x) ≤ b < 1, where 0 < a ≤ b < 1 are given. To do
so, let us first define

τ∗ = inf
{
τ > 0; ∃ t0 ≥ 0, ∀ τ ′ ≥ τ, ∀ t ≥ t0, ∀ x ∈ R

N , u(t+ τ ′, x) ≥ u(t, x)
}
. (3.1)

It follows from Corollary 2.2 that 0 ≤ τ∗ ≤ T < +∞. Our goal is to show that τ∗ = 0 (this
goal will be achieved at the beginning of Section 7).

Lemma 3.1. Let a and b be any two real numbers such that 0 < a ≤ b < 1 and let τ be any

real number such that τ ≥ τ∗ and τ > 0. Then,

lim inf
t→+∞, a≤u(t,x)≤b

u(t+ τ, x)

u(t, x)
> 1,

that is, there exist t0 > 0 and δ > 0 such that, for all (t, x) ∈ [t0,+∞)×RN with a ≤ u(t, x) ≤ b,
there holds u(t+ τ, x) ≥ (1 + δ) u(t, x).

Proof. The proof shall use the definition of τ∗ and the positivity of τ together with the
spreading properties of solutions of equations obtained as finite or infinite spatial shifts of (1.1).
We argue by contradiction. So, assume that the conclusion of Lemma 3.1 does not hold. Then
there are two sequences (tn)n∈N and (δn)n∈N of positive real numbers and a sequence (xn)n∈N
of points in R

N such that δn → 0 as n → +∞, tn → +∞ as n → +∞ and

a ≤ u(tn, xn) ≤ b and u(tn + τ, xn) < (1 + δn) u(tn, xn) for all n ∈ N. (3.2)

Shift the origin at the points (tn, xn) and define

un(t, x) = u(t+ tn, x+ xn).

The functions un are classical solutions of

(un)t = div(A(x+ xn)∇un) + f(x+ xn, un), t > −tn, x ∈ R
N (3.3)

with 0 < un(t, x) < 1 for all (t, x) ∈ (−tn,+∞) × R
N . From Arzela-Ascoli theorem, up to

extraction of a subsequence, the functions RN × [0, 1] ∋ (x, s) 7→ f(x+ xn, s) converge locally
uniformly in RN × [0, 1] to a continuous function f∞ : RN × [0, 1] which actually shares with f
the following properties: f∞(·, 0) = f∞(·, 1) = 0, f∞(x, 1− u)/u is nonincreasing in u ∈ (0, 1],
and f∞ satisfies (1.8), whence infx∈RN f∞(x, s) > 0 for every s ∈ (0, 1)). Furthermore, up
to extraction of another subsequence, the matrix fields x 7→ A(x + xn) converge in C1

loc(R
N)

to a uniformly definite positive symmetric matrix field A∞.2 Lastly, from standard parabolic

2As a matter of fact, since u(tn, xn) ≤ b < 1 and tn → +∞, then |xn| → +∞ by (1.11), whence A∞ is a
constant matrix due to (1.5). However, the fact that A∞ is constant is not used in the proof of the present
lemma.
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estimates, the functions un converge locally uniformly in C1,2
t,x (R × R

N), up to extraction of
another subsequence, to a classical solution u∞ of

(u∞)t = div(A∞∇u∞) + f∞(x, u∞), t ∈ R, x ∈ R
N , (3.4)

such that 0 ≤ u∞(t, x) ≤ 1 for all (t, x) ∈ R× RN .
Now, for any ε > 0, it follows from τ ≥ τ∗ and from the definition of τ∗ in (3.1) that there

is T0 > 0 such that

u(t+ τ + ε, x) ≥ u(t, x) for all (t, x) ∈ [T0,+∞)× R
N

(actually, if τ > τ∗, then one can also take ε = 0). In particular, since tn → +∞ as n → +∞,
one infers that u∞(t+ τ +ε, x) ≥ u∞(t, x) for all (t, x) ∈ R×RN . Since ε > 0 can be arbitrary,
one gets that

u∞(t+ τ, x) ≥ u∞(t, x) for all (t, x) ∈ R× R
N .

On the other hand, the inequalities (3.2) and limn→+∞ δn = 0 imply that a ≤ u∞(0, 0) ≤ b
and u∞(τ, 0) ≤ u∞(0, 0), whence u∞(τ, 0) = u∞(0, 0). As a consequence, the bounded func-
tions u∞(· + τ, ·) and u∞(·, ·) are ordered in R × RN and are equal at (0, 0). It follows from
the strong maximum principle that

u∞(t+ τ, x) = u∞(t, x)

for all (t, x) ∈ (−∞, 0] × RN , and then for all (t, x) ∈ R × RN from the uniqueness of
the Cauchy problem associated with (3.4). Furthermore, 0 < a ≤ u∞(0, 0) ≤ b < 1
and 0 ≤ u∞ ≤ 1 in R × RN , whence 0 < u∞ < 1 in R × RN from the strong maximum
principle. Lastly, u∞(t, x) → 1 as t → +∞ locally uniformly in x ∈ RN , as recalled in Sec-
tion 1 for u and f , from the properties shared by f∞ with f . Thus, the limit N ∋ m → +∞ in
u∞(mτ, 0) = u∞(0, 0) ≤ b < 1 leads to a contradiction, since τ > 0 by assumption. The proof
of Lemma 3.1 is thereby complete. �

From Lemma 3.1 and the uniform continuity of u in, say, [1,+∞) × RN , the inequalities
stated in Lemma 3.1 hold uniformly for some time-shifts in a neighborhood of τ∗ if τ∗ is positive,
as the following corollary shows.

Corollary 3.2. Let a and b be any two real numbers such that 0 < a ≤ b < 1. If one assumes

that τ ∗ > 0, then there exist t0 > 0, δ > 0 and 0 < τ < τ∗ < τ such that, for all τ ∈ [τ , τ ] and
(t, x) ∈ [t0,+∞)× R

N with a ≤ u(t, x) ≤ b, then u(t+ τ, x) ≥ (1 + δ) u(t, x).

Proof. From Lemma 3.1 applied with τ = τ∗, there are t0 > 0 and δ > 0 such
that u(t + τ∗, x) ≥ (1 + 2δ) u(t, x) for all (t, x) ∈ [t0,+∞) × RN with a ≤ u(t, x) ≤ b.
Choose ε ∈ (0, 1) so that (1 − ε)(1 + 2δ) ≥ 1 + δ. Since u is uniformly continuous
in [t0,+∞) × RN from standard parabolic estimates, there exist some real numbers τ and τ
such that 0 < τ < τ∗ < τ and

|u(t+ τ, x)− u(t+ τ∗, x)| ≤ ε (1 + 2δ) a for all τ ∈ [τ , τ ] and for all (t, x) ∈ [t0,+∞)× R
N .

Fix now any τ ∈ [τ , τ ] and any (t, x) ∈ [t0,+∞) × R
N with a ≤ u(t, x) ≤ b. One

has u(t+ τ∗, x) ≥ (1 + 2δ) u(t, x) ≥ (1 + 2δ) a, whence

u(t+τ, x) ≥ u(t+τ∗, x)−ε (1+2δ) a ≥ (1−ε) u(t+τ∗, x) ≥ (1−ε) (1+2δ) u(t, x) ≥ (1+δ) u(t, x).

This is the desired result and the proof is thereby complete. �
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4 Improved monotonicity when u(t, x) is away from 0

In this section, by using especially the fact that f(x, 1− u)/u is nonincreasing with respect to
u ∈ (0, 1] for every x ∈ RN , we improve the τ -monotonicity of u (with τ > τ∗) in the region
where u(t, x) is close to 1 (we recall that 0 < u(t, x) < 1 for all (t, x) ∈ (0,+∞)×RN). Namely,
we will prove the following lemma.

Lemma 4.1. Let a and τ be any real numbers such that 0 < a < 1 and τ > τ∗. Then,

lim sup
t→+∞, u(t,x)≥a

1− u(t+ τ, x)

1− u(t, x)
< 1,

that is, there exist t0 > 0 and δ > 0 such that, for all (t, x) ∈ [t0,+∞)× RN with u(t, x) ≥ a,
there holds 1− u(t+ τ, x) ≤ (1− δ) (1− u(t, x)).

Proof. First of all, since τ > τ∗, it follows from the definition of τ∗ that there is T0 > 0 such
that

u(t+ τ, x) ≥ u(t, x) for all (t, x) ∈ [T0,+∞)× R
N . (4.1)

Notice that the strong maximum principle then yields u(t + τ, x) > u(t, x) in (T0,+∞)× RN

(otherwise, one would have u(t + τ, x) = u(t, x) in [T0, T1] × R
N with some T1 > T0,

whence u(t + τ, x) = u(t, x) in [T0,+∞) × RN and u(T0 + mτ, 0) = u(T0, 0) < 1 for all
m ∈ N, whereas u(t, 0) → 1 as t → +∞. Even if it means increasing T0, one can then assume
without loss of generality that

u(t+ τ, x) > u(t, x) for all (t, x) ∈ [T0,+∞)× R
N , u(T0, 0) ≥ a and T0 > τ.

Define now, for every k ∈ N = {0, 1, 2, · · · },

Ek =
{
x ∈ R

N ; ∃ t ∈ [T0 + kτ, T0 + (k + 1)τ ], u(t, x) ≥ a
}
.

The set E0 is not empty since u(T0, 0) ≥ a. As a consequence,

u(T0 + kτ, 0) ≥ u(T0 + (k − 1)τ, 0) ≥ · · · ≥ u(T0, 0) ≥ a,

whence 0 ∈ Ek for every k ∈ N. Thanks to (4.1), the same argument implies that Ek ⊂ Ek+1

for every k ∈ N. Furthermore, each set Ek is closed by continuity of u in [T0,+∞) × R
N .

Lastly, as done for the proof of (2.5) and (2.7) in Lemma 2.1, one easily infers that u(t, x) → 0
as |x| → +∞ locally uniformly in t > 0, whence each set Ek is bounded. Therefore, the sets Ek

are a non-decreasing sequence of non-empty compact subsets of RN .
We are going to apply the maximum principle to the functions 1−u(t+τ, x) and 1−u(t, x)

in the sets [T0 + kτ, T0 + (k + 1)τ ] × Ek by induction with respect to k, in order to improve
quantitatively the inequality 1− u(t+ τ, x) ≤ 1− u(t, x) in [T0 + kτ, T0 + (k + 1)τ ]×Ek.

To do so, we first claim that the function u is bounded from below by a positive constant
uniformly in the sets [T0 + kτ, T0 + (k + 1)τ ]× Ek, that is, there is a ∈ (0, a] such that

∀ k ∈ N, ∀ (t, x) ∈ [T0 + kτ, T0 + (k + 1)τ ]×Ek, u(t, x) ≥ a > 0. (4.2)

Indeed, otherwise, there exist a sequence (kn)n∈N of integers and, for each n ∈ N, a
time tn ∈ [T0 + knτ, T0 + (kn + 1)τ ] and a point xn ∈ Ekn , with u(tn, xn) → 0 as n → +∞.

12



For each n ∈ N, since xn ∈ Ekn , there is a time t′n ∈ [T0 + knτ, T0 + (kn + 1)τ ] such that
u(t′n, xn) ≥ a. Consider the functions

(t, x) 7→ un(t, x) = u(t+ tn, x+ xn),

which are defined in (−tn,+∞) × RN ⊃ (−T0,+∞) × RN and solve (3.3), together with
0 ≤ un ≤ 1. From Arzela-Ascoli theorem and standard parabolic estimates, up to extraction
of a subsequence, these functions un converge locally uniformly in C1,2

t,x ((−T0,+∞) × RN) to
a solution 0 ≤ u∞ ≤ 1 of an equation of the type (3.4) in (−T0,+∞) × RN (notice that the
sequences (tn)n∈N and (xn)n∈N may not be unbounded and the limiting equation satisfied by u∞
may just be a finite spatial shift of (1.1)). Anyway, un(0, 0) = u(tn, xn) → 0 as n → +∞,
whence u∞(0, 0) = 0. Therefore, u∞ = 0 in (−T0, 0]×RN from the strong maximum principle,
and u∞ = 0 in (−T0,+∞) × R

N from the uniqueness of the Cauchy problem associated
with (3.4). On the other hand, |t′n − tn| ≤ τ < T0 for every n ∈ N. Up to extraction
of another subsequence, one can assume that t′n − tn → t′∞ > −T0 as n → +∞. Since
un(t

′
n − tn, 0) = u(t′n, xn) ≥ a, one gets u∞(t′∞, 0) ≥ a > 0, which leads to a contradiction. As

a consequence, the claim (4.2) is proved.
The second claim is concerned with an upper bound of the values of u on the boundaries ∂Ek

of the sets Ek, on the time intervals [T0 + kτ, T0 + (k + 1)τ ]. Namely, we claim that there is a
real number b ∈ (0, 1) such that

∀ k ∈ N, ∀ (t, x) ∈ [T0 + kτ, T0 + (k + 1)τ ]× ∂Ek, u(t, x) ≤ b < 1. (4.3)

Assume not. Then, there exist a sequence (kn)n∈N of integers and, for each n ∈ N, a
time tn ∈ [T0+knτ, T0+(kn+1)τ ] and a point xn ∈ ∂Ekn , with u(tn, xn) → 1 as n → +∞. For
each n ∈ N, since xn ∈ ∂Ekn ⊂ Ekn and since u(·, xn) is continuous on [T0+knτ, T0+(kn+1)τ ],
the definition of Ekn yields

max
[T0+knτ,T0+(kn+1)τ ]

u(·, xn) ≥ a.

Furthermore, if min[T0+knτ,T0+(kn+1)τ ] u(·, xn) > a, then by uniform continuity of u in
[T0,+∞)×RN one would have min[T0+knτ,T0+(kn+1)τ ] u(·, x) > a for all x in a neighborhood of xn

and xn would then be an interior point of Ekn . Therefore, min[T0+knτ,T0+(kn+1)τ ] u(·, xn) ≤ a
and there is a time t′n ∈ [T0 + knτ, T0 + (kn + 1)τ ] such that

u(t′n, xn) = a.

Now, as in the previous paragraph, the functions (t, x) 7→ un(t, x) = u(t+ tn, x+xn) converge,
up to extraction of a subsequence, locally uniformly in C1,2

t,x ((−T0,+∞) × RN ) to a solution
0 ≤ u∞ ≤ 1 of an equation of the type (3.4) in (−T0,+∞) × R

N . One has u∞(0, 0) = 1,
whence u∞ = 1 in (−T0, 0] × RN and then in (−T0,+∞) × RN . On the other hand, up to
extraction of another subsequence, there holds limn→+∞(t′n − tn) = t′∞ ∈ [−τ, τ ] ⊂ (−T0,+∞)
and u∞(t′∞, 0) = a < 1. One has reached a contradiction, and the claim (4.3) follows.

Similarly, we claim that there is a real number b ∈ (0, 1) such that

∀ k ∈ N, ∀ x ∈ Ek+1\Ek, u(T0 + (k + 1)τ, x) ≤ b < 1. (4.4)

Otherwise, there exist a sequence (kn)n∈N of integers and, for each n ∈ N, a point
xn ∈ Ekn+1\Ekn, with u(T0 + (kn + 1)τ, xn) → 1 as n → +∞. For each n ∈ N, since

13



xn ∈ Ekn+1\Ekn, there holds

max
[T0+(kn+1)τ,T0+(kn+2)τ ]

u(·, xn) ≥ a and max
[T0+knτ,T0+(kn+1)τ ]

u(·, xn) < a,

whence there is a time tn ∈ [T0 + (kn + 1)τ, T0 + (kn + 2)τ ] such that u(tn, xn) = a. Up to
extraction of a subsequence, the functions

(t, x) 7→ un(t, x) = u(t+ T0 + (kn + 1)τ, x+ xn)

converge locally uniformly in C1,2
t,x ((−T0 − τ,+∞) × R

N) to a solution 0 ≤ u∞ ≤ 1 of an
equation of the type (3.4) in (−T0 − τ,+∞) × RN . One has u∞(0, 0) = 1, whence u∞ = 1
in (−T0 − τ, 0]×RN and then in (−T0 − τ,+∞)×RN . On the other hand, up to extraction of
another subsequence, there holds limn→+∞(tn−(T0+(kn+1)τ)) = t∞ ∈ [0, τ ] ⊂ (−T0−τ,+∞)
and u∞(t∞, 0) = a < 1. One has reached a contradiction, and the claim (4.4) is proved.

Putting together (4.2), (4.3) and (4.4), one gets that

{
∀ k ∈ N, ∀ (t, x) ∈ [T0 + kτ, T0 + (k + 1)τ ]× ∂Ek, 0 < a ≤ u(t, x) ≤ b < 1,

∀ k ∈ N, ∀ x ∈ Ek+1\Ek, 0 < a ≤ u(T0 + (k + 1)τ, x) ≤ b < 1.

It follows then from Lemma 3.1 applied once with (a, b, τ) and another time with (a, b, τ)
(notice that τ ≥ τ∗ and τ > 0 since here τ > τ∗) that there are k0 ∈ N and δ0 ∈ (0,+∞) such
that, for all k ≥ k0,

{
∀ (t, x) ∈ [T0 + kτ, T0 + (k + 1)τ ]× ∂Ek, u(t+ τ, x) ≥ (1 + δ0) u(t, x),

∀ x ∈ Ek+1\Ek, u(T0 + (k + 2)τ, x) ≥ (1 + δ0) u(T0 + (k + 1)τ, x).

Define
δ = δ0a > 0.

One infers that

∀ k ≥ k0, ∀ (t, x) ∈ [T0 + kτ, T0 + (k + 1)τ ]× ∂Ek,

1− u(t+ τ, x) ≤ 1− (1 + δ0) u(t, x) ≤ 1− u(t, x)− δ0a = 1− u(t, x)− δ

≤ (1− δ) (1− u(t, x)),

(4.5)

and, by arguing similarly with x ∈ Ek+1\Ek, that

∀ k ≥ k0, ∀ x ∈ Ek+1\Ek, 1− u(T0 + (k + 2)τ, x) ≤ (1− δ) (1− u(T0 + (k + 1)τ, x)). (4.6)

On the other hand, since
1 > u(t+ τ, x) > u(t, x) > 0

for all (t, x) ∈ [T0 + k0τ, T0 + (k0 + 1)τ ] × Ek0 and since both functions u(· + τ, ·) and u are
continuous on this compact set [T0+ k0τ, T0+(k0+1)τ ]×Ek0 , if follows that, even if it means
decreasing δ > 0,

∀ (t, x) ∈ [T0 + k0τ, T0 + (k0 + 1)τ ]× Ek0, 1− u(t+ τ, x) ≤ (1− δ) (1− u(t, x)). (4.7)
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Finally, we claim by induction on k that

∀ k ≥ k0, ∀ (t, x) ∈ [T0 + kτ, T0 + (k+ 1)τ ]×Ek, 1− u(t+ τ, x) ≤ (1− δ) (1− u(t, x)). (4.8)

First of all, the property is true at k = k0, by (4.7). Assume now that the property is satisfied
for some k ∈ N with k ≥ k0. In particular, by choosing t = T0 + (k + 1)τ , there holds

∀ x ∈ Ek, 1− u(t0 + (k + 2)τ, x) ≤ (1− δ) (1− u(t0 + (k + 1)τ, x)).

This last inequality also holds for all x ∈ Ek+1\Ek, by (4.6). Therefore,

∀ x ∈ Ek+1, 1− u(t0 + (k + 2)τ, x) ≤ (1− δ) (1− u(t0 + (k + 1)τ, x)). (4.9)

Furthermore, property (4.5) yields

∀ (t, x) ∈ [t0 + (k + 1)τ, t0 + (k + 2)τ ]× ∂Ek+1, 1− u(t+ τ, x) ≤ (1− δ) (1− u(t, x)). (4.10)

Consider the functions

v(t, x) = 1− u(t+ τ, x) and v(t, x) = (1− δ) (1− u(t, x))

in the compact set
Qk = [t0 + (k + 1)τ, t0 + (k + 2)τ ]×Ek+1.

The inequalities (4.9) and (4.10) mean that

v(t, x) ≤ v(t, x) for all (t, x) ∈ {t0 + (k + 1)τ}×Ek+1 ∪ [t0 + (k + 1)τ, t0 + (k + 2)τ ]×∂Ek+1,

namely v ≤ v on the parabolic boundary of Qk. Let us now check that v is a supersolution of
the equation satisfied by v. On the one hand, the function v satisfies 0 ≤ v ≤ 1 and obeys

vt = div(A(x)∇v) + g(x, v) in Qk,

where g is defined by g(x, s) = −f(x, 1− s) for all (x, s) ∈ RN × [0, 1]. On the other hand, the
function v satisfies 0 ≤ v ≤ 1 in Qk and

vt − div(A(x)∇v)− g(x, v) = −(1− δ) ut + (1− δ) div(A(x)∇u)− g(x, v)

= −(1− δ) f(x, u)− g(x, v)

= (1− δ) g(x, 1− u)− g(x, (1− δ) (1− u)).

But the function g(x, s)/s is nondecreasing with respect to s ∈ (0, 1], since by assumption the
function f(x, 1− s)/s is nonincreasing with respect to s ∈ (0, 1]. Hence,

g(x, (1− δ) (1− u(t, x))) ≤ (1− δ) g(x, 1− u(t, x)) in Qk

and
vt − div(A(x)∇v)− g(x, v) ≥ 0 in Qk.

The parabolic maximum principle then implies that v ≤ v in Qk. This means that prop-
erty (4.8) is satisfied with k + 1 and finally that it holds by induction for all k ≥ k0.

As a conclusion, set t0 = T0 + k0τ and consider any (t, x) ∈ [t0,+∞) × RN such that
u(t, x) ≥ a. Let k ∈ N, k ≥ k0 be such that T0 + kτ ≤ t ≤ T0 + (k + 1)τ . Thus, x ∈ Ek and
property (4.8) yields

1− u(t+ τ, x) ≤ (1− δ) (1− u(t, x)).

The proof of Lemma 4.1 is thereby complete. �
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5 Monotonicity in time when u(t, x) is close to 1

In this section, based on Lemma 4.1, we will show that u is actually increasing in time at large
time when it is close to 1.

Lemma 5.1. There exist b ∈ (0, 1) and T̃ > 0 such that, for all (t, x) ∈ [T̃ ,+∞) × RN

with u(t, x) ≥ b, there holds ut(t, x) > 0.

Proof. As in the proof of Lemma 4.1, denote v = 1 − u. The function v satisfies 0 < v < 1
in (0,+∞)× RN and

vt = div(A(x)∇v) + g(x, v), t > 0, x ∈ R
N

with g(x, s) = −f(x, 1− s). Furthermore, by choosing, say, τ = τ∗ + 1, it follows from defini-
tion (3.1) that there is t0 > 1 such that, for all (t, x) ∈ [t0,+∞)×R

N , 1 > u(t+ τ, x) ≥ u(t, x),
that is,

0 < v(t+ τ, x) ≤ v(t, x) in [t0,+∞)× R
N . (5.1)

From standard parabolic estimates and Harnack inequality, there are some positive constants
C1 and C2 such that

∀ (t, x) ∈ [t0,+∞)× R
N , |vt(t, x)|+ |∇v(t, x)| ≤ C1 max

[t−1,t]×B(x,1)
v ≤ C2 v(t+ τ, x).

Together with (5.1), it follows that the fields vt/v and ∇v/v are bounded in [t0,+∞) × R
N .

Define now

M = lim sup
t→+∞, v(t,x)→0

vt(t, x)

v(t, x)
. (5.2)

From the previous observations and the fact that v(t, x) = 1− u(t, x) → 0 as t → +∞ locally
uniformly in x ∈ RN , one infers that M is a real number. To complete the proof of Lemma 5.1,
it will actually be sufficient to show that M < 0.

To do so, owing to the definition ofM , pick a sequence of points (tn, xn)n∈N in [t0,+∞)×RN

such that

tn → +∞, v(tn, xn) → 0 and
vt(tn, xn)

v(tn, xn)
→ M as n → +∞.

Define

vn(t, x) =
v(t+ tn, x+ xn)

v(tn, xn)
> 0 in (−tn,+∞)× R

N .

Since the fields vt/v and ∇v/v are bounded in [t0,+∞)×RN , one infers that the functions vn
are bounded locally in R×RN , in the sense that, for any compact subset K of R×RN , there
is nK ∈ N such that vn is well defined in K for every n ≥ nK and supn≥nK

‖vn‖L∞(K) < +∞.
Furthermore, the functions vn obey

(vn)t(t, x) = div(A(x+ xn)∇vn(t, x)) +
g(x+ xn, v(tn, xn) vn(t, x))

v(tn, xn)
, t > −tn, x ∈ R

N . (5.3)

Remember now that f(·, 1) = 0 in RN , that the function (x, s) 7→ f(x, s) is Lipschitz continuous
with respect to s uniformly in x ∈ RN , of class C1 with respect to s in RN × [s1, 1] for
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some s1 ∈ (0, 1), and that fs is uniformly continuous in R
N × [s1, 1] and of class C0,α with

respect to x uniformly in s ∈ [s1, 1]. Therefore, the function g satisfies the same properties
in RN × [0, 1− s1]. In particular, the functions

(t, x) 7→ hn(t, x) :=
g(x+ xn, v(tn, xn) vn(t, x))

v(tn, xn)

are bounded locally in R × RN and ‖hn − gs(x + xn, 0) vn‖L∞(K) → 0 as n → +∞ for any
compact set K ⊂ R× RN , from the mean value theorem. From standard parabolic estimates
and Sobolev estimates, it follows that the functions vn are bounded locally in W 1,2,p

t,x (R×RN)
and are therefore bounded locally in C0,α(R×RN). It is then straightforward to check that the
functions hn are actually bounded locally in C0,α(R×R

N). Notice also that, up to extraction
of a subsequence, the functions gs(· + xn, 0) converge locally uniformly in RN to a function
a ∈ C0,α(RN) and that the matrix fields A(· + xn) converge locally uniformly in RN to a
uniformly definite positive symmetric matrix field A∞ ∈ C1,α(RN). As a consequence, again
by standard parabolic estimates, the functions vn converge, up to extraction of a subsequence,
locally uniformly in C1,2

t,x (R× R
N), to a nonnegative classical solution v∞ of

(v∞)t = div(A∞(x)∇v∞) + a(x) v∞, t ∈ R, x ∈ R
N . (5.4)

On the other hand, vn(0, 0) = 1, whence v∞(0, 0) = 1 and v∞ > 0 in R × RN from
the strong maximum principle. Hence, the functions (vn)t/vn and ∇vn/vn converge locally
uniformly in R× RN to (v∞)t/v∞ and ∇v∞/v∞. In particular,

(v∞)t(0, 0)

v∞(0, 0)
= (v∞)t(0, 0) = M.

Moreover, since the fields vt/t and ∇v/v are bounded in [t0,+∞) × RN together with
limn→+∞ tn = +∞ and limn→+∞ v(tn, xn) = 0, it follows that the fields (v∞)t/v∞ and ∇v∞/v∞
are bounded in R×RN and that v(t+ tn, x+xn) → 0 as n → +∞ locally uniformly in R×RN .
Hence, owing to the definition of M in (5.2), one infers that

(v∞)t(t, x)

v∞(t, x)
≤ M for all (t, x) ∈ R× R

N .

Denote z = (v∞)t/v∞. Since the coefficients of (5.4) do not depend on t, it follows from
standard parabolic estimates and the differentiation of (5.4) with respect to t that z is a
classical solution of

zt = div(A∞∇z) + 2
∇v∞
v∞

· A∞∇z (5.5)

in R × RN . Furthermore, z and ∇v∞/v∞ are bounded in R × RN and z ≤ M in R × RN

with z(0, 0) = M . The strong parabolic maximum principle then implies that z = M
in (−∞, 0] × RN , and hence in R × RN by uniqueness of the Cauchy problem associated
with (5.5). In other words, (v∞)t/v∞ = M in R × RN . In particular, since v∞(0, 0) = 1, one
gets that v∞(τ, 0) = eMτ (we recall that τ = τ∗ + 1).

Lastly, by Lemma 4.1 applied with τ = τ∗ + 1 and a = 1/2, there are T0 > 0 and δ > 0
such that

1− u(t+ τ, x) ≤ (1− δ) (1− u(t, x)) for all (t, x) ∈ [T0,+∞)× R
N with u(t, x) ≥ 1

2
.
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Thus, for any given (t, x) ∈ R× R
N , since t+ tn ≥ T0 and

u(t+ tn, x+ xn) = 1− v(t+ tn, x+ xn) ≥
1

2

for all n large enough, one infers that

1− u(t+ tn + τ, x+ xn) ≤ (1− δ) (1− u(t+ tn, x+ xn)),

whence vn(t+τ, x) ≤ (1−δ) vn(t, x) for all n large enough. Thus, v∞(t+τ, x) ≤ (1−δ) v∞(t, x)
for all (t, x) ∈ R × RN . Consequently, eMτ = v∞(τ, 0) ≤ (1 − δ)v∞(0, 0) = 1 − δ < 1 and
M < 0.

As a conclusion, owing to the definition of M in (5.2) and since v = 1 − u, the conclusion
of Lemma 5.1 follows. �

6 τ-monotonicity in time when u(t, x) is close to 0

In this section, for any arbitrary τ > 0, we show the τ -monotonicity in time at large time in the
region where u(t, x) is close to 0. We shall use in particular the assumptions (1.5) and (1.9) on
asymptotic homogeneity of the coefficients A and fu(·, 0). The key step will be the following
proposition, which is of independent interest.

Proposition 6.1. Let ν and ν be two fixed positive real numbers such that 0 < ν ≤ ν and

let σ ∈ (0, 1) be fixed. Then, there exist τ > 0 and η > 0 such that, for every C1(RN)
symmetric matrix field a = (aij)1≤i,j≤N : RN → SN (R) with νI ≤ a ≤ νI and |∇a| ≤ η in RN

(where |∇a(x)| = max1≤i,j≤N |∇aij(x)|), the fundamental solution p(t, x; y) of

{
pt(t, x; y) = div(a(x)∇p(t, x; y)), t > 0, x ∈ RN ,

p(0, ·; y) = δy
(6.1)

satisfies

p(τ + 1, x; 0) ≥ σ p(τ, x; 0) for all x ∈ R
N . (6.2)

Let us postpone the proof of this proposition to Section 8. We continue in this section the
proof of Theorem 1.1 for the solution u of (1.1). The main result proved in this section is the
following lemma.

Lemma 6.2. Let θ and θ′ be any two real numbers such that 0 < θ ≤ θ′. Then there exist

T0 > 0 and ε > 0 such that

∀ τ ∈ [θ, θ′], ∀ (t, x) ∈ [T0,+∞)× R
N ,

(
u(t, x) ≤ ε

)
=⇒

(
u(t+ τ, x) > u(t, x)

)
.

Proof. Let us argue by way of contradiction. So, assume that there exist a sequence (τn)n∈N
in [θ, θ′], a sequence (tn)n∈N of positive real numbers and a sequence (xn)n∈N of points in RN

such that

tn −→
n→+∞

+∞, u(tn, xn) −→
n→+∞

0 and u(tn + τn, xn) ≤ u(tn, xn) for all n ∈ N. (6.3)
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Up to extraction of a subsequence, one can assume without loss of generality that

τn → τ∞ ∈ [θ, θ′] ⊂ (0,+∞) as n → +∞.

Notice that (1.11) and (6.3) yield limn→+∞ |xn| = +∞ and even lim infn→+∞ |xn|/tn ≥ c > 0.
Therefore, up to extraction of another subsequence, the matrix fields x 7→ A(x + xn) con-
verge in C1

loc(R
N) to a definite positive symmetric matrix field A∞, which turns out to be

a constant matrix due to (1.5). Observe also that (6.3) and the nonnegativity of u imply
that u(tn + τn, xn) → 0 as n → +∞.

Define the functions

un(t, x) =
u(t+ tn + τn, x+ xn)

u(tn + τn, xn)
, (t, x) ∈ (−tn − τn,+∞)× R

N .

Each function un obeys

(un)t(t, x) = div(A(x+ xn)∇un(t, x)) +
f(x+ xn, u(tn + τn, xn) un(t, x))

u(tn + τn, xn)
.

For each compact setK ⊂ (−∞, 0)×RN , there is nK ∈ N such thatK ⊂ (−tn−τn+1,+∞)×RN

for all n≥nK and it follows from Harnack inequality applied to u that supn≥nK
‖un‖L∞(K)<+∞.

Remember that f(·, 0) = 0 in RN , that the function (x, s) 7→ f(x, s) is Lipschitz continu-
ous with respect to s uniformly in x ∈ RN , of class C1 with respect to s in RN × [0, s0]
with s0 ∈ (0, 1), and that fs is uniformly continuous in RN × [0, s0] and of class C0,α with
respect to x uniformly in s ∈ [0, s0]. Furthermore, up to extraction of another subsequence,
the functions x 7→ fs(x+ xn, 0) converge locally uniformly in RN to a function r ∈ C0,α(RN),
which is actually a constant such that r ≥ µ > 0 by (1.8) and (1.9). Therefore, as we did in
the proof of Lemma 5.1 for the functions vn satisfying (5.3), we get that, up to extraction of
a subsequence, the positive functions un converge locally uniformly in C1,2

t,x ((−∞, 0)× RN ) to
a nonnegative solution u∞ of

(u∞)t = div(A∞∇u∞) + r u∞ in (−∞, 0)× R
N .

Since un(−τn, 0) ≥ 1 by (6.3) and τn → τ∞ > 0 as n → +∞, we get that u∞(−τ∞, 0) ≥ 1,
whence u∞ > 0 in (−∞, 0) × RN from the strong maximum principle and the uniqueness
of the Cauchy problem associated with that equation. Since A∞ is a constant symmetric
definite positive matrix, there is an invertible matrix M such that the function ũ∞ defined in
(−∞, 0) × R

N by ũ∞(t, x) = u∞(t,Mx) satisfies (ũ∞)t = ∆ũ∞ + r ũ∞ in (−∞, 0) × R
N . In

other words, the function (t, x) 7→ e−rtũ∞(t, x) is a positive solution of the heat equation in
(−∞, 0)×RN . Thus, by [17], it is nondecreasing with respect to t in (−∞, 0)×RN . Therefore,
the function (t, x) 7→ e−rtu∞(t, x) is nondecreasing with respect to t in (−∞, 0)× RN .

Remember now that µ > 0 and that θ > 0 is given in the statement of Lemma 6.2. Fix a
real number σ ∈ (0, 1) close enough to 1 so that

σ eµ θ/2 > 1,

and let
τ > 0 and η > 0
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be as in Proposition 6.1 applied with this real number σ and with ν = ν−1 and ν = ν (remember
that ν−1I ≤ A ≤ νI in RN with ν ≥ 1). Finally, let L > 0 be such that (2.2) holds and let us
fix ε > 0 small enough so that

0 < ε ≤ θ

4
,

√
ε |∇A| ≤ η in R

N and e−εLτ σ eµ θ/2 > 1. (6.4)

Let us finally complete the proof of Lemma 6.2 by reaching a contradiction. Since
the function t 7→ e−rtu∞(t, x) is nondecreasing in (−∞, 0) for each given x ∈ RN and
since 0 < ε < 2ε < θ ≤ τ∞, one has erεu∞(−ε, 0) ≥ erτ∞u∞(−τ∞, 0). But un → u∞ > 0
locally uniformly in (−∞, 0)× RN and τn → τ∞ as n → +∞. As a consequence,

erεun(−ε, 0) ≥ er(τn−ε)un(−τn, 0) for all n large enough,

whence

u(−ε+ tn + τn, xn) ≥ er(τn−2ε)u(tn, xn) ≥ eµ θ/2u(tn, xn) ≥ eµ θ/2u(tn + τn, xn)

for all n large enough, since r ≥ µ > 0, τn − 2ε ≥ θ − 2ε ≥ θ/2 > 0 and
u(tn, xn) ≥ u(tn + τn, xn) > 0 by (6.3). Lastly, consider the parabolically rescaled functions

vn(t, x) = u(ε t+ tn + τn,
√
ε x+ xn), (t, x) ∈ (−ε−1(tn + τn),+∞)× R

N

and observe that
vn(−1, 0) ≥ eµ θ/2vn(0, 0) for all n large enough. (6.5)

Furthermore, the functions vn obey

(vn)t = div(An(x)∇vn) + ε f(
√
ε x+ xn, vn) in (−ε−1(tn + τn),+∞)× R

N , (6.6)

with An(x) = A(
√
ε x + xn), and they are positive in (−ε−1(tn + τn),+∞) × R

N . For each
n ∈ N and y ∈ RN , call pn and pn,y the fundamental solutions of (6.1) with diffusion matrix
fields a = An and a = An(· + y), respectively. Remember that τ > 0 is given above from
Proposition 6.1 and choose n ∈ N large enough so that −ε−1(tn + τn) < −τ − 1 and (6.5)
holds. Since the function f is such that 0 ≤ f(x, s) ≤ Ls for all (x, s) ∈ RN × [0, 1], it follows
from (6.6) that

vn(0, 0) ≥
∫

RN

pn(τ + 1, 0; y) vn(−τ + 1, y) dy =

∫

RN

pn,y(τ + 1,−y; 0) vn(−τ + 1, y) dy (6.7)

and

vn(−1, 0) ≤ eεLτ
∫

RN

pn(τ, 0; y) vn(−τ+1, y) dy = eεLτ
∫

RN

pn,y(τ,−y; 0) vn(−τ+1, y) dy. (6.8)

On the other hand, for every y ∈ R
N , the matrix field An,y := An(· + y) is of class C1(RN)

it satisfies ν−1I ≤ An,y ≤ νI in RN and |∇An,y(x)| =
√
ε |∇A(

√
ε (x + y) + xn)| ≤ η for all

x ∈ RN by (6.4), where η > 0 is given above from Proposition 6.1. It follows then from the
conclusion of Proposition 6.1 that

pn,y(τ + 1,−y; 0) ≥ σ pn,y(τ,−y; 0) for all y ∈ R
N ,

whence vn(0, 0) ≥ e−εLτσ vn(−1, 0) by (6.7) and (6.8), and finally vn(0, 0) ≥ e−εLτσ eµ θ/2vn(0, 0)
by (6.5). The positivity of vn(0, 0) = u(tn + τn, xn) (since tn + τn > 0) contradicts the last
property in (6.4). The proof of Lemma 6.2 is thereby complete. �
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7 Conclusion of the proof of Theorem 1.1

Remember the definition of τ∗ in (3.1) and remember that 0 ≤ τ ∗ < +∞. Before completing
the proof of Theorem 1.1, we first show that τ ∗ = 0.

Lemma 7.1. There holds

τ∗ = 0.

Proof. Assume by contradiction that τ∗ > 0. It follows from the definition (3.1) of τ∗ that
there exist two sequences (τn)n∈N and (tn)n∈N of positive real numbers and a sequence (xn)n∈N
of points in RN such that

lim
n→+∞

tn = +∞, lim inf
n→+∞

τn ≥ τ∗ and u(tn + τn, xn) < u(tn, xn) for all n ∈ N. (7.1)

Actually, it turns out that τn → τ∗ as n → +∞, otherwise the assumption lim supn→+∞ τn > τ∗
together with limn→+∞ tn = +∞ would contradict the definition of τ∗. The real numbers
u(tn, xn) take values in (0, 1). Thus, up to extraction of a subsequence, three cases can occur.

Case 1: u(tn, xn) → m ∈ (0, 1) as n → +∞. There are then two real numbers a and b such
that 0 < a ≤ u(tn, xn) ≤ b < 1 for all n ∈ N. Since tn → +∞ and τn → τ∗ > 0 as n → +∞,
Corollary 3.2 yields the existence of δ > 0 such that u(tn + τn, xn) ≥ (1 + δ) u(tn, xn) for all n
large enough. This is impossible by (7.1).

Case 2: u(tn, xn) → 1 as n → +∞. Therefore, u(tn, xn) ≥ b and tn ≥ T̃ for all n large

enough, where b ∈ (0, 1) and T̃ are given as in Lemma 5.1. One infers then from Lemma 5.1
that, for all n large enough, ut(tn, xn) > 0 and thus even that ut(t, xn) > 0 for all t ≥ tn. In
particular, u(tn + τn, xn) > u(tn, xn) for all n large enough, contradicting (7.1). Thus, Case 2
is ruled out too.

Case 3: u(tn, xn) → 0 as n → +∞. Since τn → τ∗ > 0 and each τn is positive, there
are two real numbers 0 < θ ≤ θ′ such that θ ≤ τn ≤ θ′ for all n ∈ N. Let then T0 > 0
and ε > 0 be as in Lemma 6.2. For all n large enough, one has tn ≥ T0 and u(tn, xn) ≤ ε,
whence u(tn + τn, xn) > u(tn, xn). This contradicts (7.1).

As a conclusion, all three cases are impossible. Finally, τ∗ = 0 and the proof of Lemma 7.1
is complete. �

Based on the previous lemma, we can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We first notice that, for any t > 0,

ut(t, x) → 0 as |x| → +∞. (7.2)

Indeed, on the one hand, as in the proof of Lemma 3.1, for any sequence (xn)n∈N in R
N

with limn→+∞ |xn| = +∞, the functions un : (t, x) 7→ u(t, x + xn) converge locally uniformly
in C1,2

t,x ((0,+∞) × RN), up to extraction of a subsequence, to a solution 0 ≤ u∞ ≤ 1 of an
equation of the type

(u∞)t = div(A∞∇u∞) + f∞(x, u∞) in (0,+∞)× R
N

for some constant symmetric definite positive matrix A∞ and for some function f∞ satis-
fying the same properties as f . On the other hand, as already emphasized from the proof
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of Lemma 2.1, u(t, x) → 0 as |x| → +∞, for every t > 0. Therefore, u∞ = 0 in
(0,+∞)× RN . Hence, by uniqueness the whole sequence (un)n∈N converges to 0 locally uni-
formly in C1,2

t,x ((0,+∞)×RN) and ut(t, x+xn) → 0 as n → +∞ for every (t, x) ∈ (0,+∞)×RN .
As a consequence, (7.2) holds.

In particular, it follows that infRN ut(t, ·) ≤ 0 for all t > 0. We now prove (1.12),
and then (1.13).3 Assume now by contradiction that infRN ut(t, ·) 6→ 0 as t → +∞.
Since ut is bounded in (1,+∞) × RN , it follows then that there are a sequence (tn)n∈N of
positive real numbers and a sequence (xn)n∈N of points in RN such that tn → +∞ and
lim supn→+∞ ut(tn, xn) ∈ (−∞, 0). As done in the previous paragraph or in the proof of
Lemma 3.1, the functions

(t, x) 7→ u(t+ tn, x+ xn)

converge, up to extraction of a subsequence, locally uniformly in C1,2
t,x (R × RN) to a solu-

tion 0 ≤ u∞ ≤ 1 of an equation of the type (3.4) with (u∞)t(0, 0) < 0. However, for any τ > 0,
it follows from the definition (3.1) of τ∗ together with limn→+∞ tn = +∞ and Lemma 7.1
(τ∗ = 0) that, for any given (t, x) ∈ RN , there holds

u(t+ τ + tn, x+ xn) ≥ u(t+ tn, x+ xn) for all n large enough,

whence u∞(t+ τ, x) ≥ u∞(t, x). Therefore, since τ > 0 and (t, x) ∈ R×RN are arbitrary, one
gets that (u∞)t ≥ 0 in R × RN , which yields a contradiction. In other words, one has shown
that infRN ut(t, ·) → 0 as t → +∞, that is, (1.12).

Finally, let ε ∈ (0, 1) be given and let us show (1.13), that is, the existence of Tε > 0 such
that ut(t, x) > 0 for every (t, x) ∈ [Tε,+∞)× RN with u(t, x) ≥ ε. Assume not. Then there
are a sequence (tn)n∈N of positive real numbers and a sequence (xn)n∈N of points in RN such
that tn → +∞ as n → +∞, while u(tn, xn) ≥ ε and ut(tn, xn) ≤ 0 for all n ∈ N. It follows
then from Lemma 5.1 that 1 is not a limiting value of the sequence (u(tn, xn))n∈N. Therefore,
up to extraction of a sequence, one can assume without loss of generality that

u(tn, xn) → m ∈ (0, 1) as n → +∞.

As done in the previous paragraph, one infers that the functions (t, x) 7→ u(t + tn, x + xn)
converge, up to extraction of a subsequence, locally uniformly in C1,2

t,x (R × RN) to a solution
0 ≤ u∞ ≤ 1 of an equation of the type

(u∞)t = div(A∞∇u∞) + f∞(x, u∞), t ∈ R, x ∈ R
N

with (u∞)t(t, x) ≥ 0 for all (t, x) ∈ R×RN , whereas u∞(0, 0) = m ∈ (0, 1) and (u∞)t(0, 0) ≤ 0.
It follows from the strong maximum principle applied to the function (u∞)t that (u∞)t = 0
in (−∞, 0] × R

N and then in R × R
N . Furthermore, the strong maximum principle applied

to u∞ also implies that 0 < u∞ < 1 in R× RN . As recalled in Section 1, one infers then from
the properties shared by f∞ with f that u∞(t, x) → 1 as t → +∞ for every x ∈ RN . This
leads to a contradiction, since (u∞)t = 0 in R× RN and u∞(0, 0) = m < 1. Therefore, (1.13)
is shown and the proof of Theorem 1.1 is thereby complete. �

3We could also view (1.12) as a consequence of (1.13) by observing that ut(t, x) → 0 as u(t, x) → 0. But
since the proof of (1.12) is easy even without (1.13), we choose to carry it out before (1.13).
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8 Proof of Proposition 6.1

Let 0 < ν ≤ ν and 0 < σ < 1 be fixed. When a = D I with a real number D ∈ [ν, ν], then the
conclusion (6.2) holds immediately for τ > 0 large enough, from the explicit formula

p(t, x; 0) =
e−|x|2/(4Dt)

(4πt)N/2
.

In the general case where a may not be constant, we will get the estimates (6.2) by using
uniform Gaussian estimates for large x and small t, and by approximating locally, when a is
nearly locally constant, the solutions p of (6.1) by explicit fundamental solutions of parabolic
equations with constant coefficients.

More precisely, choose first any real number τ > 0 large enough so that

( τ

τ + 1

)N/2

> σ. (8.1)

We shall prove the conclusion of Proposition 6.1 is fulfilled with any such real number τ .
First of all, it follows from the Gaussian upper and lower bounds of the fundamental

solutions of (6.1) in [15] that there exist a constant K ≥ 1 such that, for every L∞(RN) matrix
field a : RN → SN (R) with νI ≤ a ≤ νI a.e. in RN , the fundamental solution p of (6.1)
satisfies

e−K |x|2/t

K tN/2
≤ p(t, x; 0) ≤ K e−|x|2/(Kt)

tN/2
for all (t, x) ∈ (0,+∞)× R

N . (8.2)

Therefore, we claim that there exists τ0 ∈ (0, τ) small enough such that, for every L∞(RN)
matrix field a : RN → SN (R) with νI ≤ a ≤ νI a.e. in RN , there holds

p(τ0 + 1, x; 0) ≥ σ p(τ0, x; 0) for all x ∈ R
N with |x| ≥ 1. (8.3)

Indeed, otherwise, by picking any sequence (τn)n∈N in (0, τ) such that limn→+∞ τn = 0, there
would exist a sequence (an)n∈N of bounded symmetric matrix fields with νI ≤ an ≤ νI a.e. in
RN and a sequence (xn)n∈N of points in RN such that

|xn| ≥ 1 and pn(τn + 1, xn; 0) < σ pn(τn, xn; 0) for all n ∈ N,

where pn denotes the fundamental solution of (6.1) with a = an. It would then follow from (8.2)
that

e−K|xn|2/(τn+1)

K (τn + 1)N/2
<

σK e−|xn|2/(Kτn)

τ
N/2
n

for all n ∈ N, that is,

e|xn|2(1/(Kτn)−K/(τn+1)) < σK2
(τn + 1

τn

)N/2

.

But |xn| ≥ 1 for all n ∈ N and 1/(Kτn) − K/(τn + 1) ≥ 1/(2Kτn) for all n large enough,
since τn → 0+ as n → +∞. Therefore, e1/(2Kτn) < σK2 (1 + 1/τn)

N/2 for all n large enough,
which leads to a contradiction by passing to the limit as n → +∞. As a consequence, there
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is τ0 ∈ (0, τ) such that (8.3) holds for every L∞(RN) matrix field a : R
N → SN(R) with

νI ≤ a ≤ νI a.e. in RN .
Now, we fix a real number R ≥ 1 large enough such that

σ
(
1 +

1

τ0

)N/2

e−R2/(4ντ(τ+1)) < 1. (8.4)

Given this choice of R ≥ 1, we claim that there exists a real number η > 0 such that,
for every a ∈ C1(RN ; SN (R)) with νI ≤ a ≤ νI and |∇a| ≤ η in R

N , the fundamental
solution p(t, x; y) of (6.1) satisfies

{
p(τ + 1, x; 0) ≥ σ p(τ, x; 0) for all |x| ≤ R,

p(t+ 1, x; 0) ≥ σ p(t, x; 0) for all t ∈ [τ0, τ ] and |x| = R.
(8.5)

Indeed, otherwise, there exist a sequence (an)n∈N in C1(RN ; SN (R)) with νI ≤ an ≤ νI in RN

and limn→+∞ ‖ |∇an| ‖L∞(RN ) = 0, as well as a sequence of points (tn, xn)n∈N in (0,+∞)×RN

such that

(tn, xn) ∈ {τ}×B(0, R) ∪ [τ0, τ ]×∂B(0, R) and pn(tn + 1, xn; 0) < σ pn(tn, xn; 0) (8.6)

for all n ∈ N, where pn denotes the fundamental solution of (6.1) with a = an. Up to extraction
of a subsequence, the matrix fields an converge locally uniformly in RN to a constant symmetric
definite positive matrix a∞ such that νI ≤ a∞ ≤ νI. Furthermore, the functions (pn)n∈N are
bounded locally in (0,+∞)×RN from the bounds (8.2). From standard parabolic estimates, the
functions pn(·, ·; 0) converge then locally uniformly in (0,+∞)×RN to a classical solution p∞
of

(p∞)t = div(a∞∇p∞) in (0,+∞)× R
N

such that

K−1t−N/2e−K|x|2/t ≤ p∞(t, x) ≤ K t−N/2e−|x|2/(Kt) for all (t, x) ∈ (0,+∞)× R
N . (8.7)

Moreover, it follows from (8.6) that there exists a point (t∞, x∞) such that

(t∞, x∞) ∈ {τ}×B(0, R) ∪ [τ0, τ ]×∂B(0, R) and p∞(t∞ + 1, x∞) ≤ σ p∞(t∞, x∞). (8.8)

From the aforementioned Gaussian estimates, the function p∞ is therefore positive in
(0,+∞)× RN and since a∞ ∈ SN (R

N) satisfies νI ≤ a∞ ≤ νI, there is an orthogonal linear
map M : x 7→ y such that the function (t, y) 7→ q(t, y) = p∞(t,M−1y) = p∞(t, x) is a positive
solution of

qt =
∑

1≤i≤N

λi
∂2q

∂y2i
in (0,+∞)× R

N

for some real numbers λ1, . . . , λN ∈ [ν, ν]. Hence, there is a nonnegative Radon measure λ
such that

p∞(t, x) =
1

(4πt)N/2

∫

RN

e−
∑

1≤i≤N |yi/
√
λi−zi|2/(4t) dλ(z) for all (t, x) ∈ (0,+∞)× R

N .

24



Since, by (8.7),
∫
B(x0,r)

p∞(t, x) dx → 0+ as t → 0+ for every x0 ∈ R
N and r > 0 such

that 0 6∈ B(x0, r), it follows easily that λ is supported on the singleton {0} and that there
is ρ > 0 such that

p∞(t, x) =
ρ e−

∑
1≤i≤N |yi|2/(4λit)

(4πt)N/2
for all (t, x) ∈ (0,+∞)× R

N . (8.9)

Remember now (8.8). On the one hand, if t∞ = τ (and |x∞| ≤ R), then (8.8) and (8.9) imply
that

ρ e−
∑

1≤i≤N |y∞,i|2/(4λi(τ+1))

(4π(τ + 1))N/2
≤ σ × ρ e−

∑
1≤i≤N |y∞,i|2/(4λiτ)

(4πτ)N/2
,

where y∞ = M x∞. Since ρ > 0, λi > 0 for all 1 ≤ i ≤ N and 0 < τ < τ + 1, one gets
that τN/2 ≤ σ(τ + 1)N/2, which contradicts (8.1). On the other hand, if |x∞| = R (and
t∞ ∈ [τ0, τ ]), then (8.8) and (8.9) yield, with the same notations as above,

ρ e−
∑

1≤i≤N |y∞,i|2/(4λi(t∞+1))

(4π(t∞ + 1))N/2
≤ σ × ρ e−

∑
1≤i≤N |y∞,i|2/(4λit∞)

(4πt∞)N/2
,

whence

1 ≤ σ
(
1 +

1

t∞

)N/2

e−
∑

1≤i≤N |y∞,i|2/(4λit∞(t∞+1)).

Since 0 < τ0 ≤ t∞ ≤ τ , 0 < ν ≤ λi ≤ ν for all 1 ≤ i ≤ N and |y∞| = |M x∞| = |x∞| = R, one
infers that

1 ≤ σ
(
1 +

1

τ0

)N/2

e−R2/(4ντ(τ+1)),

which contradicts (8.4).
As a consequence, there is η > 0 such that (8.5) holds for every a ∈ C1(RN ; SN(R))

with νI ≤ a ≤ νI and |∇a| ≤ η in RN . Consider finally any such matrix field a and let
us show that the conclusion (6.2) holds, that is p(τ + 1, ·; 0) ≥ σ p(τ, ·; 0) in RN , where p
solves (6.1). First of all, it follows from (8.5) that

p(τ + 1, ·; 0) ≥ σ p(τ, ·; 0) in B(0, R). (8.10)

On the other hand,

p(τ0 + 1, ·; 0) ≥ σ p(τ0, ·; 0) in R
N\B(0, R) ⊂ R

N\B(0, 1)

by (8.3) and R ≥ 1. Lastly,

p(t+ 1, ·; 0) ≥ σ p(t, ·; 0) on ∂B(0, R) for all t ∈ [τ0, τ ]

by (8.5). Therefore, since p(·, ·; 0) and p(· + 1, ·; 0) are two positive bounded solutions of the
same linear parabolic equation in (at least) [τ0, τ ]×(RN\B(0, R)), it follows from the parabolic
maximum principle that

p(τ + 1, ·; 0) ≥ σ p(τ, ·; 0) in R
N\B(0, R).

Together with (8.10), one concludes that p(τ + 1, ·; 0) ≥ σ p(τ, ·; 0) in RN and the proof of
Proposition 6.1 is thereby complete. �
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9 Proof of Theorem 1.2

The key-point in the proof of Theorem 1.2 is the following result of independent interest on
some monotonicity properties of the solutions of a boundary value problem in a half-line for a
homogeneous linear one-dimensional reaction-diffusion.

Proposition 9.1. Let a and λ be two positive real numbers and let u be the solution of

vt = a vxx + λ v, t > 0, x > 0, (9.1)

with boundary condition

v(t, 0) = g(t), t > 0, (9.2)

and initial datum v0 ∈ L∞(0,+∞)\{0}. Assume that v0(x) ≥ 0 for a.e. x > 0 and that g is

continuous, nonnegative and nondecreasing on (0,+∞). Then

vt(t, x) > 0

provided t ≥ t0 and x ≥
√
8at, where t0 = (2λ)−1 + e(e − 1)−1λ−1 > 0 is a positive constant

depending only on λ.

Proof. Observe that v can be written as

v = w + z,

where w and z solve (9.1), with w(0, x) = v0(x) and z(0, x) = 0 for a.e. x > 0, while w(t, 0) = 0,
z(t, 0) = g(t) for all t > 0.

Let us first consider the solution w of the homogeneous Dirichlet boundary condition. There
holds, for all t > 0 and x > 0,

w(t, x) =

∫ +∞

0

G(t, x, y) v0(y) dy,

where the Green function G is given by

G(t, x, y) =
eλt√
4πat

[
e−|x−y|2/(4at) − e−|x+y|2/(4at)

]

for t > 0, x > 0 and y > 0. The time derivative of G satisfies

Gt(t, x, y) =
eλt√
4πat3

e−|x−y|2/(4at)
[
λt− 1

2
+

|x− y|2
4at

]
− eλt√

4πat3
e−|x+y|2/(4at)

[
λt− 1

2
+

|x+ y|2
4at

]
.

Let us also introduce the function φ : [0,+∞) → [0,+∞) defined by

φ(x) = x e−x.

This function φ has a maximum at x = 1 and it is increasing in [0, 1] and decreasing in [1,+∞).
We are going to prove that Gt(t, x, y) > 0 for all y ∈ (0,+∞) provided x ≥

√
8at and

t ≥ t0, where t0 > 0 is given in the statement of Proposition 9.2. In this paragraph, we fix
any t ≥ t0, x ≥

√
8at and y > 0, and we first observe that |x + y|2/(4at) ≥ 2. Two cases can
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then appear, depending on whether |x− y|2/(4at) is larger or smaller than 1. In the first case,
namely if |x− y|2/(4at) ≥ 1, then 1 ≤ |x− y|2/(4at) < |x+ y|2/(4at) and

φ
( |x− y|2

4at

)
> φ

( |x+ y|2
4at

)
,

hence we get Gt(t, x, y) > 0 (we also use the fact that t ≥ t0 ≥ (2λ)−1). In the second case,
one has 0 ≤ |x− y|2/(4at) < 1 and

(
λt− 1

2

)[
e−|x−y|2/(4at) − e−|x+y|2/(4at)] ≥

(
λt− 1

2

)
(e−1 − e−2) ≥ e−1

since t ≥ t0 = (2λ)−1 + e(e− 1)−1λ−1 ≥ (2λ)−1, whereas

|x+ y|2
4at

e−|x+y|2/(4at) < φ(1) = e−1.

Hence, we also have Gt(t, x, y) > 0 in the second case. As a consequence, Gt(t, x, ·) > 0 in
(0,+∞) for all t ≥ t0 and x ≥

√
8at, hence wt(t, x) > 0 for all t ≥ t0 and x ≥

√
8at, since v0

is nonnegative and nontrivial in (0,+∞).
Let us now turn to the solution z of equation (9.1) with vanishing initial condition and

with boundary condition (9.2). Since g is nonnegative and bounded in any interval (0, T ) with
T ∈ (0,+∞), it follows from the maximum principle that z is nonnegative and bounded in
(0, T )× (0,+∞) too. Furthermore, for any h > 0 and t > 0, there holds z(h, ·) ≥ 0 = z(0, ·)
in (0,+∞) and z(t + h, 0) = g(t + h) ≥ g(t) = z(t, 0). Hence, the maximum principle yields
z(t + h, x) ≥ z(t, x) for all t > 0 and x > 0. In other words, the function z is nondecreasing
with respect to t.

As a conclusion, the solution v of (9.1) with boundary condition (9.2) satisfies vt(t, x) > 0
provided t ≥ t0 and x ≥

√
8at. �

From the previous proposition and a change of variable x → −x, the following result
immediately follows.

Proposition 9.2. Let a and λ be two positive real numbers and let u be the solution of

vt = a vxx + λ v, t > 0, x < 0, (9.3)

with boundary condition (9.2) and initial datum v0 ∈ L∞(−∞, 0)\{0}. Assume that v0(x) ≥ 0
for a.e. x < 0 and that g is continuous, nonnegative and nondecreasing on (0,+∞). Then

vt(t, x) > 0 provided t ≥ t0 and x ≤ −
√
8at, where t0 = (2λ)−1 + e(e− 1)−1λ−1 > 0.

With these two propositions in hand, let us now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let A, f , f±, λ± > 0, θ ∈ (0, 1) and u0 be as in the statement and
let R > 0 and a± ∈ (0,+∞) be such that

f(x, ·) = f± in [0, 1] and A(x) = a± for all |x| ≥ R with ± x > 0. (9.4)

Let us call

T0 = max
(
(2λ−)−1 + e(e− 1)−1(λ−)−1, (2λ+)−1 + e(e− 1)−1(λ+)−1

)
> 0. (9.5)
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Firstly, we claim that there exists η ∈ (0, θ) such that

∀ t ≥ 1, ∀ x ∈ R,
(
u(t, x) ≤ η

)
=⇒

(
u(s, x) ≤ θ for all s ∈ [t, t + T0]

)
. (9.6)

Assume not. Then there are a sequence (tn)n∈N in [1,+∞) and a sequence (xn)n∈N in R such
that

u(tn, xn) → 0 as n → +∞ and max
[tn,tn+T0]

u(·, xn) > θ for all n ∈ N.

If the sequence (xn)n∈N were bounded, then the sequence (tn)n∈N would be bounded too due
to (1.11). Hence, up to extraction of a subsequence, (tn, xn) would converge to a point (t, x)
in [1,+∞) × R with u(t, x) = 0, which is impossible due to (1.10). Therefore, the sequence
(xn)n∈N is unbounded. Up to extraction of a subsequence, let us then assume without loss of
generality that xn → +∞ as n → +∞ (the case limn→+∞ xn = −∞, up to extraction of a
subsequence, can be handled similarly). From standard parabolic estimates, up to extraction
of a subsequence, the functions un : (t, x) 7→ u(t + tn, x + xn) converge in C1,2

t,x locally in (at
least) (−1,+∞)× R to a solution v of

vt = a+vxx + f+(v) in (−1,+∞)× R

such that v(0, 0) = 0 and max[0,T0] v(·, 0) ≥ θ. Furthermore, 0 ≤ v ≤ 1 in (−1,+∞) × R

by (1.10). Hence, v = 0 in (−1, 0] × R from the strong maximum principle, and v = 0
in [0,+∞) × R by the uniqueness of the solutions of the associated Cauchy problem. This
contradicts the property max[0,T0] v(·, 0) ≥ θ (> 0). Finally, the claim (9.6) has been proved.

Secondly, since the function u is positive in (0,+∞) × R and the function f is Lipschitz
continuous with respect to u ∈ [0, 1] uniformly in x ∈ R, it follows from Harnack inequality
that there is a constant C ∈ (0, 1) such that, for all (t, x) ∈ [1,+∞)× R,

u(t+ T0, x±
√

8a±T0) ≥ C u(t, x). (9.7)

Let us denote
ε = C η (9.8)

and notice that 0 < ε < η < θ < 1. From Theorem 1.1, there is Tε > 0 such that (1.13) holds,
that is,

∀ (t, x) ∈ [Tε,+∞)× R, u(t, x) ≥ ε =⇒ ut(t, x) > 0. (9.9)

From (1.11), since η < θ < 1, one can also assume without loss of generality that Tε ≥ 1 and
that

min
[−R,R]

u(Tε, ·) ≥ η,

where R > 0 is given in (9.4). Since η > 0 and u(Tε,±∞) = 0 by (1.14), it follows from the
continuity of u(Tε, ·) that there are some real numbers x± such that

x− ≤ −R < R ≤ x+, u(Tε, x
±) = η and u(Tε, ·) ≤ η in (−∞, x−] ∪ [x+,+∞).

Let now v be the solution of (9.1) with a = a+, λ = λ+ and initial and boundary conditions
given by

v0 = u(Tε, ·+ x+) (> 0) in (0,+∞) and v(t, 0) = u(t+ Tε, x
+) (> 0) for all t > 0.
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Since u(Tε, x
+) = η > ε, one infers from (9.9) that the continuous nonnegative function

t 7→ u(t+Tε, x
+) is actually increasing in [0,+∞). Therefore, as T0 ≥ (2λ+)−1+e(e−1)−1(λ+)−1

by (9.5), it follows from Proposition 9.1 that, in particular,

vt(T0, x) > 0 for all x ≥
√

8a+T0.

On the other hand, since Tε ≥ 1 and u(Tε, ·) ≤ η in [x+,+∞), it follows from (9.6) that
u ≤ θ in [Tε, Tε + T0] × [x+,+∞). In that set, since x+ ≥ R, there holds f(u) = λ+u (and
A(x) = a+), by (9.4) and the assumption on f+. Therefore, u(·+ Tε, ·+ x+) satisfies the same
linear equation as v in the set [0, T0]× [0,+∞), with the same initial and boundary conditions
on {0} × [0,+∞) and [0, T0]× {0}. Thus,

u(t+ Tε, x+ x+) = v(t, x) for all (t, x) ∈ [0, T0]× [0,+∞)

and
ut(T0 + Tε, x) > 0 for all x ≥ x+ +

√
8a+T0. (9.10)

Furthermore, since Tε ≥ 1 and u(Tε, x
+) = η, it follows from (9.7) and (9.8) that

u(Tε + T0, x
+ +

√
8a+T0) ≥ C η = ε.

Hence, ut(t, x
+ +

√
8a+T0) > 0 for all t ≥ Tε + T0 by (9.9). Together with (9.10) and the fact

that the equation (1.1) does not depend on time, one concludes from the maximum principle
applied to ut that

ut(t, x) > 0 for all (t, x) ∈ [Tε + T0,+∞)× [x+ +
√

8a+T0,+∞). (9.11)

Similarly, by using Proposition 9.2 among other things, one can show that

ut(t, x) > 0 for all (t, x) ∈ [Tε + T0,+∞)× (−∞, x− −
√
8a−T0]. (9.12)

Finally, due to (1.11), there is τ ≥ Tε+T0 such that u(τ, ·) ≥ ε in [x−−
√
8a−T0, x

++
√
8a+T0].

Hence, by (9.9), there holds

ut(t, x) > 0 for all (t, x) ∈ [τ,+∞)× [x− −
√

8a−T0, x
+ +

√
8a+T0].

Together with (9.11) and (9.12), one concludes that

ut(t, x) > 0 for all (t, x) ∈ [τ,+∞)× R

and the proof of Theorem 1.2 is thereby complete. �
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