Some results on exponential synchronization of nonlinear systems
Vincent Andrieu, Bayu Jayawardhana, Sophie Tarbouriech

To cite this version:
Vincent Andrieu, Bayu Jayawardhana, Sophie Tarbouriech. Some results on exponential synchronization of nonlinear systems. Rapport LAAS n° 16169. 2016. <hal-01324150v1>

HAL Id: hal-01324150
https://hal.archives-ouvertes.fr/hal-01324150v1
Submitted on 31 May 2016 (v1), last revised 25 Jan 2018 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Some results on exponential synchronization of nonlinear systems
Vincent Andrieu, Bayu Jayawardhana, Sophie Tarbouriech

Abstract—Based on recent works on transverse exponential stability, we establish some necessary and sufficient conditions for the existence of a (locally) exponential synchronizing control law. We show that the existence of a structured synchronizer is equivalent to the existence of a stabilizer for the individual linearized systems (on the synchronization manifold) by a linear state feedback. This, in turn, is also equivalent to the existence of a symmetric covariant tensor field, which satisfies a Control Matrix Function inequality. Based on this result, we provide the construction of such synchronizer via backstepping approaches. In some particular cases, we show how global exponential synchronization may be obtained.

I. INTRODUCTION

Controlled synchronization, as a coordinated control problem of a group of autonomous systems, has been regarded as one of important group behaviors. It has found its relevance in many engineering applications, such as, the distributed control of (mobile) robotic systems, the control and reconfiguration of devices in the context of internet-of-things, and the synchronization of autonomous vehicles (see, for example, [14]).

For linear systems, the solvability of this problem and, as well as, the design of controller, have been thoroughly studied in literature. To name a few, we refer to the classical work on the nonlinear Goodwin oscillators [11], to the synchronization of linear systems in [21], [19] and to the recent works in nonlinear systems [17], [9], [8], [7], [18]. For linear systems, the solvability of synchronization problem reduces to the solvability of stabilization of individual systems by either an output or state feedback. It has recently been established in [21] that for linear systems, the solvability of the output synchronization problem is equivalent to the existence of an internal model, which is a well-known concept in the output regulation theory.

The generalization to nonlinear systems has appeared recently in the literature (see, for example, [17], [9], [8], [7], [18], [13]). In these works, based on the concept of passivity theory (or, the weakened notions of co-coercive systems), some sufficient conditions are proposed that solve the synchronization problem. For such a class of systems, the synchronizer is constructed based on the relative output/state measurement, as in the linear systems case. In [12], small-gain theorem is constructed based on the relative output/state measurement.

In this work, we extend our preliminary work presented in [4]. In particular, we provide detailed proofs for all main results (which were exempted from the aforementioned paper) and additionally, we present the backstepping approach that allows us to construct a CMF-based synchronizer, as well as, the extension of the local synchronization result to the global one for a specific case.

The paper is organized as follows. We present the problem formulation of synchronization in Section II. In Section III we present our first main results on necessary conditions to the solvability of the synchronization problem. Some sufficient conditions for local or global synchronization are given in Section IV. A constructive synchronizer design is presented in Section V, where a backstepping procedure is given for designing a CMF-based synchronizing control law.

Notation. The vector of all ones with a dimension N is denoted by 1_N. We denote the identity matrix of dimension n by I_n or I when no confusion is possible. $\text{diag}(v_1,\ldots,v_n)$ denotes the diagonal matrix in $\mathbb{R}^{n\times n}$ with v_i as diagonal elements. Given a vector field f on \mathbb{R}^n and a covariant two tensor $P: \mathbb{R}^n \to \mathbb{R}^{m\times m}$, P is said to have a derivative along f denoted $\partial_f P$ if the following limit exists

$$\partial_f P(z) = \lim_{h \to 0} \frac{P(Z(z,h)) - P(z)}{h}, \quad (1)$$

where $Z(z,\cdot)$ is the flow of the vector field f with an initial state z in \mathbb{R}^m. In that case and, when $m = n$ and f is C^1 $L_f P$ is the Lie derivative of the tensor along f which is defined as

$$L_f P(z) = \partial_f P(z) + P(x) \frac{\partial f}{\partial z}(z) + \frac{\partial f}{\partial z}(z)^\top P(z). \quad (2)$$

II. PROBLEM DEFINITION

A. System description and communication topology

In this note, we consider the problem of synchronizing N identical nonlinear systems with $N \geq 2$. For every systems. If we restrict ourselves to the class of incremental ISS, as discussed in [5], the synchronizer can again be based on the relative output/state measurement.

In general, with the lack of characterization of controlled synchronization for general nonlinear systems, it is difficult to conclude on the generality of the synchronizer as proposed in the aforementioned works. Using recent results on the transverse exponential contraction, we establish in this paper some necessary and sufficient conditions for the solvability of a (locally) exponential synchronization. It extends the work in [2] where only two interconnected systems are discussed. We show that a necessary condition for achieving synchronization is the existence of a symmetric covariant tensor field of order two whose Lie derivative has to satisfy a Control Matrix Function (CMF) inequality, which is similar to the Control Lyapunov Function and detailed later in Section III.

This paper extends our preliminary work presented in [4]. In particular, we provide detailed proofs for all main results (which were exempted from the aforementioned paper) and additionally, we present the backstepping approach that allows us to construct a CMF-based synchronizer, as well as, the extension of the local synchronization result to the global one for a specific case.

The paper is organized as follows. We present the problem formulation of synchronization in Section II. In Section III we present our first main results on necessary conditions to the solvability of the synchronization problem. Some sufficient conditions for local or global synchronization are given in Section IV. A constructive synchronizer design is presented in Section V, where a backstepping procedure is given for designing a CMF-based synchronizing control law.
i = 1, \ldots, N$, the i-th system Σ_i is described by
\[\dot{x}_i = f(x_i) + g(x_i)u_i, \quad i = 1, \ldots, N \tag{3} \]
where $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^p$ and the functions f and g are assumed to be C^2. In this setting, all systems have the same drift vector field f and the same control vector field $g : \mathbb{R}^n \to \mathbb{R}^{n \times p}$, but not the same controls in \mathbb{R}^p. For simplicity of notation, we denote the complete state variables by $x = [x_1^T, \ldots, x_N^T]^T \in \mathbb{R}^{Nn}$.

The synchronization manifold \mathcal{D}, where the state variables of different systems agree with each other, is defined by
\[\mathcal{D} = \{(x_1, \ldots, x_N) \in \mathbb{R}^{Nn} \mid x_1 = x_2 = \cdots = x_N \}. \]
For every x in \mathbb{R}^{Nn}, we denote the Euclidean distance to the set \mathcal{D} by $|x|_\mathcal{D}$.

The communication graph \mathcal{G}, which is used for synchronizing the state through distributed control u_i, $i = 1, \ldots, N$, is assumed to be an undirected graph and is defined by $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of N nodes (where the i-th node is associated to the system Σ_i) and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is a set of M edges that define the pairs of communicating systems. Moreover we assume that the graph \mathcal{G} is connected.

Let us, for every edge $k \in \mathcal{G}$ connecting node i to node j, label one end (e.g., the node i) by a positive sign and the other end (e.g., the node j) by a negative sign. The incidence matrix D that corresponds to \mathcal{G} is an $N \times M$ matrix such that
\[d_{i,k} = \begin{cases} +1 & \text{if node } i \text{ is the positive end of edge } k \\ -1 & \text{if node } i \text{ is the negative end of edge } k \\ 0 & \text{otherwise} \end{cases} \]
Using D, the Laplacian matrix L can be given by $L = DD^\top$ whose kernel, by the connectedness of \mathcal{G}, is spanned by \mathbb{I}_N. We will need the following lemma on the property of L in some results.

Lemma 1: Let $L = \begin{bmatrix} L_{11} & L_{1,2:n} \\ L_{1,2:n}^\top & L_{2,2:n} \end{bmatrix}$ be a non-zero balanced Laplacian matrix associated to an undirected graph \mathcal{G} where L_{11} is a scalar. Then, the eigenvalues of the $(N - 1) \times (N - 1)$ matrix $\tilde{L} := L_{2,2:n} - I_{N-1}L_{1,2:n}$ are the same as the non-zero eigenvalues of L with the same multiplicity. Moreover, if the graph is connected then $-\tilde{L}$ is Hurwitz. The proof of Lemma 1 can be found in Appendix A.

B. Synchronization problem formulation

Using the description of the interconnected systems via \mathcal{G}, the state synchronization control problem is defined as follows.

Definition 1: The control laws $u_i = \phi_i(x)$, $i = 1, \ldots, N$ solve the local uniform exponential synchronization problem of (4) if the following conditions hold:
1) For all non-communicating pair (i, j) (i.e., $(i, j) \notin \mathcal{E}$),
\[\frac{\partial \phi_i}{\partial x_j}(x) = \frac{\partial \phi_j}{\partial x_i}(x) = 0, \forall x \in \mathbb{R}^{Nn}; \]
2) For all $x \in \mathcal{D}$, $\phi(x) = 0$ (i.e., ϕ is zero on \mathcal{D}); and
3) The manifold \mathcal{D} of the closed-loop system
\[\dot{x}_i = f(x_i) + g(x_i)\phi_i(x), \quad i = 1, \ldots, N \tag{4} \]
is uniformly exponentially stable, i.e., there exist positive constants r, k and $\lambda > 0$ such that for all x in \mathbb{R}^{Nn} satisfying $|x|_D < r$,
\[|X(x,t)|_D \leq k \exp(-\lambda t) |x|_D, \tag{5} \]
where $X(x,t)$ denotes the solution initiated from x, holds for all t in the time domain of existence of solution.

When $r = \infty$, it is called the global uniform exponential synchronization problem.

In this definition, the condition 1) implies that the solution u_i is a distributed control law that requires only a local state measurement from its neighbors in the graph G.

An important feature of our study is that we focus on exponential stabilization of the synchronizing manifold. This allows us to rely on the study developed in [2] (or [3]) in which an infinitesimal characterization of exponential stability of a transverse manifold is given. As it will be shown in the following section this allows us to formalize some necessary and sufficient conditions in terms of matrix functions ensuring the existence of a synchronizing control law.

III. NECESSARY CONDITIONS

A. Infinitesimal stabilizability conditions

In [3], a first attempt has been made to give necessary conditions for the existence of an exponentially synchronizing control law for only two agents. In [3], the same problem has been addressed for N agents but without any communication constraints (all agents can communicate with all others). In both cases, it is shown that assuming some bounds on derivatives of the vector fields and assuming that the synchronizing control law is invariant by permutation of agents, the following two properties are necessary conditions.

IS Infinitesimal stabilizability. The couple (f, g) is such that the n-dimensional manifold $\{\tilde{z} = 0\}$ of the transversally linear system
\[\dot{\tilde{z}} = \frac{\partial f}{\partial \tilde{z}}(z)\tilde{z} + g(z)\tilde{u} \tag{6a} \]
\[\dot{z} = f(z) \tag{6b} \]
with \tilde{z} in \mathbb{R}^n and z in \mathbb{R}^n is stabilizable by a state feedback that is linear in \tilde{z} (i.e., $\tilde{u} = h(z)\tilde{z}$ for some function $h : \mathbb{R}^n \to \mathbb{R}^p$).

CMF Control Matrix Function. For all positive definite matrix $Q \in \mathbb{R}^{n \times n}$, there exist a continuous function $P : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ which values are symmetric positive definite matrices and strictly positive real numbers p and q such that
\[p\mathbb{I}_n \leq P(z) \leq q\mathbb{I}_n \tag{7} \]
holds for all $z \in \mathbb{R}^n$, and the inequality (see (1) and (2))
\[v^T L_p f P(z)v \leq -v^T Qv \tag{8} \]
holds for all (v, z) in $\mathbb{R}^n \times \mathbb{R}^n$ satisfying $v^T P(z)g(z) = 0$.

An important feature of properties IS and CMF comes from the fact that they are properties of each individual
agent, independent of the network topology. The first one is a local stabilizability property. The second one establishes that there exists a symmetric covariant tensor field of order two denoted by P whose Lie derivative satisfies a certain inequality in some specific directions. This type of condition can be related to the notion of control Lyapunov function which is a characterization of stabilizability as studied by Artstein in [6] or Sontag in [20]. This property can be regarded as an Artstein like condition. The dual of the CMF property has been thoroughly studied in [15] when dealing with an observer design ([15] Eq. (8)), see also [2] or [1]).

In this note, we show that properties IS and CMF are still necessary conditions if one considers a network of agents with a communication graph \mathcal{G} as given in [11-A]. Hence, as this is already the case for linear system, we recover the paradigm, which establishes that a necessary condition for synchronization is a stabilizability property for each individual agent. However, to obtain this property we need to restrict ourselves to a particular class of synchronizing control laws as given in the following theorem.

Theorem 1: Consider the interconnected systems in (3) with the communication graph \mathcal{G} and assume that there exists a control law $u = \phi(x)$ where $\phi(x) = [\phi_1(x) \ldots \phi_N(x)]^T$ in \mathbb{R}^{Np} that solves the local uniform exponential synchronization of (3). Assume that there exists a C^2 function $\nu : \mathbb{R}^n \to \mathbb{R}^n$ such that for all $x = 1_N \otimes z = (z, \ldots z) \in D$, with $z \in \mathbb{R}^n$ we have

$$\frac{\partial \phi}{\partial x}(x) = (\nu(z))^T \otimes L, \quad (9)$$

where L in $\mathbb{R}^{n \times n}$ is the Laplacian matrix associated to the graph. Assume moreover that g is bounded, f, g and the ϕ_i's have bounded first and second derivatives and the closed-loop system is complete. Then properties IS and CMF hold.

B. Discussions on the result

Before proving Theorem 1 let us emphasize that to prove necessity of CMF and IS we need to restrict ourselves to synchronizing control laws which gradient satisfies equality (4) on the synchronizing manifold D. A restriction appears also in [3] in the synchronization control law section. Indeed, when all agents can communicate with all others, it is imposed in [3] that the synchronizing control law is invariant by permutation of agents. The restriction (9) may be seen as an extension of this invariance to the context of communication constraints. Indeed, in the case in which all agents are communicating with each other, the Laplacian is invariant by permutation of agent and we recognize in (9) the same kind of restriction that the one made in [3].

Note that in the scalar linear case when the system (3) is in the form

$$\dot{x}_i = u_i, \ x \in \mathbb{R}, \ u \in \mathbb{R}, \quad (10)$$

the standard synchronizing control law (see [19]) is given as $u = -Lx$. Of course, this type of control law is included in the restriction we have imposed in (9). More generally, in the multidimensional linear case when system (3) is in the form

$$\dot{x}_i = Fx_i + Gu_i, \quad (11)$$

a control law solving the synchronization problem may be taken of the form

$$u = (K \otimes L)x, \quad (12)$$

where K is a gain matrix that has to be appropriately selected (assuming some stabilizability property). Note that this control law satisfies also the restriction we have imposed in (9).

C. Proof of Theorem 1

Proof: The first part of the proof consists in proving the IS property and the second one addresses the CMF property. The proof of IS is decomposed into the following two steps. In the first step, we show the stabilizability property for an Nn-dimensional system which is established using the tools as developed in [3]. In the second step, employing the structure of the control law as given in Definition 1 and [9], we obtain the desired stabilizability property for the transversally linear system (6a).

Step 1: Let $e = [\begin{smallmatrix} e_2^T & e_3^T & \ldots & e_N^T \end{smallmatrix}]^T$ with $e_i = x_i - x_1$, $i = 2, \ldots, N$, and $z = x_1$. The closed-loop system (3) with the control law ϕ is given by

$$\dot{e} = F(e, z), \ z = G(e, z) \quad (13)$$

with e in $\mathbb{R}^{(N-1)n}, z$ in \mathbb{R}^n and where

$$F = [F_2^T \ F_3^T \ \ldots \ F_N^T]^T \quad (14)$$

$$F_i(e, z) = f(z + e_i) - f(z) + g(z + e_i)\phi_i(e, z) - g(x_1)\bar{\phi}_1(e, z),$$

$$G(e, z) = f(z) + g(z)\bar{\phi}_1(e, z), \quad (16)$$

where we have used the notation

$$\phi_i(e, z) = \phi_i(z + e_2, \ldots, z + e_N). \quad (17)$$

Note that we have

$$|e|^2 = \sum_{i=2}^{N} |x_i - x_1|^2 ,$$

$$\leq (N - 1)|x_1|^2, \quad (18)$$

and

$$|x_1|^2 \leq |e|^2 + (N - 1) \sum_{i=1}^{N} \frac{x_i - x_1}{N} \leq \left(1 + \frac{N - 1}{N^2}\right)|e|^2. \quad (19)$$

Hence, if we denote $E(e, z, t)$ the e components of the solution to (13), then (5) implies for all (e, z) in $\mathbb{R}^{(N-1)n} \times \mathbb{R}^n$

$$|E(e, z, t)| \leq \sqrt{(N - 1) \left(1 + \frac{N - 1}{N^2}\right)k \exp(-\lambda t)|e|}.$$

It follows that the manifold $e = 0$ is locally uniformly (in z) exponentially stable for (13). In other words, property TULES-NL (see Section C in the Appendix) is satisfied. Employing the assumptions on the bounds on f, g, ϕ and its derivatives, we conclude with [3] Prop. 1 that the so-called Property UES-TL
is satisfied (see Section C in the Appendix for the definition). Hence, there exist strictly positive real numbers \(k \) and \(\lambda \) such that any solution \((\bar{E}(\bar{e}, z, t), Z(z, \cdot))\) to
\[
\dot{\bar{e}} = \frac{\partial F}{\partial \bar{e}}(0, z, \bar{e}), \quad \dot{z} = G(0, z)
\]
with \(\bar{e} \) in \(\mathbb{R}^{(N-1)n} \) and \(z \) in \(\mathbb{R}^n \) satisfies
\[
|\bar{E}(\bar{e}, z, t)| \leq \bar{k} \exp(-\lambda t)|\bar{e}|
\]
for all \((\bar{e}, z, t)\) in \(\mathbb{R}^{(N-1)n} \times \mathbb{R}^n \times \mathbb{R}_{>0} \).

By the definition of \(\bar{\phi} \) in (17) and the second point of Definition 1 it follows that we have that \(\bar{\phi}_i(0, z) = 0 \). This implies that for every \(i = 1, \ldots, N \),
\[
\frac{\partial F_i}{\partial e_i}(0, z) = \frac{\partial f_i}{\partial z}(z)
\]
\[+ g(z) \left[\frac{\partial \bar{\phi}_i}{\partial e_i}(0, z) - \frac{\partial \bar{\phi}_i}{\partial e_j}(0, z) \right] \tag{22}
\]
and for all \(j \neq i \),
\[
\frac{\partial F_i}{\partial e_j}(0, z) = g(z) \left[\frac{\partial \bar{\phi}_i}{\partial e_i}(0, z) - \frac{\partial \bar{\phi}_j}{\partial e_j}(0, z) \right]. \tag{23}
\]
Hence, this yields
\[
\dot{\bar{e}}_i = \frac{\partial F_i}{\partial e_i}(0, z) \bar{e} = \frac{\partial f_i}{\partial z}(z) \bar{e}_i
\]
\[+ g(z) \left[\frac{\partial \bar{\phi}_i}{\partial e_i}(0, z) - \frac{\partial \bar{\phi}_i}{\partial e_j}(0, z) \right] \bar{e}. \tag{24}
\]

Step 2: We will now show that (6a) is stabilizable by a state feedback that is linear in \(\dot{\xi} \). In particular, the stabilizing control law for (6a) will be given by
\[
\tilde{u} = \nu v(r(z))\dot{\xi}, \tag{25}
\]
where \(\nu \) is a real non-zero eigenvalue of the matrix \(L_{2:n,2:n} - \mathbb{I}_{N-1}L_{1,2:n} =: \bar{L} \), where \(L = \begin{bmatrix} L_{11} & L_{1,2:n} \\ L_{1,2:n} & L_{2,2:n} \end{bmatrix} \) is the Laplacian of \(\bar{G} \). By Lemma 1 all eigenvalues of \(\bar{L} \) are the same as the non-zero eigenvalues of \(L \) (which are all positive) with the same multiplicity and \(\bar{L} \) is Hurwitz.

Let \(v = (v_2, \ldots, v_N) \) in \(\mathbb{R}^{N-1} \) be a left eigenvector of \(\bar{L} \) associated to \(\nu \), i.e.
\[
v^\top \bar{L} = \nu v^\top. \tag{25}
\]
By using \(\Pi = \mathbb{I}_n \otimes v^\top \) as a mapping from \(\mathbb{R}^{(N-1)n} \) to \(\mathbb{R}^n \), we will show that the image of the solution to (20) are solution to (6a) with the control law (24). Indeed, by denoting \(\dot{\xi} = \Pi \bar{e} \) and by using (20), we have
\[
\dot{\bar{e}} = \sum_{i=2}^N v_i \dot{\bar{e}}_i = \frac{\partial f}{\partial z}(z) \sum_{i=2}^N v_i \bar{e}_i
\]
\[+ g(z) \sum_{i=2}^N v_i \left[\frac{\partial \bar{\phi}_i}{\partial e_i}(0, z) - \frac{\partial \bar{\phi}_j}{\partial e_j}(0, z) \right] \bar{e}. \tag{26}
\]
With (20), this implies
\[
\dot{\bar{e}} = \frac{\partial f}{\partial z}(z) \sum_{i=2}^N v_i \bar{e}_i
\]
\[+ g(z) \sum_{i=2}^N v_i \sum_{j=2}^N |L_{ij} - L_{ij}| v^\top(z) \bar{e}. \tag{27}
\]
This can be rewritten as,
\[
\dot{\bar{e}} = \frac{\partial f}{\partial z}(z) \sum_{i=2}^N v_i \bar{e}_i
\]
\[+ g(z) \bar{v}(z)^\top \bar{v} L_{2:n,2:n} - \mathbb{I}_{N-1}L_{1,2:n} \bar{e}. \tag{28}
\]
Hence, with (25), it yields,
\[
\dot{\bar{e}} = \left[\frac{\partial f}{\partial z}(z) + g(z) \bar{v}(z)^\top \right] \bar{e}.
\]
Let \(\bar{e} \) be in \(\mathbb{R}^n \) and let \(\bar{Z}(\bar{e}, z, t) \) be the solution of the above equation initiated from \(\bar{e} \) at \(t = 0 \). The mapping \(\Pi \) being full rank, there exists \(\bar{e} \) in \(\mathbb{R}^{(N-1)n} \) such that \(\bar{\phi} = \Pi \bar{e} \). Since \(\bar{Z}(\bar{e}, z, t) = \Pi \bar{E}(\bar{e}, z, t) \), it follows from (21) that
\[
|\bar{Z}(\bar{e}, z, t)| \leq |\Pi| \bar{k} \exp(-\lambda t)|\bar{e}|
\]
This proves that the IS property holds.

Proof of CMF : To prove CMF, we use the IS property and Proposition 2 in Section C in Appendix). Indeed, note that if we consider the system with state \((e, z)\) in \(\mathbb{R}^n \times \mathbb{R}^n \) that is described by
\[
\dot{e} = F(e, z), \quad \dot{z} = f(z)
\]
with \(F(e, z) = f(e + z) - f(z) + g(z) \nu v(r(z))^\top \), \(\nu \in \mathbb{R} \), it follows from IS that Property UES-TL is satisfied. Hence, with Proposition 2 in Section C there exist a function \(P : \mathbb{R}^n \rightarrow \mathbb{R}^n \) such that Property TULES-NL holds. In particular, we have that, for all \((v, z)\) in \(\mathbb{R}^n \times \mathbb{R}^n \),
\[
v^\top Qf(z)v + 2v^\top L_{2:n,2:n} - \mathbb{I}_{N-1}L_{1,2:n} v \leq -v^\top Qv
\]
which implies that (8) holds when \(v^\top P(z)g(z) = 0 \). \(\square \)

IV. SUFFICIENT CONDITION

A. Sufficient conditions for local exponential synchronization

The interest of the Property CMF given in Subsection III-A is to use the symmetric covariant tensor \(P \) in the design of a local synchronizing control law. Indeed, following one of the main results in [3], we get the following sufficient condition for the solvability of (local) uniform exponential synchronization problem. The first assumption is that, up to a scaling factor, the control vector field \(g \) is a gradient field with \(P \) as a Riemannian metric (see also [10] for similar integrability assumption). The second one is related to the CMF property.

Theorem 2 (Local sufficient condition): Assume that \(g \) is bounded and that \(f \) and \(g \) have bounded first and second
derivatives. Assume that there exists a C^2 function $P : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ which values are symmetric positive definite matrices and with a bounded derivative that satisfies the following two conditions.

1. There exist a C^2 function $U : \mathbb{R}^n \to \mathbb{R}$ which has bounded first and second derivatives, and a C^1 function $\alpha : \mathbb{R}^n \to \mathbb{R}^p$ which has bounded first and second derivatives such that
 \[
 \frac{\partial U}{\partial z}(z)^T = P(z)g(z)\alpha(z),
 \]
 holds for all $z \in \mathbb{R}^n$; and

2. There exist a symmetric positive definite matrix Q and positive constants p, \overline{p} and $\rho > 0$ such that \[holds and
 \[
 L_f \left(-\rho \frac{\partial U}{\partial z}(z)^T \right) \frac{\partial U}{\partial z}(z) \leq -Q,
 \]
 hold for all $z \in \mathbb{R}^n$.

Then, given a connected graph G with associated Laplacian matrix $L = (L_{ij})$, there exists a constant ℓ such that the control law $u = \phi(x)$ with $\phi = [\phi_1 \ldots \phi_N]^T$ given by
 \[
 \phi_i(x) = -\ell \alpha(x_i) \sum_{j=1}^N L_{ij} U(x_j)
 \]
 with $\ell \geq \ell$ solves the local uniform exponential synchronization of

Remark 1: Before proving this Theorem, note that for all $x = 1 \otimes z = (z, \ldots, z)$ in D and for all (i, j) with $i \neq j$

 \[
 \frac{\partial \phi_i}{\partial x_j}(x) = -\ell \alpha(x_i) L_{ij} \frac{\partial U}{\partial z}(z).
 \]

Hence, for all $x = 1 \otimes z$ in D, we get
 \[
 \frac{\partial \phi}{\partial x}(x) = -\ell \alpha(x) \frac{\partial U}{\partial z}(z) \otimes L.
 \]

In other words, this control law satisfies the restriction imposed in G with $t(z)^T = -\ell \alpha(z) \frac{\partial U}{\partial z}(z)$.

Proof: First of all, note that the control law ϕ satisfies the condition 1) and 2) in Definition 1. Indeed, for all x and all (i, j) with $i \neq j$

 \[
 \frac{\partial \phi_i}{\partial x_j}(x) = -\ell \alpha(x_i) L_{ij} \frac{\partial U}{\partial z}(x_j).
 \]

If $(i, j) \notin \mathcal{E}$, it yields $L_{ij} = 0$ and consequently $\frac{\partial \phi_i}{\partial x_j}(x) = 0$.

Moreover, when x is in D, i.e., $x = 1 \otimes z = (z, \ldots, z)$ for all i

 \[
 \phi_i(x) = -\ell \alpha(z) \left(\sum_{j=1}^N L_{ij} \right) U(z) = 0.
 \]

It remains to show that condition 3) of Definition 1 holds. More precisely, we need to prove that the manifold D is locally exponentially stable along the solution of the closed-loop system.

As in the proof of Theorem 1 let us denote $e = (e_2, \ldots, e_N)$ with $e_i = x_{i+1} - x_i$ and $z = z_1$. Note that the closed-loop system may be rewritten as in (13) with the vector fields F and G as defined in (14)–(16) with ϕ as the control law.

The rest of the proof is to apply [3, Proposition 3]. For this purpose, we need to show that for closed-loop system (14)–(16) the property ULMTE introduced in [3] and given in Section C is satisfied.

By the assumption on the graph being connected and together with Lemma 1 we have that the matrix $A = -\left(I_{2n,2n} - \frac{1}{2} I_{n-1} L_{12} \right)$ is Hurwitz. Let $S \in \mathbb{R}^{(N-1) \times (N-1)}$ be a symmetric positive definite matrix solution to the Lyapunov equation
 \[
 SA + A^T S \leq -\nu S
 \]
 where ν is a positive real number.

Consider the C^1 function $P_N : \mathbb{R}^n \to \mathbb{R}^{(N-1)n \times (N-1)n}$ defined as
 \[
 P_N(z) = S \otimes P(z).
 \]

Our aim is to show that the closed loop system satisfies property ULMTE given in Section C. First of all, note that S being symmetric positive definite, with (7), it yields the existence of positive real numbers p, \overline{p}, γ, $\overline{\gamma}$ such that
 \[
 P_N I_{N-1} \preceq P_N(z) \preceq \gamma N I_{N-1}.
 \]

Hence, equation (54) is satisfied.

Note that we have $G(0, z) = f(z)$. Moreover we have
 \[
 \partial G(0, z) P_N(z) = S \otimes \partial f P(z).
 \]

Note that with properties (22), (23) and (31), it follows that
 \[
 \frac{\partial F}{\partial e}(0, z) = I_{N-1} \otimes \partial f \left(\frac{\partial U}{\partial z}(z) \right) + \ell A \otimes \left(\alpha(z) g(z) \frac{\partial U}{\partial z}(z) \right).
 \]

Hence,
 \[
 \partial G(0, z) P_N(z) + P_N(z) \frac{\partial F}{\partial e}(0, z) + \frac{\partial F}{\partial e}(0, z)^T P_N(z)
 \]
 \[
 = S \otimes \left(\partial f P(z) + P(z) \frac{\partial f}{\partial z}(z) + \frac{\partial f}{\partial z}(z)^T P(z) \right)
 \]
 \[
 + \ell (SA + A^T S) \otimes \left(\frac{\partial U}{\partial z}(z)^T \frac{\partial U}{\partial z}(z) \right).
 \]

With (32) and (28) this implies that
 \[
 \partial f P_N(z) + P_N(z) \frac{\partial F}{\partial e}(0, z) + \frac{\partial F}{\partial e}(0, z)^T P_N(z)
 \]
 \[
 \leq S \otimes \left(-Q + (\rho - \ell \nu) \frac{\partial U}{\partial z}(z)^T \frac{\partial U}{\partial z}(z) \right).
 \]

Hence, by choosing $\ell \geq \ell$, inequality (53) holds and consequently Property ULMTE holds. The last part of the proof is to make sure that the vector field F has bounded first and second derivatives and that the vector field G has bounded first derivative. Note that by employing the bounds on the functions P, f, g, α and their derivatives, the result immediately follows from Proposition 3 in Section C. Indeed, this implies that Property TULES-NL holds and consequently, $e = 0$ is (locally) exponentially stable manifold for system (14)–(16) in closed loop with the control (29). With inequalities (18) and (19), it implies that inequality (4) holds for r sufficiently small. \qed
B. Sufficient conditions for global exponential synchronization

Note that in [3] with an extra assumption related to the metric (the level set of U are totally geodesic with respect to the Riemannian metric obtained from P), it is shown that global synchronization may be achieved when considering only two agents which are connected. It is still an open question to know if global synchronization may be achieved in the general nonlinear context with more than two agents. However in the particular case in which the matrix $P(z)$ and the vector field g are constant, then global synchronization may be achieved as this is shown in the following theorem.

Theorem 3 (Global sufficient condition): Assume that

$g(z) = G$ and there exists a symmetric positive definite matrix P in $\mathbb{R}^{n \times n}$, a symmetric positive definite matrix Q and $\rho > 0$ such that

$$P \frac{\partial f}{\partial z}(z) + \frac{\partial f}{\partial z}(z)^\top P - \rho P G G^\top P \leq -Q .$$

Assume moreover that the graph is connected with Laplacian L. Then there exist constants ℓ and positive real numbers c_1, \ldots, c_N such that the control laws $u = \phi(x)$ with $\phi = [\phi_1 \ldots \phi_N]^\top$ given by

$$\phi_i(x) = -\ell c_i \sum_{j=1}^N L_{ij} G^\top P x_j$$

(35)

with $\ell \geq \ell$, solves the global uniform exponential synchronization of (3).

Proof: Let $c_j = 1$ for $j = 2, \ldots, N$. Hence only c_1 is different from 1 and remains to be selected.

As in the proof of Theorem 1, let us denote $e = (e_2, \ldots, e_N)$ with $e_i = x_i - x_1$ and $z = x_1$. Note that for $i = 2, \ldots, N$, we have along the solution of the system (3) with u defined in (35),

$$\dot{e}_i = f(z) - \ell c_1 \sum_{j=1}^N L_{ij} G G^\top P x_j$$

$$- f(z + e_i) + \ell \sum_{j=1}^N L_{ij} G G^\top P x_j.$$

Note that L being a Laplacian, we have for all i in $[1, N]$ the equality $\sum_{j=1}^N L_{ij} = 0$. Consequently, we can add the term $\ell c_1 \sum_{j=1}^N L_{ij} G G^\top P x_1$ and subtract the term $\ell \sum_{j=1}^N L_{ij} G G^\top P x_1$ in the preceding equation above so that

$$\dot{e}_i = f(z) - \ell c_1 \sum_{j=1}^N L_{ij} G G^\top P (x_j - x_1)$$

$$- f(z + e_i) + \ell \sum_{j=1}^N L_{ij} G G^\top P (x_j - x_1),$$

$$= f(z) - f(z + e_i) - \ell \sum_{j=2}^N (L_{ij} - c_1 L_{ij}) G G^\top P e_j.$$

One can check that these equations can be written compactly as

$$\dot{e} = \left[\int_0^1 \Delta(z, e, s) ds - \ell (A(c_1) \otimes G G^\top P) \right] e,$$

with $A(c_1)$ is matrix in $\mathbb{R}^{(N-1) \times (N-1)}$, which depends on the parameter c_1 and is obtained from the Laplacian as:

$$A(c_1) = L_{2,1:N-1} - c_1 L_{1,2:N-1} \mathbb{I}_{N-1},$$

and Δ is the $(N-1)n \times n$ matrix valued function defined as

$$\Delta(z, e, s) = \text{Diag} \left\{ \frac{\partial f}{\partial z} (z - s e_2), \ldots, \frac{\partial f}{\partial z} (z - s e_N) \right\}.$$

The following Lemma shows that by selecting c_1 sufficiently small the matrix A satisfies the following property. Its proof is given in Appendix.

Lemma 2: If the communication graph is connected then there exist c_1 sufficiently small and $\mu > 0$ such that

$$A(c_1) + A(c_1)^\top \leq -\mu I.$$

With this lemma in hand, we consider now the candidate Lyapunov function defined as

$$V(e) = e^\top P N Pe,$$

where P_N is the $(N-1)n \times (N-1)n$ symmetric positive definite matrix defined as:

$$P_N = (I_{N-1} \otimes P).$$

Note that along the solution, the time derivative of this function satisfies:

$$\dot{V}(e) = 2e^\top P_N \left[\int_0^1 \Delta(z, e, s) ds - \ell (A(c_1) \otimes G G^\top P) \right] e.$$

Note that we have

$$P_N \Delta(z, e, s) = \text{Diag} \left\{ P \frac{\partial f}{\partial z} (z - s e_2), \ldots, P \frac{\partial f}{\partial z} (z - s e_N) \right\},$$

and

$$2e^\top (I_{N-1} \otimes P)(A(c_1) \otimes G G^\top P)e$$

$$= 2e^\top (A(c_1) \otimes P G G^\top P)e$$

$$= e^\top ([A(c_1) + A(c_1)^\top] \otimes P G G^\top P)e$$

$$\leq e^\top (\mu I_{N-1} \otimes P G G^\top P)e.$$

Hence, we get

$$\dot{V}(e) \leq \int_0^s e^\top M(e, z, s) e ds,$$

where M is the $(N-1)n \times (N-1)n$ matrix defined as

$$M(e, z, s) = \text{Diag} \left\{ M_2(e, z, s), \ldots, M_N(e, z, s) \right\},$$

with, for $i = 2, \ldots, N$

$$M_i(e, z, s) = P \frac{\partial f}{\partial z} (z - s e_i) + \frac{\partial f}{\partial z} (z - s e_i)^\top P - 2\ell \mu P G G^\top P.$$

Note that by taking ℓ sufficiently large, with $\ell \geq \ell_1$ this yields that $M_i(e, z, s) \leq -Q$. This immediately implies that

$$\dot{V}(e) \leq -e^\top (I_{N-1} \otimes Q)e.$$
This ensures exponential convergence of e to zero on the time of existence of the solution. With (19), this yields global exponential synchronization of the closed-loop system. \qed

V. CONSTRUCTION OF AN ADMISSIBLE TENSOR VIA BACKSTEPPING

A. Adding derivative (or backstepping)

As proposed in Theorem 2, a distributed synchronizing control law can be proposed using a symmetric covariant tensor field of order 2, which satisfies (3). Given a general nonlinear system, the construction of such a matrix function P may be a hard task. In (19), a construction of the function P for observer based on the integration of a Riccati equation is introduced. Similar approach could be used in our synchronization problem. Note however that in our context an integrability condition (i.e. equation (27)) has to be satisfied by the function P. This constraint may be difficult to address when considering a Riccati equation approach.

In the following we present a constructive design of such a matrix P that resembles the backstepping method. This approach can be related to (23, 22) in which a metric is also constructed iteratively. We note that one of the difficulties we have here is that we need to propagate the integrability property given in equation (27).

For outlining the backstepping steps for designing P, we consider the case in which the vector fields (f, g) can be decomposed as follows

$$ f(z) = \begin{bmatrix} f_a(z_a) + g_a(z_a)z_b \\ f_b(z_a, z_b) \end{bmatrix}, $$

and,

$$ g(z) = \begin{bmatrix} 0 \\ g_b(z) \end{bmatrix}, \quad 0 < q_b(z) \leq g_b(z) \leq \bar{g}_b $$

with $z = [z_a^T \ z_b]^T$ in \mathbb{R}^{n_a} and z_b in \mathbb{R}. In other words,

$$ z_a = f_a(z_a) + g_a(z_a)z_b, \quad z_b = f_b(z) + g_b(z)u. \quad (36) $$

Let C_a be a compact subset of \mathbb{R}^{n_a}. As in the standard backstepping approach, we make the following assumptions on the z_a-subsystem where z_b is treated as a control input to this subsystem.

Assumption 1 (z_a-Synchronizability): Assume that there exists a C^∞ function $P_a : \mathbb{R}^{n_a} \to \mathbb{R}$ and a C^∞ function $\alpha_a : \mathbb{R}^{n_a} \to \mathbb{R}$ such that

$$ \frac{\partial U_a}{\partial z_a}(z_a)^T = \alpha_a(z_a)P_a(z_a)g_a(z_a) \quad (37) $$

holds for all z_a in C_a;

2. There exist a symmetric positive definite matrix Q_a and positive constants p_a, \bar{p}_a and $\rho_a > 0$ such that

$$ p_a I_{n_a} \leq P_a(z_a) \leq \bar{p}_a I_{n_a}, \quad \forall z_a \in \mathbb{R}^{n_a}, \quad (38) $$

holds and

$$ L_{f_a}P_a(z_a) - \rho_a \frac{\partial U_a}{\partial z_a}(z_a)^T \frac{\partial U_a}{\partial z_a}(z_a) \leq -Q_a \quad (39) $$

holds for all z_a in C_a.

As a comparison to the standard backstepping method for stabilizing nonlinear systems in the strict-feedback form, the z_a-synchronizability conditions above are akin to the stabilizability condition of the upper subsystem via a control Lyapunov function. However, for the synchronizer design as in the present context, we need an additional assumption to allow the recursive backstepping computation of the tensor P.

Roughly speaking, we need the existence of a mapping q_a such that the metric P_a becomes invariant along the vector field $\frac{\partial U_a}{\partial z_a}$. In other words, $\frac{\partial U_a}{\partial z_a}$ is a Killing vector field.

Assumption 2: There exists a non-vanishing smooth function $q_a : \mathbb{R}^{n_a} \to \mathbb{R}$ such that the metric obtained from P_a on C_a is invariant along $\frac{\partial U_a}{\partial z_a}$. In other words, for all z_a in C_a

$$ L_{\frac{\partial U_a}{\partial z_a}}P_a(z_a) = 0. \quad (40) $$

Similar assumption can be found in (10) in the characterization of differential passivity.

Based on the Assumptions 1 and 2, we have the following theorem on the backstepping method for constructing a symmetric covariant tensor field P_b of the complete system (36).

Theorem 4: Assume that the z_a-subsystem satisfies Assumption 1 and Assumption 2 in the compact set C_a with a $n_a \times n_a$ symmetric covariant tensor field P_a of order two and a non-vanishing smooth mapping $q_a : \mathbb{R}^{n_a} \to \mathbb{R}$. Then for all positive real number M_b, the system (26) with the state variables $z = (z_a, z_b) \in \mathbb{R}^{n_a+1}$ satisfies the Assumption 1 in the compact set $C_a \times [-M_b, M_b] \subset \mathbb{R}^{n_a+1}$ with the symmetric covariant tensor field P_b be given by

$$ P_b(z) = [P_a(z_a) + S_a(z)S_a(z)^T \quad S_a(z)q_a(z_a) \quad q_a(z_a)^2] $$

where

$$ S_a(z) = \frac{\partial q_a}{\partial z_a}(z_a)^T z_b + \eta \alpha_a(z_a)P_a(z_a)g_a(z_a) $$

and η is a positive real number. Moreover, there exists a non-vanishing mapping $q_b : \mathbb{R}^{n_a+1} \to \mathbb{R}$ such that P_b is invariant along $\frac{\partial U_b}{\partial z_b}$. In other words, Assumptions 1 and 2 hold for the complete system (36).

Proof: Let M_b be a positive real number and let $C_b = C_a \times [-M_b, M_b]$. Let $U_b : \mathbb{R}^{n_a+1} \to \mathbb{R}$ be the function defined by

$$ U_b(z_a, z_b) = \eta U_a(z_a) + q_a(z_a)z_b. $$

where η is a positive real number that will be selected later on. It follows from (37) that for all $(z_a, z_b) \in C_b$, we have

$$ \frac{\partial U_b}{\partial z}(z) = \begin{bmatrix} \frac{\partial U_a}{\partial z_a}(z_a)^T + \frac{\partial U_a}{\partial z_a}(z_a)z_b \\ q_a(z_a) \\ q_a(z_a) \end{bmatrix} $$

$$ = \begin{bmatrix} S_a(z) \\ q_a(z_a) \\ \alpha_a(z_a)P_b(z) \end{bmatrix} $$

$$ = \frac{1}{q_a(z_a)}P_b(z)g(z) $$

with $\alpha_b(z) = \frac{1}{q_a(z_a)q_b(z)}$. Hence, the first condition in Assumption 1 is satisfied.
Consider z in C_b and let $v = \begin{bmatrix} v_a^\top \\ v_b \end{bmatrix}^\top$ in \mathbb{R}^{n_a+1} be such that
\[v^\top P_a(z)g(z) = 0. \tag{41} \]

Note that this implies that
\[v_b = -v_a^\top S_a(z) q_a(z_a). \tag{42} \]

In the following, we compute the expression:
\[v^\top L f P_b(z) = v^\top \partial f P_b(z) v + 2v^\top P_b(z) \frac{\partial f}{\partial z}(z) v. \]

For the first term, we have
\[
v^\top \partial f P_a(z)v = v^\top \partial f_a P_a(z_a)v_a + z_b v_a^\top \partial g_a P_a(z_a)v_a \\
+ v_a^\top \partial f S_a(z) S_a(z)^\top v_a + 2v_a^\top \partial f S_a(z) q_a(z_a) v_b \\
+ \partial f_a + g_a z_a q_a(z_a)^2 v_b^2 \]

With \text{(42)}, it yields
\[
v^\top \partial f S_a(z) S_a(z)^\top v_a + 2v_a^\top \partial f S_a(z) q_a(z_a) v_b \\
+ \partial f_a + g_a z_a q_a(z_a)^2 v_b^2 = 0 \]

Hence
\[v^\top \partial f P_a(z)v = v^\top \partial f_a P_a(z_a)v_a + z_b v_a^\top \partial g_a P_a(z_a)v_a. \]

On the other hand, for the second term we have
\[P_b(z) = \begin{pmatrix} P_a(z_a) & 0 \\ 0 & 0 \end{pmatrix} + \frac{P_b(z) g(z) g(z)^\top P_b(z)}{(q_a(z_a) g_b(z_a))^2} \]

Hence, with \text{(41)}, it yields
\[
v^\top L f P_a(z) \frac{\partial f}{\partial z}(z) v = \begin{bmatrix} v_a^\top \\ v_b \end{bmatrix}^\top S_a(z) q_a(z_a) \begin{bmatrix} q_a(z_a) \end{bmatrix} P(z) \\
- \begin{bmatrix} \frac{\partial f_a}{\partial z_a}(z_a) + \frac{\partial g_a}{\partial z_a}(z_a) z_b \\ \frac{\partial f_a}{\partial z_a}(z_a) \end{bmatrix} \begin{bmatrix} v_a \\ v_b \end{bmatrix} \]
\[= \begin{bmatrix} v_a^\top P_a(z_a) \frac{\partial f_a}{\partial z_a}(z_a) v_a + z_b v_a^\top P_a(z_a) \frac{\partial g_a}{\partial z_a}(z_a) v_a \\
- v_a^\top P_a(z_a) g_a(z_a) S_a(z_a)^\top v_a \]
\[= v_a^\top P_a(z_a) \frac{\partial f_a}{\partial z_a}(z_a) v_a + z_b v_a^\top P_a(z_a) \frac{\partial g_a}{\partial z_a}(z_a) v_a \\
- \frac{\eta}{\alpha_a(z_a) q_a(z_a)} \left| \frac{\partial U_a}{\partial z_a}(z_a) v_a \right|^2 \\
- \frac{z_b}{q_a(z_a)} v_a^\top P_a(z_a) g(z_a) \frac{\partial q_a}{\partial z_a}(z_a) \]

Hence, we get
\[v^\top L f P_b(z) = v^\top L f_a P_a(z_a) v_a \\
- \frac{2\eta}{\alpha_a(z_a) q_a(z_a)} \left| \frac{\partial U_a}{\partial z_a}(z_a) v_a \right|^2 \\
+ z_b v_a^\top \left(\frac{\partial g_a}{\partial z_a}(z_a) P_a(z_a) + P_a(z_a) \frac{\partial g_a}{\partial z_a}(z_a) \right) \\
- 2z_b v_a^\top P_a(z_a) \frac{\partial g_a}{\partial z_a}(z_a) g(z_a) \frac{\partial q_a}{\partial z_a}(z_a) v_a. \]

Let η be a positive real number such that
\[\rho_a \leq \frac{2\eta}{\alpha_a(z_a) q_a(z_a)}, \forall z_a \in C_b. \]

Using \text{(39)} in Assumption \textit{1} and \text{(40)} in Assumption \textit{2} it follows that for all $z \in C_b$ and all v in \mathbb{R}^{n_a+1}
\[v^\top P_b(z) g(z) = 0 \]
\[
\Rightarrow v^\top \partial f P_b(z) v + 2v^\top P_b(z) \frac{\partial f}{\partial x}(z) v \leq -v^\top Q_a v. \]

Employing Finsler theorem and the fact that C_b is a compact set, it is possible to show that this implies the existence of a positive real number ρ_a such that for all $z \in C_b$
\[L_f P(z) - \rho_b \frac{\partial U_b}{\partial z}(z)^\top \frac{\partial U_b}{\partial z}(z) \leq -Q_b. \tag{43} \]

where Q_b is a symmetric positive definite matrix.

To finish the proof it remains to show that the metric is invariant along g with an appropriate control law. Note that if we take
\[g_b(z) = q_a(z_a) g_b(z_a) \]
then it yields that this function is also non-vanishing. Moreover, we have
\[L_a \frac{P_b(z)}{q_a(z_a)^2} = \partial \frac{P_b(z)}{q_a(z_a)^2} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} q_a(z_a) \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \frac{P(z)}{q_a(z_a)^2}. \]

However, since we have
\[\partial g P_a(z) = \\
\[\begin{bmatrix} \frac{\partial g_a}{\partial z_a}(z_a) S_a(z_a) \frac{\partial q_a}{\partial z_a}(z_a) + S_a(z_a) \frac{\partial q_a}{\partial z_a}(z_a) \frac{\partial q_a}{\partial z_a}(z_a)^\top \\ \frac{\partial q_a}{\partial z_a}(z_a) \frac{\partial q_a}{\partial z_a}(z_a) \end{bmatrix} \]
and
\[\frac{P_b(z)}{q_a(z_a)^2} \begin{bmatrix} \frac{\partial g_a}{\partial z_a}(z_a) \\ \frac{\partial q_a}{\partial z_a}(z_a) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial q_a}{\partial z_a}(z_a) \frac{\partial q_a}{\partial z_a}(z_a)^\top \\ \frac{\partial q_a}{\partial z_a}(z_a) \frac{\partial q_a}{\partial z_a}(z_a) \end{bmatrix} \]
then the claim holds. \qed
\[B. \ \text{Illustrative example} \]

As an illustrative example, consider the case in which the vector fields \(f \) and \(g \) are given by
\[
\begin{align*}
 f(z) &= \begin{bmatrix} -z_1 \sin(z_2) \cos(z_1) + z_2 \\ 2 + \sin(z_1) \end{bmatrix}, \\
 g(z) &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\end{align*}
\]

This system may be rewritten with \(z_a = (z_1, z_2) \) as
\[
\dot{z}_a = f_a(z_a) + g_a(z_a)z_b, \quad \dot{z}_b = u
\]
with
\[
\begin{align*}
 f_a(z_a) &= \begin{bmatrix} -z_1 \sin(z_2) \cos(z_1) + z_2 \\ 0 \end{bmatrix}, \\
 g_a(z_a) &= \begin{bmatrix} 0 \\ 2 + \sin(z_1) \end{bmatrix}.
\end{align*}
\]

Moreover, this system satisfies the following property. Consider the matrix \(P \) given as
\[
P = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
\]

Note that if we consider
\[
\begin{align*}
 U_a(z_a) &= z_1 + 2z_2, \\
 \text{then equation (37) is satisfied with } \alpha_a = \frac{1}{2 + \sin(z_1)}. \quad \text{Moreover, note that we have }
\end{align*}
\]

\[
v^\top \frac{\partial U}{\partial z_a}(z_a) = 0 \iff v_1 + 2v_2 = 0.
\]

Moreover, we have
\[
\begin{align*}
 \begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix} P_a &\frac{\partial f_a}{\partial z_a}(z_a) \begin{bmatrix} -2 \\ 1 \end{bmatrix} = -3 \begin{bmatrix} -2 \frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_2} \\ -2 \frac{\partial f_2}{\partial z_1} \sin(z_1) \cos(z_2)) - \cos(z_1) \cos(z_2) + 1 \end{bmatrix} \\
 \begin{bmatrix} -2 \end{bmatrix} &\begin{bmatrix} -2 \sin(z_2) \sin(z_1) \cos(z_2) + 1 \end{bmatrix} = -3, \\
 \begin{bmatrix} 3 \sin(z_2) \sin(z_1) \cos(z_2) - \cos(z_1 - z_2) \end{bmatrix} &\leq -3
\end{align*}
\]

The function \(\frac{\partial f_a}{\partial z_a}(z_a) \) being periodic in \(z_a \) and \(z_b \) we can assume that \(z_1 \) and \(z_2 \) are in a compact subset denoted \(C_a \). This implies employing Finsler Lemma that there exists \(\rho_a \) and \(Q_a \) such that inequality (39) holds. Consequently, the \(z_a \) subsystem satisfies Assumption 1.

Finally note that Assumption 2 is also trivially satisfied by taking \(q_a(z_a) = 2 + \sin(z_1) \). From Theorem 4 it implies that there exist positive real numbers \(\rho_b \) and \(\eta \) such that with the functions
\[
\begin{align*}
 U(z) &= \eta(z_1 + 2z_2) + \frac{z_b}{2 + \sin(z_1)}, \\
 \alpha(z) &= 2 + \sin(z_1),
\end{align*}
\]

with \(\alpha(z) = 2 + \sin(z_1) \), equations (27) and (28) are satisfied. Hence from Theorem 3 the control law given in (35) solves the local exponential synchronization problem for the \(N \) identical systems that exchange information via any undirected communication graph \(G \), which is connected.

VI. CONCLUSION

In this paper, based on recent results in [3], we have presented necessary and sufficient conditions for the solvability of local exponential synchronization of \(N \) identical affine nonlinear systems through a distributed control law. In particular, we have shown that the necessary condition is linked to the infinitesimal stabilizability of the individual system and is independent of the network topology. The existence of a symmetric covariant tensor of order two, as a result of the infinitesimal stabilizability, has allowed us to design a distributed synchronizing control law. When the tensor and when the controlled vector field \(g \) are both constant it is shown that global exponential synchronization may be achieved. Finally, a recursive computation of the tensor has been also discussed.

APPENDIX

A. Proof of Lemma [2]

From the property of Laplacian matrix, the eigenvalues of \(L \) are real and satisfy \(0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N \). Let us take the non-zero eigenvalue \(\nu > 0 \) of \(L \) and its corresponding eigenvector \(v \) in \(\mathbb{R}^N \). Note that we can decompose
\[
v = \begin{bmatrix} v_a \\ v_b \end{bmatrix}, \quad L = \begin{bmatrix} L_{11} & L_{1,2:n} \\ L_{1,1:n}^\top & L_{2:n,2:n} \end{bmatrix}
\]
with \(v_a \) and \(L_{11} \) in \(\mathbb{R} \). It follows that
\[
L_{11}v_a + L_{1,2:n}v_b = \nu v_a, \quad L_{1,2:n}v_a + L_{2:n,2:n}v_b = \nu v_b.
\]

Moreover, since \(\mathbf{1}_N \) is an eigenvector associated to the eigenvalue 0,
\[
L_{11} + L_{1,2:n}\mathbf{1}_{N-1} = 0, \quad L_{1,2:n}^\top + L_{2:n,2:n}\mathbf{1}_{N-1} = 0.
\]

Consider now a vector in \(\mathbb{R}^{N-1} \) defined by
\[
\tilde{v} = v_b - \mathbf{1}_{N-1} v_a
\]

Note that \(\tilde{v} \) is non zero since \(v \) is not colinear to \(\mathbf{1}_N \). By a routine algebraic computation, it follows that this vector satisfies
\[
\begin{align*}
 [L_{2:n,2:n} - \mathbf{1}_{N-1} L_{1,2:n}]\tilde{v} &= L_{2:n,2:n}v_b - \mathbf{1}_{N-1} L_{1,2:n} v_b \\
 &= \nu v_b - L_{1,2:n} v_a \\
 &= \nu \tilde{v}.
\end{align*}
\]

This shows that \(\tilde{v} \) is an eigenvector with the same non-zero eigenvalue of \(L \). It proves the first claim of the lemma.

Note that the multiplicity of the eigenvalue \(\nu \) is the same for both matrices. Also, if the graph is connected, then the 0 eigenvalue of the Laplacian matrix \(L \) is of multiplicity 1 and the other eigenvalues are positive and distinct. Hence the matrix \(-L \) is Hurwitz.

\[\square \]
B. Proof of Lemma 2

First of all, note that matrix $-L_{z,N;2:N}$ is diagonal dominant. Hence, it is symmetric positive semi-definite. Moreover, by Kirchhoff’s theorem, the matrix $-L_{z,N;2:N}$, which is a minor of the Laplacian has a determinant larger then 1 since the graph is connected. Hence, $-L_{z,N;2:N}$ is positive definite. Consequently, there exists c_1 sufficiently small such that $A(c_1)$ is negative definite.

C. Some results from [3]

Throughout this section, we give some of the results of [3]. Hence, we consider a system in the form

$$\dot{e} = F(e, z), \quad \dot{z} = G(e, z)$$

where e is in \mathbb{R}^{n_e}, z is in \mathbb{R}^{n_z} and the functions $F : \mathbb{R}^{n_e} \times \mathbb{R}^{n_z} \to \mathbb{R}^{n_e}$ and $G : \mathbb{R}^{n_e} \times \mathbb{R}^{n_z} \to \mathbb{R}^{n_z}$ are C^2. We denote by $(E(c_0, x_0, t), X(e, z, t))$ the (unique) solution which goes through (e, z) in $\mathbb{R}^{n_e} \times \mathbb{R}^{n_z}$ at $t = 0$. We assume it is defined for all positive times, i.e. the system is forward complete.

In the following, to simplify our notations, we denote by $B_r(a)$ the open ball of radius r centered at the origin in \mathbb{R}^{n_e}.

In [3], the following three notions are introduced.

TULES-NL *(Transversal uniform local exponential stability)*

There exist strictly positive real numbers r, k and λ such that we have, for all (e, x, t) in $\mathbb{R}^{n_e} \times \mathbb{R}^{n_x} \times \mathbb{R}_{\geq 0}$ with $|\epsilon| \leq r$,

$$|E(\epsilon, x, t)| \leq k|\epsilon| \exp(-\lambda t).$$

UES-TL *(Uniform exponential stability for the transversally linear system)*

The system

$$\dot{z} = G(z) := G(0, z)$$

is forward complete and there exist strictly positive real numbers k and λ such that any solution $(\tilde{E}(\tilde{z}, z, t), Z(z, t))$ of the transversally linear system

$$\dot{e} = \frac{\partial F}{\partial e}(0, z)\tilde{e}, \quad \dot{z} = G(z)$$

satisfies, for all (\tilde{e}, z, t) in $\mathbb{R}^{n_e} \times \mathbb{R}^{n_x} \times \mathbb{R}_{\geq 0}$,

$$|\tilde{E}(\tilde{e}, z, t)| \leq \tilde{k} \exp(-\lambda t)|\tilde{e}|.$$

ULMTE *(Uniform Lyapunov matrix transversal equation)*

For all positive definite matrix Q, there exists a continuous function $P : \mathbb{R}^{n_z} \to \mathbb{R}_{\geq 0}$ and strictly positive real numbers \underbar{p} and \overline{p} such that for all z in \mathbb{R}^{n_z},

$$\partial_z P(z) + P(z) \left(\frac{\partial F}{\partial e} (0, z) + \frac{\partial F}{\partial e} (0, z)' P(z) \right) \leq -Q$$

and

$$\underbar{p} I \leq P(z) \leq \overline{p} I.$$

From these definitions and in the same spirit as Lyapunov second method, the following relationships have been established in [3].

Proposition 1 *(TULES-NL “⇒” UES-TL)*: If Property TULES-NL holds and there exist positive real number c such that, for all z in \mathbb{R}^{n_z},

$$\frac{\partial F}{\partial e}(0, z) \leq c, \quad \frac{\partial G}{\partial x}(0, x) \leq c$$

and, for all (e, x) in $B_c(\eta) \times \mathbb{R}^{n_x}$,

$$\left| \frac{\partial^2 F}{\partial e \partial e}(e, z) \right| \leq c, \quad \left| \frac{\partial^2 F}{\partial e \partial x}(e, z) \right| \leq c, \quad \left| \frac{\partial G}{\partial e}(e, z) \right| \leq c,$$

then Property UES-TL holds.

Proposition 2 *(UES-TL “⇒” ULMTE)*: If Property UES-TL holds, P is C^1 and there exists a positive real number c such that

$$\left| \frac{\partial F}{\partial e}(0, z) \right| \leq c, \quad \forall z \in \mathbb{R}^{n_z},$$

then Property ULMTE holds.

Proposition 3 *(ULMTE “⇒” TULES-NL)*: If Property ULMTE holds and there exist positive real numbers η and c such that, for all (e, x) in $B_c(\eta) \times \mathbb{R}^{n_x}$,

$$\left| \frac{\partial P}{\partial x}(x) \right| \leq c, \quad \left| \frac{\partial^2 F}{\partial e \partial x}(e, x) \right| \leq c, \quad \left| \frac{\partial G}{\partial e}(e, x) \right| \leq c,$$

then Property TULES-NL holds.

REFERENCES

Vincent Andrieu graduated in applied mathematics from INSA de Rouen, France, in 2001. After working in ONERA (French aerospace research company), he obtained a PhD degree from Ecole des Mines de Paris in 2005. In 2006, he had a research appointment at the Control and Power Group, Dept. EEE, Imperial College London. In 2008, he joined the CNRS-LAAS lab in Toulouse, France, as a CNRS-chargé de recherche. Since 2010, he has been working in LAGEP-CNRS, Université de Lyon, France. In 2014, he joined the functional analysis group from Bergische Universität Wuppertal in Germany, for two years. He is also interested in practical application of these theoretical problems, and especially in the field of aeronautics and chemical engineering.

Bayu Jayawardhana (SM13) received the B.Sc. degree in electrical and electronics engineering from the Institut Teknologi Bandung, Bandung, Indonesia, in 2000, the M.Eng. degree in electrical and electronics engineering from the Nanyang Technological University, Singapore, in 2003, and the Ph.D. degree in electrical and electronics engineering from Imperial College London, London, U.K., in 2006. Currently, he is an associate professor in the Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, The Netherlands. He was with Bath University, Bath, U.K., and with Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, U.K. His research interests are on the analysis of nonlinear systems, systems with hysteresis, mechatronics, systems and synthetic biology. He is a Subject Editor of the International Journal of Robust and Nonlinear Control, an associate editor of the European Journal of Control, and a member of the Conference Editorial Board of the IEEE Control Systems Society.

Sophie Tarbouriech received the PhD degree in Control Theory in 1991 and the HDR degree (Habilitation Diriger des Recherches) in 1998 from Université Paul Sabatier, Toulouse, France. Currently, she is full-time researcher (Directeur de Recherche) in LAAS-CNRS, Toulouse. Her main research interests include analysis and control of linear and nonlinear systems with constraints (limited information), hybrid dynamical systems. She is currently Associate Editor for IEEE Transactions on Automatic Control, IEEE Transactions on Control Systems Technology, Automatica and European Journal of Control. She is also in the Editorial Board of International Journal of Robust and Nonlinear Control. She is also co-Editor-in-Chief of the French journal JESA (Journal Europen des Systmes Automatiss). Since 1999, she is Associate Editor at the Conference Editorial Board of the IEEE Control Systems Society. She is also a member of the IFAC technical committee on Robust Control and Nonlinear Systems.